Key info |
Offered by | Massachusetts Institute of Technology |
Description | The course covers all of the basic probability concepts, including:
- multiple discrete or continuous random variables, expectations, and conditional distributions
- laws of large numbers
- the main tools of Bayesian inference methods
- an introduction to random processes (Poisson processes and Markov chains)
The contents of this course are heavily based upon the corresponding MIT class -- Introduction to Probability -- a course that has been offered and continuously refined over more than 50 years. It is a challenging class but will enable you to apply the tools of probability theory to real-world applications or to your research.
What you'll learn
- The basic structure and elements of probabilistic models
- Random variables, their distributions, means, and variances
- Probabilistic calculations
- Inference methods
- Laws of large numbers and their applications
- Random processes
|
Accredited by | edX - online learning platform |
URL |
https://www.edx.org/course/probability-the-science-of-uncertainty-and-data
|