Global Value Chain Analysis: Data Requirements, Gaps & Improvements with New Datasets

Gary Gereffi
Director, Center on Globalization, Governance & Competitiveness (CGGC), Duke University, Durham, NC 27708

Presentation based on discussion paper prepared by Stacey Frederick, Ph.D., Research Scientist, Duke CGGG

Conference on the Measurement of International Trade and Economic Globalization
September 29-Oct. 1, 2014
Aguascalientes, Mexico
Overview

1) Data needed for GVC studies
 • Value chain model

2) Improvements to GVC analysis with
 • TiVA for Domestic Backward Linkages
 • I-O Tables for VC Mapping
 • Business Functions

3) GVC case study examples
 • Governance Typology
 • Costa Rica Medical Devices GVC
 • Mexico GVC and Clusters Study
 • U.S. Value Chains for Jobs and Wages
Introduction

- Proliferation of research labeled as “GVC” over the last 5-10 years
- All related to production fragmentation, but different motives, approaches and definitions of GVCs
- Three main groups involved
 - Social science & geography academic research centers (originators of GVC and GPN frameworks)
 - Economists & national statistics offices (from original firm-level VC approach to new I-O, DCE, TiVA efforts)
 - International NGOs and national governments (funders/implementers)
- Benefits from combining (a) theoretical insights and industry experience from ‘traditional” GVC researchers and (b) data availability and analysis from economists and statistics agencies
Dimensions of GVC Analysis

For a specific industry, good or service
• Input-output structure (firms and products)
 – Physical transformation (supply chain, end markets)
 – Intangible activities (value-adding activities)
• Geography (countries)
• Governance (lead firms and organizations)
• Industry stakeholders (firms & organizations along chain)
• Institutional context
• Upgrading (functions, products & markets)
Four Parts of Value Chain Model

SUPPLY CHAIN STAGES

Raw Materials | Components | Final Products | Distribution & Sales | Markets

Agriculture, Forestry, & Fishing (A)
Mining & Quarrying (B)
Manufacturing (C)
Manufacturing (C)
Wholesale & Retail Trade (G)
Transport & Storage (H)
Admin & support service activities (N)

KEY VALUE-ADDING ACTIVITIES
Business Functions

Top row: Non-manufacturing activities that account for most “value-added”

Describe by type of market or industry; use ISIC divisions

MARKET
MARKET
MARKET

END MARKETS/BUYERS & SUPPORTING INDUSTRIES

Universities & Education (P)
Utilities (D, E)
Financial and insurance activities (K)
Information and communication (J)
Professional, scientific and technical activities (M)

Source: Frederick, S. (2014). Represents ISIC 4 sections
Data Needed for GVC Analysis

Country-level data on

1) Economic activity (industry) of establishments
2) Products/services (traded and domestic)
3) End buyer markets (for intermediates)
4) Supply chain position (input-output flow)
 - Raw materials, intermediates, final products, retail/sales
5) Value-adding activities (or business functions), establishments
6) Occupations (optional)
GVC Dimensions: Current & Proposed Data Sources

<table>
<thead>
<tr>
<th>GVC Dimensions</th>
<th>Current</th>
<th>Proposed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input-output structure</td>
<td>Interviews; secondary lit.</td>
<td>I-O TBLs</td>
</tr>
<tr>
<td>• Physical transformation</td>
<td></td>
<td>Business Functions; input categories in I-O TBLs</td>
</tr>
<tr>
<td>• Value-adding activities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geography</td>
<td>Trade data (UN Comtrade)</td>
<td>Business Functions; AMNE</td>
</tr>
<tr>
<td>Governance</td>
<td>Interviews; market reports</td>
<td>Requires firm-specific data (not focus for this presentation)</td>
</tr>
<tr>
<td>• Lead Firms</td>
<td>Interviews; secondary lit.</td>
<td></td>
</tr>
<tr>
<td>• Institutions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Industry Stakeholders</td>
<td>National I-O & annual surveys</td>
<td></td>
</tr>
<tr>
<td>Upgrading</td>
<td>Interviews; secondary lit.</td>
<td>Business Functions</td>
</tr>
<tr>
<td>• Functional</td>
<td>Interviews; secondary lit.</td>
<td>TiVA; DCE; I-O TBLs</td>
</tr>
<tr>
<td>• Linkages</td>
<td>Interviews; secondary lit.</td>
<td>I-O TBLs</td>
</tr>
<tr>
<td>• End markets</td>
<td>Interviews; secondary lit.</td>
<td>Trade data + I-O TBLs; BTDIxE (using EUC)</td>
</tr>
<tr>
<td>• Products</td>
<td>Trade data</td>
<td>--</td>
</tr>
</tbody>
</table>

Objective: Quantifying or finding ways to measure “qualitative” analysis.
Apparel Value Chain

Increasing Economic Value-Added

Inputs | Components (Textiles) | Final Products | Distribution, Sourcing & Sales

Natural & Synthetic Fibers
Yarn Production
Fabric Production
Apparel Production (Cut & Sew)

Intermediaries

Lead Firms
Brand Manufacturers
Brand Marketers
Retailers

Trim (Buttons, Zippers, Elastic, etc.)
Equipment & Machinery

“Services” account for 70-80% of value-added – fall outside of ISIC 18 (apparel manufacturing)

Red indicates highest value-added activities + control/power over the chain
Percentages represent relative shares of apparel retail selling price attributed to value-adding activities
Detail needed to achieve minimum categories

Level of detail needed can be reached by using **6-digit HS codes or potentially 6-digit NAICS** (more detailed extension of ISIC). However required significant re-categorizing.

Lead firms are either labeled as manufacturers even if they don’t manufacture, or are labeled as generic “wholesale” or “retail”
Purpose of this slide:
(1) Level of detail needed to map an industry’s supply chain (NAICS);
(2) Orange boxes indicate NON-apparel end markets (different ISIC); can identify these using I-O tables
Even the best possible categorizations using ISIC do not provide adequate detail. Textile components are grouped with final products and knit fabric classified at 3-digit level with non-apparel end-uses (and was not separated from knit apparel in ISIC Rev. 3). Also not a connection to upstream and more importantly, downstream segments.
Value Chain Model correlated to ISIC: Value-Adding Activities & Supporting Industries

- **Research & Development**
 - ISIC: 72, 74

- **Design & Development**
 - ISIC: 58, 59, 71, 74

- **Production/Operations/Industries**
 - ISIC: 45-46
 - Goods: 01-03, 05-09, 10-33
 - Services: 41-43, 55-56, 75-77-79, 84-86-88, 90-93; 95-98

- **Distribution & Logistics**
 - ISIC: 73
 - Goods: 7420, 8230
 - Services: 47

- **Sales & Marketing**
 - ISIC: 71

- **Mgmt., Admin Back Office**
 - ISIC: 5820, 64, 65, 66, 69, 7020, 7740, 80, 82
 - ISIC: 7010, 81

- **Infrastructure (Utilities) & Finance**
 - ISIC: 35, 36, 37, 38

- **Trade & Professional Associations**
 - ISIC: 94

- **Information Services**
 - ISIC: 581 5911, 5920 6312 6391 7490 9101

- **ICT Services (Communication, Software & IT-Services)**
 - ISIC: 60, 61 5820 6201 6202 6311 9511 6209

- **Education, Testing & Training**
 - ISIC: 85

ISIC codes linked to value chain reference model; codes in black match S-DOT (traded, potential ICT-enabled supporting industries)

- ISIC loosely represents parts of the VC model, but isn’t industry-specific.
- Industries primarily associated with production & services.
- Further complications with service industries and enabling support services.
Business Functions & Organizational Decision Matrix in GVCs

- **Business function classification**
 - 8 activities
 - 1 core + 7 supporting
 - Visual separates activities that relate to “value-adding activities”

- For any of the business functions, a company makes two choices, leading to four potential outcomes
 - Make or buy
 - Domestic or offshore

- Parenthesis indicate supplemental data sources

<table>
<thead>
<tr>
<th>Location/Organization</th>
<th>Domestic</th>
<th>International</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal</td>
<td>Make – domestic (in-house) (national surveys)</td>
<td>Make – offshore (FDI) (AMNE)</td>
</tr>
<tr>
<td>External</td>
<td>Outsource – domestic (I-O TBLs)</td>
<td>Outsource – offshore (trade data)</td>
</tr>
</tbody>
</table>

Business Functions & Organizational Decision Matrix in GVCs

- **R&D; Design**
- **Marketing & Sales**
- **Distribution & Logistics**
- **Primary Activity**
- **General Mgmt. & Admin**
- **Facilities Maintenance**
- **Customer & After-Sale Service**
- **ICT Services**
Business Functions

- Business function surveys are asking the right questions, but usefulness depends on ability to link to other classification systems.
- Business function results need to be able to be linked to ISIC or CPC.
- As such, they will provide data on where value-adding activities take place (domestic or offshore) and how buyers set up organizational models (make or buy).
- Without links to industries, not a clear way to link data to industry-specific GVC studies.
Conclusions for GVC-ISIC comparison

• New datasets offer improvements to filling data gaps for GVC analysis
• Still need more detailed data and ability to link data along a chain and to other classification systems in more detail for GVC studies
• Usefulness of data will depend on ability to provide more industry-specific data and how business functions linked to ISIC
GVC Case Study Examples

- Governance Typologies
- Costa Rican Medical Devices
- Mexico GVC and Clusters Study (new)
- U.S. Value Chains and Jobs
Five types of global value chain governance

Source: Gereffi at al. [2005]
Dynamics in Global Value Chain Governance

<table>
<thead>
<tr>
<th>Governance Type</th>
<th>Complexity of transactions</th>
<th>Ability to codify transactions</th>
<th>Capabilities in the supply-base</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market</td>
<td>Low</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Modular</td>
<td>High (1)</td>
<td>High</td>
<td>High</td>
</tr>
<tr>
<td>Relational</td>
<td>High</td>
<td>Low</td>
<td>High (5)</td>
</tr>
<tr>
<td>Captive</td>
<td>High</td>
<td>High</td>
<td>Low</td>
</tr>
<tr>
<td>Hierarchy</td>
<td>High</td>
<td>Low</td>
<td>Low</td>
</tr>
</tbody>
</table>

1. **Increasing complexity of transactions** (harder to codify transactions; effective decrease in supplier competence)
2. **Decreasing complexity of transactions** (easier to codify transactions; effective increase in supplier competence)
3. **Better codification of transactions** (open or de facto standards, computerization)
4. **De-codification of transactions** (technological change, new products, new processes)
5. **Increasing supplier competence** (decreased complexity, better codification, learning)
6. **Decreasing supplier competence** (increased complexity, new technologies, new entrants)
GVCs in fresh vegetables sector (from Africa to UK)

Source: Dolan and Humphrey [2004]
COSTA RICA’S
MEDICAL DEVICES GVC
Local firms are mainly in packaging & support services (12 of 19) versus 4 in limited role in plastics molding & metal finishing and 1 OEM with exports under $2 million.
EVOLUTION OF COSTA RICAN MEDICAL DEVICE EXPORTS

Costa Rica's Medical Exports by Product Category: 1998-2011

- **Disposables** still the largest product category exported, but no longer a strong growth area.
- Exports in **surgical instruments** have grown steadily since 2005.
- **Therapeutics** has become 2nd largest category since 2008; likely to increase as newly established firms complete transfer of new product lines.
- Limited export of highest value **capital equipment** (eg. Electronic/software devices)
FIRMS IN COSTA RICA MEDICAL DEVICES SECTOR

<table>
<thead>
<tr>
<th>Entry Year</th>
<th>Firm Characteristics</th>
<th>Main Product Export Category</th>
<th>Core Market Segments</th>
<th>Product Examples</th>
<th>Select Firms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Up to 2000
24 firms:
8 US
15 CR
1 German</td>
<td>4 OEMs
8 Components
1 Input distributor
7 Packaging
1 Finishing
3 Support services</td>
<td>Disposables</td>
<td>Drug delivery; Women’s health</td>
<td>Intravenous tubing (I) Mastectomy bra (I)</td>
<td>Hospira; Baxter; Amoena; Corbel</td>
</tr>
<tr>
<td>2001–2004
13 firms:
9 US
3 CR
1 Colombian</td>
<td>3 OEMS
6 Components
1 Finishing
1 Logistics provider
2 Support services</td>
<td>Instruments</td>
<td>Endoscopic surgery</td>
<td>Biopsy forceps (II)</td>
<td>Arthrocare; Boston Scientific; Oberg Industries</td>
</tr>
<tr>
<td>2005–2008
8 firms:
7 US
1 Puerto Rico</td>
<td>2 OEM
4 Components
1 Packaging
1 Finishing</td>
<td>Therapeutics</td>
<td>Cosmetic surgery; Women’s health & urology</td>
<td>Breast implants (III) Minimally invasive devices for uterine surgery (II)</td>
<td>Allergan; Tegra Medical; Specialty Coating Systems</td>
</tr>
<tr>
<td>2009–2012
21 firms:
16 US
1 CR
1 Ireland
1 Japan
2 Joint ventures (US-CR)</td>
<td>5 OEMS
7 Components
2 Non-OEM assemblers
1 Input Distributor
2 Sterilization
2 Packaging</td>
<td>Therapeutics Disposables Instruments</td>
<td>Cardiovascular Drug delivery</td>
<td>Heart valves (III) Dialysis catheters (III) Guide wires (III) Compression socks (I)</td>
<td>Abbott Vascular St. Jude Medical Covidien Moog Synergy Health Volcano Corp.</td>
</tr>
</tbody>
</table>
UPGRADING SUCCESS: A LEADING MEDICAL DEVICES MNC IN COSTA RICA

2004
First production plant opens in Costa Rica (10,000m²)

2005
Exports: US$18 million

2008
Second plant opens. (32,000m²)
First plant restructuring

2010
Initial plant reopens after restructuring

2011
Exports: US$120 million

Functional Upgrading
- 2004: Manufacturing functions
- 2012: Engineering for process improvements ➔ Focused on cardiology segment; strategy – to alleviate R&D costs in the US.

Product & Process Upgrading
- Biopsy forceps ➔ Labor intensive, basic metal works & extrusion.
- Urethral stent ➔ Thermoforming, laser marking, coating capabilities.
- Today – CR facilities cover 42 manufacturing processes.

Market Diversification
- Gastroenterology segment ➔ Urology ➔ Cardiovascular

Forward Linkages
- Recent co-location of sterilization vendors will allow the firm to export directly to global distribution centers

© 2013 Duke CGGC
MEXICO STUDY ON GVCs AND CLUSTERS
Mapping of GVCs across four dimensions for each industry...

- Local clusters
- Links to other states and clusters in Mexico
- Links to United States and Canada
- Other International linkages

© 2013 Duke CGGC
Mexico’s Plan Nacional de Desarrollo, 2013-2018

Estrategia Sectorial

<table>
<thead>
<tr>
<th>Maduros</th>
<th>Dinámicos</th>
<th>Emergentes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Metal mecánico</td>
<td>Automotriz y Autoparte</td>
<td>Biotecnología</td>
</tr>
<tr>
<td>Textil-vestido y cuero-calzado</td>
<td>Aeroespacial</td>
<td>Farmacéutico</td>
</tr>
<tr>
<td>Madera y muebles</td>
<td>Eléctrico</td>
<td>TI</td>
</tr>
<tr>
<td>Siderúrgico</td>
<td>Electrónico</td>
<td>Industrias creativas</td>
</tr>
<tr>
<td>Alimentos y bebidas</td>
<td>Químico</td>
<td>Equipo médico</td>
</tr>
</tbody>
</table>

Impulsar la productividad

Incrementar la competitividad

Atraer y fomentar los sectores emergentes
Pilot Study for 3 Mexican GVCs

Objectives: Design the methodology and measure upgrading and innovation (at the level of clusters, firms and jobs)

- **Mature Sector**
 - Textile-Apparel Industry

- **Dynamic Sector**
 - Aerospace Industry

- **Emergent Sector**
 - Medical Devices Industry
Automobile production in 2007 and 2011

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 USA TRADITIONAL</td>
<td>3,906,092</td>
<td>114,885</td>
<td>5,168,834</td>
<td>152,025</td>
<td>3,770,521</td>
<td>157,105</td>
<td>1,050,635</td>
<td>262,659</td>
<td>1,487,973</td>
<td>165,330</td>
</tr>
<tr>
<td>2 USA NEW</td>
<td></td>
<td></td>
<td>4,732,815</td>
<td>197,201</td>
<td>3,770,521</td>
<td>4,732,815</td>
<td>1,050,635</td>
<td>262,659</td>
<td>1,487,973</td>
<td>165,330</td>
</tr>
<tr>
<td>3 Mexico TRADITIONAL</td>
<td>1,050,635</td>
<td>262,659</td>
<td>52,466</td>
<td>188,117</td>
<td>1,050,635</td>
<td>262,659</td>
<td>1,050,635</td>
<td>262,659</td>
<td>1,487,973</td>
<td>165,330</td>
</tr>
<tr>
<td>4 Mexico NEW</td>
<td></td>
<td></td>
<td>752,466</td>
<td>188,117</td>
<td>1,487,973</td>
<td>1,275,289</td>
<td>1,487,973</td>
<td>141,699</td>
<td>1,487,973</td>
<td>141,699</td>
</tr>
<tr>
<td>5 Ontario CA</td>
<td>2,030,457</td>
<td>184,587</td>
<td>2,424,480</td>
<td>220,407</td>
<td>2,030,457</td>
<td>2,424,480</td>
<td>2,424,480</td>
<td>220,407</td>
<td>2,030,457</td>
<td>2,424,480</td>
</tr>
</tbody>
</table>
NC in the Global Economy (NCGE)

- NCGE is a website that provides a web-based value chain analysis of seven key industries in North Carolina
 - Tobacco, textiles & apparel, furniture, IT, biotechnology, banks & finance, hog farming,

- **Goals:** provide useful data and engaging visualizations for better decision making by policy makers, companies and educational institutions leading to more good **jobs** and **innovation**, and improved **competitiveness** in the state
NC Furniture Value Chain - 2012

Furniture design & engineering
Employees: 38
Estbm’t: 23
Avg. wage: 31,326

Wood, metal, leather, plastic, glass & rattan
Employees: 6,434
Estbm’t: 667
Avg. wage: 35,705

Household Furniture
Employees: 21,680
Estbm’t: 356
Avg. wage: 33,116

Furniture Transportation
Employees: 36,633
Estbm’t: 3,043
Avg. wage: 41,679

Furniture Stores
Employees: 7,596
Estbm’t: 895
Avg. wage: 33,803

plywood, cut stock, frame & upholstery
Employees: 9,464
Estbm’t: 176
Avg. wage: 39,397

Office & Institutional Furniture
Employees: 5,403
Estbm’t: 226
Avg. wage: 35,441

Furniture Warehousing
Employees: 17,800
Estbm’t: 414
Avg. wage: 39,675

Furniture related products
Employees: 5,981
Estbm’t: 338
Avg. wage: 37,431

Furniture Wholesale
Employees: 2,531
Estbm’t: 247
Avg. wage: 46,100

Employees: 15,898
Estbm’t: 843
Avg. wage: 37,903

Employees: 33,064
Estbm’t: 920
Avg. wage: 34,276

Employees: 59,964
Estbm’t: 3,704
Avg. wage: 41,249

Employees: 7,596
Estbm’t: 895
Avg. wage: 33,803
Comparing NC’s employment with main US competitors

Top State Furniture Employment, by NAICS Codes: 2012

- **NC**
 - 3371 Household: 2,844
 - 3372 Office: 4,989
 - 3379 Furniture Related: 25,231

- **CA**
 - 3371 Household: 3,682
 - 3372 Office: 7,517
 - 3379 Furniture Related: 19,948

- **TX**
 - 3371 Household: 3,784
 - 3372 Office: 4,351
 - 3379 Furniture Related: 13,858

- **IN**
 - 3371 Household: 1,312
 - 3372 Office: 6,291
 - 3379 Furniture Related: 13,361

- **MI**
 - 3371 Household: 541
 - 3372 Office: 14,556
 - 3379 Furniture Related: 4,465

- **MS**
 - 3371 Household: 712
 - 3372 Office: 1,448
 - 3379 Furniture Related: 15,867
Comparing NC wages with main US competitors

Top Furniture State Average Annual Wages, by NAICS Code: 2012

- 3371 - Household Furniture
- 3372 - Office Furniture
- 3379 - Furniture-Related Products

<table>
<thead>
<tr>
<th>State</th>
<th>Total</th>
<th>3371</th>
<th>3372</th>
<th>3379</th>
</tr>
</thead>
<tbody>
<tr>
<td>CA</td>
<td>38,518</td>
<td>37,199</td>
<td>46,298</td>
<td>46,615</td>
</tr>
<tr>
<td>IN</td>
<td>32,659</td>
<td>37,595</td>
<td>36,827</td>
<td>43,709</td>
</tr>
<tr>
<td>MI</td>
<td>43,709</td>
<td>46,615</td>
<td>59,241</td>
<td>59,241</td>
</tr>
<tr>
<td>MS</td>
<td>33,537</td>
<td>30,393</td>
<td>26,266</td>
<td>33,537</td>
</tr>
<tr>
<td>NC</td>
<td>42,508</td>
<td>33,070</td>
<td>35,690</td>
<td>42,508</td>
</tr>
<tr>
<td>TX</td>
<td>32,929</td>
<td>37,017</td>
<td>40,557</td>
<td>32,929</td>
</tr>
</tbody>
</table>
Manufacturing workers in North Carolina make, on average, nearly $8,000 less than the U.S. average.

Manufacturing Wages in North Carolina Compared to the National Average

- **North Carolina**: $44,692
- **U.S. Average**: $52,540
- **Gap**: $7,847

Sources of North Carolina’s Manufacturing Wage Gap

Broadly, there are three sources for North Carolina’s manufacturing wage gap:

1. Lower share of employment in high wage industries
2. Greater share of employment in low-wage industries
3. Lower average wage for seemingly similar industries

NC’s Potential Upgrading Strategies

Future Growth
- 8.4% of employment
- NC often has numerous scattered firms, but no well-defined cluster

Strengthen
- 12.3% of employment
- Existing strengths
- High R&D
- Fill technology gaps or cross-chain upgrading

Localized
- 36.5% of employment
- Minimal scope for specialization or upgrading

Transition
- 42.9% of employment
- NC's traditional mfg. strengths
- Generally low tech
- Upgrade or mitigate decline

North Carolina’s Industry Mix

- **High Wage, Low Employment**
 - NC Above Nat
 - Employment Share
 - 3344 – Semiconductors
 - 3364 - Aerospace

- **Low Wage, Low Employment**
 - NC Below Nat
 - Employment Share
 - 3231 - Printing
 - 3327 - Machine Shops

- **High Wage, High Employment**
 - High Average Wage
 - 3122 - Tobacco
 - 3254 - Pharma

- **Low Wage, High Employment**
 - NC Below Average Wage
 - 3151 – Knit Apparel
 - 3116 – Animal Slaughtering
 - 3131 – FY&T
 - 3371 - Furniture

Authors’ calculations.
Policy Relevance of GVC Sector Profiles

• Closing North Carolina’s manufacturing wage gap could significantly improve wages and the standard of living in North Carolina

• Higher productivity is the key to doing this, but also a need to improve NC’s industry mix and high wage jobs

• Upgrading strategies are needed to define NC’s investment, employment and innovation priorities

• Intra-U.S. comparisons are relevant, but GVC competitiveness is increasingly defined at the regional level (e.g., North American, East Asia, EU)
THANK YOU

Questions?

Gary Gereffi
ggere@soc.duke.edu