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Executive summary 
 

Crop acreage, crop yield and crop productivity statistics are fundamental for the Countries’ 
monitoring of and reporting on the agricultural production system allowing them to plan its 
commodity value chains, and to formulate efficient policies that ensure food security.  

As more pressure is exerted on food systems globally, because of the compound effect of 
increased human population, climate change, and worsened Agri-environmental conditions, 
the National Statistics Offices (NSO’s) are faced with the need to produce timelier, frequent, 
and granular agricultural statistics. Such demand for higher efficiency can be met using Big 
Data, Open source technology, artificial intelligence and Earth Observations (EO) data. Earth 
observation data can facilitate such monitoring and reporting processes, thanks to their 
intrinsic characteristics of spatial extensive coverage, high spatial, spectral, and temporal 
resolution, and low costs1. This is done in order to reduce the frequency and the dimensions 
of surveys, to reduce respondent burden and other costs and to provide data at a more 
disaggregated level for informed decision making. 

The UN General Assembly2 had early recognized in 2015 the key transformational role of EO 
data in support of countries reporting duties under the SDG framework. This was further 
reflected in the establishment of several EO coordination bodies such as the Group on Earth 
Observations (GEO), the United Nations Committee of Experts on Global Geospatial 
Information Management (UN-GGIM), and a series of UN Working groups. 

It is within such context that the UN Nations Statistical Commission and the UN Department of 
Economic and Social Affairs (UNDESA), are working to support NSO’s worldwide in the uptake 
of EO data within their statistical workflows under the broad scope of the modernization 
process of statistical systems. 

To this end, the Task Team (TT) of the UN Committee of Experts on Big Data and Data Science 
for Official Statistics was established in 2014 under the coordination of the UNDESA, with the 
scope of providing strategic vision, direction, and development of a global work plan on utilising 
satellite imagery and geo-spatial data for official statistics and indicators for post-2015 
development goals.  

The work of the TT includes supporting countries through the: 

• Identification of reliable and accurate statistical methods for estimating quantities of 
interest; 

• Suggestion of approaches for collecting representative training and validation data of 
sufficient quality; 

• Research, develop and implement assessment methods for the proposed models 
including measures of accuracy and goodness of fit; 

• Establishing strategies to reuse and adapt algorithms across topics and to build 
implementations for large volumes of data. 

Since the establishment of the TT, several statistical agencies worldwide have shown a strong 
interest in investigating the viability of using satellite imagery to extract official statistics on 

 
1 L.Desimone et Al., 2021 
2 United Nations General Assembly. Transforming Our World: The 2030 Agenda for Sustainable Development; 
United Nations: New York, NY, USA, 2015. 
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agriculture as well as on environmental resources. As a result, a series of pilot projects have 
been implemented using a variety of methods and approaches.  

For example, the Government of Australia has used a blended time series of low, medium and 
high-resolution satellite images combined with a supervised classifier (Random Forest) to 
identify actively growing crops in the Queensland region. The Ministry of Agriculture in 
Senegal, in collaboration with FAO, has relied on high resolution images (Sentinel2) to assess 
retrospectively crop acreage for the year 2018 using the Sen2Agri toolbox developed by the 
European Space Agency. The Government of Lesotho, supported by FAO, is using Sentinel-
2 data to produce annual land cover maps and establish a national time series of standardized 
land cover maps for the period 2017-2022. Furthermore, the Geostatistical Development and 
Research Unit of the Geostatistics Directorate of the Colombian National Statistical Office has 
improved the national land cover classification process using Machine Learning in cloud 
computing from Sentinel-2 satellite images fused with very-high resolution RPAS images, 
which come at sub-meter pixel size.  

This handbook, written by members of the Task Team of the UN Committee of Experts on Big 
Data and Data Science for Official Statistics, provides an overview of the above-mentioned 
use cases, illustrating the methods, the lessons learned, and the results and 
recommendations.  

The handbook aims to expose the key steps faced along the production-chain for deriving EO-
based statistics and explain how these have been handled in selected national use cases.  

Such key steps can be summarised as:  

i) the EO data and pre-processing,  
ii) the In-situ data gathering and QA/QC 
iii) methodology 
iv) classification algorithm.  

For each national use case a results and recommendations paragraph has been addressed 
for final reflections. 
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Background 
 

The use of Earth Observation (EO) data for the generation of official statistics has been 
recognized by the United Nations (UN) Statistical Commission as one of the cornerstones of 
the statistical modernization process in relation to the use of Big Data as an alternative and/or 
integrative source of information to traditional censuses and surveys (Task Team on Using Big 
Data for the Sustainable Development Goals — UN-CEBD). The recent report of the 
Independent Expert Advisory Group (IEAG) on the Data Revolution for Sustainable 
Development states that statistical agencies should choose data sources with regard to quality, 
timeliness, costs, and response burden, and Big Data sources fall within this scope. To monitor 
certain indicators Big Data could have the potential to be as relevant, more timely, and more 
cost effective than traditional data collection methods, and could make the data cycle match 
the decision cycle. The work on Big Data should contribute to the adoption of best practices 
for improving the monitoring of the new SDGs under the Post-2015 development agenda. 
Some of the new indicators or proxies of those indicators could be based on Big Data sources 
with improved timeliness and granular social and geo-spatial breakdown. 

This is consistent with the Decision of the 45th session of the Statistical Commission in 2014, 
which recognized that Big Data constitutes a source of information that cannot be ignored. To 
achieve this, the Commission created a UN Committee of Experts on Big Data and Data 
Science for Official Statistics to explore the use of Big Data, identify examples, assess 
methodologies, address concerns related to quality and confidentiality, and develop guidelines. 

A Task Team on Satellite Imagery was first created in 2014 (under the Global Working Group 
on Big Data for Official Statistics), with a mandate to identify approaches for collecting 
representative training data; and develop and implement methods using satellite imagery and 
the training data for producing official statistics, including the statistical application of predictive 
models for crop production yields. The task team was later renamed to the Task Team on 
Earth Observation Data for Agriculture Statistics to not limit the data sources just to satellite 
imagery.  

The main objective of the Task Team is to provide concrete examples of the potential use of 
EO data for official statistics. This means, in particular, TT to develop and share methods for 
estimating crop location, crop type and crop yield using optical data, and to produce global 
land cover and land use statistics. In 2017 a “Satellite Imagery and Geospatial Data Task Team 
report” was published as a handbook providing an introduction to the use of EO data for official 
statistics, types of sources available and methodologies for producing statistics from this type 
of data (UNGWG_Satellite_Task_Team_Report_WhiteCover.pdf). 

The goal of this report by the research Sub-TT is to collate examples of recent EO applications 
with a particular focus on field data required to train and validate the respective methods used 
three representative case studies with up-to-date methodologies.  

Members of the research Sub-TT are: Sara Burns (STATCAN), Gordon Reichert (STATCAN), 
Lorenzo DeSimone (FAO), Maria Ximena Correa Olarte (DANE), Talip Kilic (Worldbank), 
Michael Schmidt, Sean Lovell (UN) 

  

https://unstats.un.org/bigdata/task-teams/sdgs/index.cshtml
https://unstats.un.org/bigdata/task-teams/sdgs/index.cshtml
https://unstats.un.org/bigdata/task-teams/earth-observation/UNGWG_Satellite_Task_Team_Report_WhiteCover.pdf
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Use cases 
Large area operational multi-season, multi-sensor crop mapping 
Submitted by: DLR 
1. Project background 

Managing land resources to support the needs of the population is a mandate common to all 
levels of government in Australia.  This study by the Queensland Department of Science and 
Environment (QDES) used satellite imagery data to identify actively growing crops in 
Queensland, Australia. For the major broadacre cropping regions of Queensland  the complete 
Landsat, Sentinel-2, and as a backup option, the Moderate Resolution Imaging 
Spectroradiometer (MODIS) archive from 1987 to 2018 was used in a multi-temporal mapping 
approach, where spatial, spectral and temporal information were combined in crop-modelling 
process, supported by training data sampled across space and time. 

In this study, automated classification results were compared with data sources form official 
statistics. 

2. Study area 

The western cropping region of Queensland covers approximately 300,000 km2 (Figure 1). In 
general terms, rainfall in the study region is summer-dominant, and the soil has a large water-
holding capacity; a combination that means that, in addition to summer-growing crops, it is 
possible to grow winter crops on stored soil moisture. The summer-cropping phase was 
defined as November to May, and the winter-cropping phase as June to October. The ‘growing 
season’ was referred to as a particular phase combined with a particular year, e.g. ‘Summer 
1993’. The year of a summer-phase crop relates to the year in January. The major crops for 
the study region, and their grouping, are shown in Table 1. An amalgamation of ‘Coarse-grain’ 
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and ‘Pulse’ into a single summer group was a pragmatic response to preliminary analyses that 
revealed strong confusion between the two, due to few observed summer-growing legumes. 

 

Figure 1. Location of study area. 

3. EO data / preprocessing 

For efficiency, most of the satellite imagery used were found at the spacetime intersection of 
a single World Reference System-2 (WRS-2) Landsat scene and a single growing season, the 
study region spatially intersected 26 WRS-2 scenes.  

Imagery were gathered for each growing season between the winter of 1987 and the winter of 
2017, from, when available, the Landsat, Sentinel-2A, and MODIS satellites. Landsat imagery 
was pre-processed to surface reflectance (Flood et al., 2013). Sentinel-2A imagery was 
preprocessed to Landsat-like surface reflectance (Flood, 2017). MODIS imagery was obtained 
in the form of the MOD13Q1 product. Undesirable effects in any image—e.g. cloud 
contamination or open water—were masked. 

Sentinel-2A and MODIS imagery were reprojected onto the grid of Universal Transverse 
Mercator pixel coordinates of the Landsat imagery. The geometric misregistration between 
Landsat-8 and Sentinel-2A rarely exceeded 15 m, which we regarded as satisfactory for this 
purpose (Pringle et al, 2018). 

4. In situ data  

Observations of the groups of Table 1 came from two sources. The first was an archive of 
6,605 field observations collected between 1991 and 2017, evenly spread between summer 
and winter phases. This source was collected through a combination of roadside observation, 
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interviews with landholders, and desktop interpretation. The methods for collecting the 
roadside and interview observations were described by Pringle et al. (2012). 

Table 1. Observations of the groups 

The groups (crop and non-crop) to be mapped; the cropping-phase when they 
occur (‘S’ = Summer, ‘W’ = Winter); prior probability of occurrence; and their 
major constituents (NA = not applicable). 

 

Desktop interpretation involved an expert allocating the crop group to a specific location in a 
specific growing season, by examining the relevant Landsat (surface-reflectance) imagery and 
the high-spatial-resolution imagery of Google Earth. Specific crop-groups could not be 
allocated by desktop interpretation, but the classes ‘Bare soil’ and ‘Other’ could. To qualify as 
‘Bare soil’ a location had to display in the Landsat imagery as obviously exposed soil for at 
least a 2-month period, and also have no obvious crop grown during the remainder of the 
growing season. 

The second source was collected by two-stage random sampling (de Gruijter et al., 2006) of 
3,387 locations in space and time within the study region. This source—the ‘probability-
sampled data’—consisted solely of desktop-interpreted observations of ‘Bare Soil’ and ‘Other’, 
and also a generic ‘Crop’ group. The prior probabilities were enumerated with the aid of the 
probability-sampled data and official statistics on Queensland-wide planting areas for the crop-
groups (ABARES, 2016; Queensland Government, 2018) 

5. Proposed or implemented methodology. 

The methodological flow is focused on two phases: a) data preparation and time series 
modelling, and b) Geographic object analysis (GEOBIA). 

a. Data preparation and preprocessing 

Enhanced Vegetation Index (EVI) (Huette et al., 2002), bare ground (BG) and non-
photosynthetic Vegetation (NPV) (Scarth et al., 2010) compiled for an individual pixel within a 
growing season were modelled, to summarize their temporal variation. Where a gap in the 
combined Landsat and Sentinel-2A EVI timeseries exceeded four weeks, the image was filled 
with the MOD13Q1 data point. 

Figure 2 summarizes the pixel-wise modelling procedure, which is termed ‘regression block-
kriging’. The ‘regression’ component of the model refers to using an explanatory variable to 
split a response variable into a broad, deterministic trend—in this case, a polynomial of the 
time coordinates of observations—and residual (possibly autocorrelated) variation. The ‘block-
kriging’ component refers to how predictions of (trend + residuals) were made at unsampled 
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time locations, averaged over an aggregated interval, i.e. one week (see Pringle et al, 2018 
for more details).  

 

Figure 2. Time-series modelling. 

(a) observations and the fitted polynomial trend; (b) two variograms for the residuals of the trend (dotted black lines 
are the parameter values c1 and d for the best of the authorised functions, in this case for Dowd's robust estimator); 
and (c) weekly predictions obtained through block-kriging of (trend + residuals). The influence of the outlying 
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observation in (a) is minimised by using the robust variogram, and subsequent winsorising and block-kriging. The 
ticks on the x-axis of (a) and (c) mark the extent of the growing season (Pringle et al., 2018) 

Various phenological metrics of EVI, BG, and NPV were predicted as weekly averages for the 
duration of a growing season. For EVI the predicted maximum and the week of its occurrence 
were recorded. Table 2 lists the other metrics recorded. 

Table 2. Explanatory variables for the classification model. 

 

b. Processing GEOBIA 

GEOBIA was used to obtain an approximation of field boundaries. This was necessary 
because Queensland has no publicly available information on sub-property fencing, and field 
boundaries can change between growing seasons, particularly where cropping is 
opportunistic. The image-segmentation module of the RSGISLib software (Bunting et al., 
2014), was used. Unique segments are generated, i.e. a spatially contiguous cluster of pixels 
that is relatively homogeneous, conditional on the input image and the algorithm's driving 
parameters (Clewley et al., 2014). 

The input image comprised three layers of pixel-wise time-series metrics: maximum weekly 
EVI, maximum weekly BG, and maximum weekly NPV. These layers formed a synthetic 
composite (Zhu et al., 2015), chosen to maximize discrimination between ‘fields’ that might, or 
might not, be cropped during the particular growing season. The minimum segment size was 
set to 25 Landsat pixels (2.25 ha). 

Pixels that fell on roads, railways, stock routes, or an irrelevant land-use were masked prior to 
segmentation. Land-use in Queensland was baseline-mapped in 1999, and is updated 
occasionally on a per-catchment basis (Queensland Government, 2018). Relevant land-use 
classes for this study were: grazing of native vegetation or modified pastures; cropping; 
seasonal horticulture; and land-in-transition (ABARES, 2016). Temporal change in land-use 
was considered by choosing the closest contemporary land-use map to each growing season. 
Roads, railways and stock routes were considered temporally static. 

6. Classification algorithm 

The intersecting GEOBIA image-segment in space-time were matched to the observation with 
the corresponding values of explanatory variables. 

The gathered data were split into training and validation subsets. For the crop-groups, the 
validation subset was drawn randomly from the observed data, with a constraint that the subset 
honour the frequency of ‘Crop’ in the probability sampled data. 
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Figure 3. Configuration of the tiered, tree-based classification model. 

The form of the classification model was a tiered tree, comprising sub-models of two expert-
elicited rules and two random forests (see Figure 3). The first expert rule, at the top of the tree, 
was for situations where the only group that could reasonably be expected was ‘Other’. The 
second expert rule prevented duplicated predictions of ‘Crop’, which arose when a time-series 
belonging to one growing season crossed substantially into the next. The threshold of bgMax 
< 0.52 was determined with the aid of a classification tree. The random forests were fitted with 
the randomForest library (Liaw and Wiener, 2002) of the R statistical software (R Core Team, 
2016). 

Predictions at the validation locations in space-time were obtained in the form of probabilities. 
The predicted probabilities of Random Forest 2 were multiplied by the predicted probability of 
‘Crop’ for Random Forest 1, to create conditional outcomes. At a single validation location in 
space-time, the predicted group was chosen as the one with largest probability (i.e. plurality). 

The overall agreement of observed groups with predicted groups in an error matrix was 
assessed with τp (Ma and Redmond, 1995), a modified form of the commonly used index-of-
agreement. 
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7. Results & Recommendations 

Figure 4 shows the time-series fitting for an image segment at a given location. 

 

Figure 4. Exemplar EVI time-series. Satellite observations are shown as points. The dotted line is the fit of the 
polynomial trend. The solid line is the block-kriging prediction for the growing season, which accounts for any 
autocorrelation in the trend's residuals. Contemporary land-use is indicated above each panel. 

When the classification model was applied at the space-time locations of all validation data, 
the error matrix for the summer-cropping phase suggested reasonable agreement between 
observed and predicted groups (Table 3, τp = 0.80). The threshold probability difference for 
reassigning a prediction of ‘Coarse-grain & Pulse’ to ‘Other’ was 0.55. 

Table 3. Error matrix for the summer-cropping phase, for validation data pooled over all growing seasons. ‘CG&P’ 
is ‘Coarse-grain & Pulse’. ‘UA’ and ‘PA’ are user's and producer's accuracies, respectively. Prior probabilities for τp 
are given in Table 1. All values in brackets are the 95% confidence interval. 
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Table 4. Error matrix for the winter-cropping phase, for validation data pooled over all growing seasons. ‘UA’ and 
‘PA’ are user's and producer's accuracies, respectively. All values in brackets are the 95% confidence interval. 

 

Following this re-assignment the largest source of error was ‘Bare soil’ mistakenly predicted 
as ‘Other’. This error is due to the continuum of coexistence between bare soil and heavily 
grazed pastures, or bare soil and sparse crop residues. The error matrix for the winter-cropping 
phase also suggested reasonable agreement between observed and predicted groups (Table 
4, τp = 0.86).  

 

 

Figure 5. Predicted groups. The group predicted in each summer growing season for a 20-km × 20-km sub-region 
of Queensland. ‘CG&P’ represents ‘Coarse-grain & Pulse’. 

From the perspective of a map-user, Table 3 and Table 4 indicate that, in any given growing 
season, we predicted ‘Coarse-grain & Pulse’ correctly in 79% of cases. The values for ‘Cotton’, 
‘Cereal’ and ‘Pulse’ were 91%, 84%, and 73%, respectively. We predicted ‘Bare soil’ correctly 
in 72% of cases in summer, and 88% of cases in winter. When the validation data were broken 
into individual growing seasons, results for τp were consistent, except for poor showings in the 
summer of 1989, and the winter of 1992. The accuracy of the classification model fluctuated 
more in summer than in winter, which reflects the study region's summer-dominant, but highly 
variable, rainfall. 

8. Solution Architecture 

The computing hardware used was part of a high-performance computing cluster, 
comprising 6 nodes of 20 physical cores each, 1.29 TB of RAM in total, on Intel® Xeon® CPU 
E5-2680 v2 processors at 2.8 GHz, running the Linux SLES 11 (Service Pack 4) operating 
system  

9. Bibliography 
 



17 
 

ABARES,  Agricultural Commodity Statistics 2016. Australian Bureau of Agricultural and 
Resource Economics and Sciences, Canberra. Retrieved from 
www.agriculture.gov.au/abares/publications/display?url=http://143.188.17.20/anrdl/DAFFSer
vice/dis play.php%3Ffid%3Dpb_agcstd9abcc0022016_Sn9Dg.xml 

Bunting, P., Clewley, D., Lucas, R.M., Gillingham, S., 2014. The remote sensing and GIS 
software library (RSGISLib). Comput. Geosci. 62, 216–226 

Clewley, D., Bunting, P., Shephard, J., Gillingham, S., Flood, N., Dymond, J., Lucas, R., 
Armston, J., Moghaddam, M., 2014. A Python-based open source system for geographic 
object-based image analysis (GEOBIA) utilizing raster attribute tables. Remote Sens. 6, 6111–
6135 

Core Team, R., 2020. R: A Language and Environment for Statistical Computing. R Foundation 
for Statistical Computing, Vienna, Austria. www.R-project.org/ [Online; accessed 17-January-
2022]. 

Flood, N., Danaher, T., Gill, T., Gillingham, S., 2013. An operational scheme for deriving 
standardised surface reflectance from Landsat  

Flood, N., 2017. Comparing Sentinel-2A and Landsat 7 and 8 using surface reflectance over 
Australia. Remote Sens. 9, 659. de Gruijter, J., Brus, D., Bierkens, M., Knotters, M., 2006. 
Sampling for Natural Resource Monitoring. Springer, Berlin. 

Frantz, D.; Roder, A.; Udelhoven, T.; Schmidt, M. Enhancing the Detectability of Clouds and 
Their Shadows in Multitemporal Dryland Landsat Imagery: Extending Fmask. IEEE Geosci. 
Remote Sens. Lett. 2015, 12, 1242–1246.  

Government, Queensland, 2018. Agriculture: Area by Main Crop, Queensland, 2005–06 to 
2015–16. www.qgso.qld.gov.au/products/tables/agriculture-area-main-crop-qld/index.php 
[Online; accessed 19-June-2018]. 

Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G., 2002. Overview of the 
radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. 
Environ. 83, 195–213 

Liaw, A., Wiener, M., 2002. Classification and regression by randomForest. R News 2 (3), 18–
22. r-project.org/doc/Rnews/Rnews_2002-3.pdf [Online; accessed 17-January- 2022]. 

Ma, Z., Redmond, R.L., 1995. Tau coefficients for accuracy assessment of classification of 
remote sensing data. Photogramm. Eng. Remote Sens. 61, 435–439 

Scarth, P., Röder, A., Schmidt, M., 2010. Tracking grazing pressure and climate interaction–
the role of Landsat fractional cover in time series analysis. In: Proceedings of Australasian 
Remote Sensing and Photogrammetry Conference, Alice Springs, 13-17 September. 
figshare.com/articles/Tracking_Grazing_Pressure_and_Climate_ 
Interaction_-_The_Role_of_Landsat_Fractional_Cover_in_Time_Series_Analysis/ 
94250/1 

Schmidt, M., Pringle, M., Rakhesh, D., Denham, R. and D. Tindall. 2016. A Framework for 
Large-Area Mapping of Past and Present Cropping Activity Using Seasonal Landsat Images 
and Time Series Metrics https://doi.org/10.3390/rs8040312 

https://doi.org/10.3390/rs8040312


18 
 

Pringle, M.J., Denham, R.J., Devadas, R., 2012. Identification of cropping activity in central 
and southern Queensland, Australia, with the aid of MODIS MOD13Q1 imagery. Int. J. Appl. 
Earth Obs. Geoinf. 19, 276–285. 

Pringle, M.J., Schmidt, M. and Tindall, D., 2018: Multi season, multi sensor time series 
modelling based on geostatistical concepts - to predict broad groups of crops.  216, p 183-200, 
DOI.org/10.1016/j.rse.2018.06.046 

Zhu, Z., Woodcock, C.E., Holden, C., Yang, Z., 2015. Generating synthetic Landsat images 
based on all available Landsat data: predicting Landsat surface reflectance at any given time. 
Remote Sens. Environ. 162, 67–83. 

  

https://doi.org/10.1016/j.rse.2018.06.046


19 
 

EOSTAT LESOTHO Submitted by: FAO 
1. Project background 

The uptake of geospatial data products by NSO's as alternative data sources to produce official 
statistics depends on many factors, some of which are directly related to the availability of 
geospatial data that is accurate, granular, and regularly updated. 

FAO developed the National Land Cover Atlas of Lesotho in 2015 
jointly with the Ministry of Agriculture and Food Security (MAFS): 
such a product provided a foundation information layer for 
measuring the distribution of land cover across the country and 
extract land cover statistics at the subnational level. However, such 
Land Cover Atlas, resulting from a human driven visual 
interpretation of very high resolution images, resulted in very high 
production costs and time requirements, and as such it could not 
be updated on a regular basis. The product is now 7 years old. 

In this context, in 2020 FAO launched the EOSTAT Lesotho project 
under the umbrella of the Integrated Catchment Management 
programme (ICM) funded by the multi donor consortium (EU, GIZ, 
Ministry of Lesotho), with the aim of i) developing a new methodology that allows for the 
production of annual national land cover maps, ii) to update the land cover atlas of Lesotho to 
the year 2020, and iii) to produce a time series of national land cover maps for the period 2016-
2022. 

The traditional method of land cover mapping used in the last two decades has been based 
on pixel classification or object classification and has relied typically on the use of very high-
resolution images (Satellite images and orthophotos) and on in-situ data for calibration and 
validation. Such solutions have been extensively used in the research world (Cleve et al., 2008, 
Myint et al., 2011, Duro et al., 2012a, Tehrany et al., 2014). FAO adopted this approach in 
2015 to deliver the first edition of the Lesotho Land Cover Atlas. This approach is resource 
intensive, requires a long time to deliver and is very difficult to automate. 

With the advent of freely available high resolution satellite imagery, cloud computing facility 
and machine learning, it is now possible to carry out land cover mapping in a much more cost 
efficient way by integration of Machine Learning (ML) and Open Access Geospatial Data 
(Mardani, De Simone, 2019, Kim, Yeseul et al. 2017). 

The development of the Lesotho land cover 2020 will directly benefit from such developments 
and will leverage the use of Satellite data (Sentinel-2) as well as the use of machine learning 
algorithms (Random forest), to train a classifier using class patterns from a previous Lesotho 
land cover database dated 2015. 

As a result, the project will ensure reduced delivery time, reduced costs and high accuracy of 
deliverables. 

The Lesotho Land Cover 2020 will constitute a foundation deliverable within the broader scope 
of the ICM monitoring project led by FAO. Allowing for the definition of baselines, and for the 
deeper monitoring of qualitative sub indicators of key ecosystems and land resources. 

Figure 6. Lesotho Land 
Cover Atlas, FAO 2015. 
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The Lesotho Land Cover 2020 was produced alongside regional statistics in the same way as 
the Lesotho Land Cover 2015. The two products are difficult to compare due to the inherent 
difference between the methodologies, but the new semi-automated methodology 
implemented is promising in terms of output accuracy and cost-effectiveness. 

In the context of the ICM project, production of the Land Cover product for the baseline year 
of 2016 (no Sentinel-2 data was available in 2015) should be considered for temporal inter-
comparability, as well as a yearly product for the years 2017, 2018, 2019, and future years. 
This will enable the building of a fine-grained temporal picture of the evolution of land cover 
and the state of Lesotho’s key agricultural landscapes and ecosystems. 

2. Study area 
Lesotho 

3. EO data / preprocessing 
Google Earth Engine was used for the preprocessing of Sentinel-2 (S-2) data. S-2 tiles were 
acquired and transformed into an Analysis-Ready Data (ARD) cubes by performing temporal 
aggregation of the data over a time interval length of 60 days (2 months), which yielded 6 
(almost) cloud-free temporal composites for the year 2020 (September 1st 2019-August 31st 
2020). The tiles were first radiometrically normalized and cloud-masked. Subsequently the 
Max-NDVI temporal composites were produced. All of the 10m and 20m bands + NDVI + 
GLCM Correlation and Contrast of 10m bands were used as input features. As a final goal of 
the preprocessing, data size was reduced, only cloud-free observations at key phenological 
stages of the year were retained, and a time series data set sampled at regular intervals (2 
months) was created. Error! Reference source not found., describes the entire workflow 
used to produce the national land cover (LC) map. In the red box the ARD component is 

highlighted. 
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Figure 7 Overview of the new land cover production methodology applied for Lesotho. 

(Red box highlights the ARD component) 

4. In situ data 
At the time of the project, there was no availability of in-situ data gathered from previous survey 
work in the country. At the same time, it was not possible to deploy field data collection due to 
restrictions to movements imposed by the country in response to the Covid-19 Pandemic.  In 
this context, the old land cover map (2015) was used to generate pseudo in-situ data using the 
methodology developed by Paris and Bruzzone (2021), but with the addition of some 
assumptions:  

- The number of K-means clusters is fixed to 3 per class instead of using the Calinski-
Harabasz Index to automatically determine the number of clusters. The assumption is that 3 
clusters are enough to explain the within-class variance of each land cover classes, which 
were already selected for their prior probability of being homogeneous, i.e. selecting the 
“closed” classes and leaving out the “open” classes from the methodology. 

- K-means clustering is performed per class and per agro-ecological zone for the entire 
area of interest rather than per polygon due to the small mean object size of the Lesotho Land 
Cover Data Base 2015 dataset. The minimum mapping unit (MMU) of 20m² (i.e. 1/5th of a 
sentinel-2 pixel) of the original land cover product is very small, and decomposing polygons 
using higher resolution imagery (in this case Sentinel-2) would not always lead to statistically 
meaningful clusters. 

An example of the K-means filtering is provided. In Error! Reference source not found., a 
mine site, as classified in the LC 2015, is depicted. By applying K-mean analysis of the NDVI 
values from Sentinel-2 2-month NDVI composite (January-February 2020) within such object, 
3 clusters of pixels are discriminated, as shown in Error! Reference source not found.. 
Cluster 2 (green) has the highest pixel count, and it peaks towards the low NDVI values. These 
are both good indicators that pixels from this cluster should be sampled as part of the training 
dataset. While cluster 3 seems too far from the main distribution to be considered suitable, 
cluster 1 could potentially be suitable, in spite of the relatively high NDVI values range. A visual 
inspection of the imagery would be required to make the call with certainty. 

 

 

 

 

 

 

 

 

Figure 8. Mine site as classified in the LC 2015 
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Figure 9. Results of K-mean performed within a “mine” class object 

The implementing steps required to generate pseudo in-situ data were: 

- Rasterization of the LC map 2015 to the resolution of input satellite imagery: If the 
original land cover dataset is in a different format and/or resolution, it needs to converted to 
raster format of identical grid and resolution to that of the satellite imagery used. In the case of 
Lesotho, Sentinel-2 10m resolution imagery is used, so the LCDB 2015 dataset was rasterized 
and resampled to the 10m grid of Sentinel-2. 

- Remapping of the land cover classes and masking: If the land cover class nomenclature 
of the original dataset is different than the target land cover class nomenclature used by the 
above methodology, it needs to be remapped and harmonized to be fit for purpose. For 
instance, in the case of Lesotho, we have removed non-homogeneous classes (“open” classes 
containing a mosaic of land cover rather than a pure class) and merged classes which are 
semantically very close to one another.  

- Applying K-means clustering inside the retained land cover classes on a class-by-class 
basis with 3 clusters. The goal of this step is to isolate the “purest” and most representative 
pixels of each class in a cluster, or two, if a class has a bimodal class distribution. The 
assumption is that if the class distribution is more than bimodal, it shouldn’t be described by a 
single class and should therefore be further split into separate classes, hence why 3 clusters 
are defined. 

- Manual cluster selection: This step consists in selecting which clusters generated at 
the previous step are most representative of the land cover classes to be mapped. This 
requires some expert knowledge and thorough investigation of multi-temporal satellite imagery 
(in this case Sentinel-2) to correctly identify which cluster(s) are most representative for the 
class at hand. On top of photo-interpreting the clusters, plotting the NDVI distribution of each 
cluster can help in determining which clusters to select. 

- Stratified random sampling within selected clusters: Once the clusters are selected, 
stratified random sampling within each agro-ecological zone is applied to ensure that training 
data representative of the various vegetation types and conditions across the geography of 
interest is collected. Typically, data should be sampled at the rate of at least 0.05 % of the total 
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surface area to produce the land cover for, and in proportion of the prior probabilities of land 
cover class abundance provided by the original land cover dataset (Stehman et al., 1998). For 
rare land cover classes such as “Mines”, sampling at a higher rate is recommended so that the 
class sample abundance reaches approximately 5% of the most abundant land cover class. If 
this requirement is difficult to fulfill, then 5000 pixels per class should be guaranteed. 

5. Proposed or implemented methodology. 
The overall methodology consisted in various steps. Initially the land cover classification 
schema used for the national Land Cover Atlas 2015 was reviewed and filtered from "open 
classes" in order to satisfy the needs of machine learning pixel based classification. Such 
classifiers cannot adequately handle heterogeneous land cover classes (that contain a mixture 
of multiple land cover classes) 

E.g. Open shrubland can be a mixture of anywhere between 10-90% of grassland and 
shrubland Even object-based methods have performed poorly to classify fuzzy land cover 
classes. The following classes found in the LC 2015 were merged due to their overlapping 
class definitions, once again to minimize fuzziness between classes: 

• Bare Rock (BR), Bare Area (BA) and Boulders and Rocks (BLR) as Bare Surfaces  
• Plain (HCP), slopes (HCSM) merged as Rainfed Croplands 
• Urban (UA1) and Industrial (UA2) settlements as Urban 
• Small (WB1) and Big (WB2) Water Bodies merged as single Water class. 

 
Once the new land cover classification was established, based solely on "closed classes, the 
EO and in situ work was implemented using the following steps: i) creating an Analysis Ready 
Data (ARD) set from Sentinel-2 data (data cube) for 2020 consisting of 6 bi-monthly time 
composites (NDVI max, all bands geomedians, ii) generating pseudo in-situ data from existing 
land cover data using an adaptation of the method developed by Paris & Bruzzone, iii) splitting 
the pseudo in-situ data sets into two subsets, one for training (70%) and another for validation 
(30%), iv) extracting features from the ARD 2020 using the pseudo in-situ data, v) training a 
random forest classifier, vi) producing a national land cover map for 2020, vi) assessing the 
accuracy of the lc map using a confusion matrix, vii) post processing including:  

• Sieving of 25 connected pixels (0.25 Ha),  
• Majority filter with disk radius of 1 pixel (10m),  
• Rainfed cropland confidence >65% in Mountain Agro-Ecological Zone,  
• Model over-estimated rainfed cropland extent in that AEZ,  
• Removal of water and wetland class occurrence on steep slopes (>50°),  
• Harmonized rainfed cropland class with OSM farmland tag  
• Reintroduction of following classes from 2015 LC, assuming they had remained in 

2020, and because they are narrow features difficult to detect with Sentinel-2 (10m): 
gullies (GU), river banks (RB) and urban areas (UA1, UA2, RH1, RH2). 
 

6. Classification algorithm 
A pixel-based Random Forest Ensemble Implementation in LightGBM was implemented with 
following parameters: 

• 200 trees due to large number of predictors (ensures all are used) 
• L2 regularization with 5-fold cross-validation to avoid overfitting 
• Over- and under-sampling to ensure no class overpowers the training data set by > 

20% of total data. 
  



24 
 

 
 

7. Results & Recommendations 
A national land cover map was produced for the year 2020, using solely pseudo in-situ data 
generated using a semi-automated procedure using the land cover map dated 2015. Map is 
shown in Figure 10. 

Results from the validation showed an overall accuracy of 77% which is per se not very 
satisfactory. The most likely factors for such low accuracy are mainly two: 1) classification 
errors present in the original land cover layer 2015. Such map in fact was not subjected to a 
rigorous validation process (e.g. confusion matrix). Nevertheless, the map was used to extract 
representative (pseudo in-situ data) of the spectral profile for each land cover class, this can 
introduce noise and confusion into the Random Forest classifier and result into errors of 
commission (and omission), 2) the other reason for a low overall accuracy is the actual lack of 
an in situ-data set that has been collected in the field following an optimized field survey design 
and implemented along with best practices in geo-referencing.  

 

Figure 10. National Land Cover Map 2020 

It is recommended therefore, that a field survey be carried out as soon as COVID-19 
restrictions to movements are waived, and that such in-situ dataset be used to produce the 
first Sentinel-2 based land cover map. Upon such implementation two main results are 
expected: 1) higher accuracy of the LC map (above 85%), 2) higher reliability of the training 
data set that will be re-used for classification of annual land cover maps for previous years, 
using the methodology of Paris & Bruzzone. The reusability of a reliable in-situ dataset will 
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allow the country to produce annual land cover maps with none to minimum need to carry out 
ad hoc field surveys to collect land cover in-situ data. In line with the recommendations, a field 
survey has  carried out in 2021, once the COVID-19 related restrictions to movements have 
been waived, The freshly collected in-situ dataset, containing 2000 data points, has been used 
within the Random Forest framework to produce a land cover map for 2021 based on Sentinel2 
with an accuracy of 98%. Such LC map has been then used to generate training data semi-
automatically, which has been in turn used for the development of annual land cover maps 
from 2017 through 2020. The land cover time series accuracy was above 85% for all epochs. 

8. Solution Architecture 
The architecture (Figure 11) relied on an a hybrid stack based on Sentinelhub, AWS and 
Google services. Sentinel-2 data was requested through the Sentinelhub API and its Batch 
Processing capabilities. To this end the support of the European Space Agency is 
acknowledged, through its Network of Resources (NoR), for supporting the costs of the 
SentinelHub subscription, providing computing, cloud storage and data access. The Sentinel-
2  images were exported to and AWS S3 bucket through a javascript code snippent. These 
were made accessible to the Google Cloud Compute. 

The advantage of using Sentinelhub over plain and simple downloading of the Sentinel-2 UTM 
tiles on Scihub is that the data is already temporally composited on the server-side via a 
Javascript code snippet (referred to as the “evalscript.js”). This Javascript code snippet, offers 
a lot of freedom to the user in terms of pre-processing, such as temporally aggregation based 
on maximum NDVI or geometric median compositing. Moreover, the cloud and validity masks 
can be applied on-the-fly on the server-side, which results in the data landing in an S3 bucket 
in an analysis-ready format, a format which is far more compact than having to download and 
store all the raw imagery. Once the data dwells in S3, it can be picked up by computing 
resources (AWS EC2, combined with AWS Batch if multiple job queues are required to speed 
up the processing, or equivalent in Google Cloud) for application-specific in-memory 
processing, in this case land cover classification and agricultural monitoring. Once the output 
is generated, it is saved back to an S3 bucket for further use in other analyses, or for serving 
to a web map or any other clients. 

The last component of the architecture is the EDC Sentinelhub API, which can be used for ad 
hoc data processing over smaller geographical scopes. This is the more traditional way of 
interacting with the Sentinelhub, but is always useful to have a synchronous way of requesting 
imagery for targeted needs, and is anyhow part of the same Sentinelhub Services offering. 
More specifically, this API is used to request DEM and OSM data over the area of interest to 
perform the post-processing routine, before assembling and mosaicking the data patches to a 
single output landcover LCDB raster. 

Although free-tier resources were used, the hypothetical cost of the Google Cloud stack used 
is summarized in Figure 12. An E2-standard-8 computing VM was used with 8 CPUs and 32GB 
RAM. The total cost amounted to approximately 70 Euros over a 1.5 month period, with 97% 
of costs covered by computing, while the remaining 3% covered by storage. 
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Figure 11. Architecture implemented for the production of the 2020 Lesotho Land Cover Data 

Figure 12. Google Cloud Computing Costs entailed for the 2020 Lesotho Land Cover data production.  

(This included all tests and multiple iterations carried out to arrive to the final result) 
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Finally, the LCDB output was exposed through S3 as Web Map Tile Service (WMTS) and 
public download 

9. Terminology 
Random forest, Analysis Ready Data 
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EOSTAT SENEGAL Submitted by: FAO 
1. Project background 

National Statistics Offices (NSOs) are suffering under the huge demand of the very vast 
Sustainable Development Goals (SDG) reporting framework, while facing limited resources to 
collect, analyze and disseminate agricultural statistics on a regular basis. EO data, and big 
data in general, come in the picture as an ideal solution and opportunity for NSOs to fill this 
gap and strengthen their capacity to timely generate crop statistics at national and subnational 
level, and feeding this to the SDG indicators. However, EO data do not come without 
challenges: they are a special category of Big Data and as such their access, storage, pre-
processing and analysis is very demanding and is very much limiting their uptake by countries.  

In order to break such technical barriers, FAO participated as Champion User to the project 
funded by the European Space Agency (ESA) and led by the “Université catholique Louvain” 
which developed a user-friendly solution, namely the Sen-2Agri toolbox. The Sen2-Agri system 
is able to generate national crop maps which can be used to generate crop statistics. The 
system was finally delivered in 2016/2017 and is still evolving. However, while NSO’s are under 
struggle due to limited reporting capacity, the uptake of the Sen2-Agri is still limited, and it has 
never been used to better assist NSOs addressing the ever increasing data demand related 
to agriculture and the SDG reporting. 

Therefore, FAO has committed to positively change this stall situation, by delivering specific in 
country technical assistance in the uptake of the EO methods and Sen2-Agri tools as one of 
the cost-effective methods to improve the coverage, quality and timeliness of agricultural 
statistics, and therefore enabling timely country SDG reporting. Furthermore, FAO is 
committed to build capacity on top of the Sen2-Agri crop maps in extracting crop acreage 
statistics and in early crop yield assessment and forecasting. In the pursue of braking barriers 
to the adoption of Sen2Agri, FAO had partnered with the UN Global Platform (UNGP), in order 
to provide Senegal with cloud based deployment of Sen2Agri, that is secure and low cost. 

2. Study area 

The geographic extent is the entire national territory of Senegal (Figure 13), in particular the 
crop land. The reason for choosing Senegal was made due to the interest in the country in 
building capacity in the use of EO data for the production of official agricultural statistics. 

3. EO data / preprocessing 

40 Sentinel-2 tiles for the year 2018 were used as input 
as shown in Figure 13.  A total of 2,880 Level 2A 
products were preprocessed. Sentinel-2 images were 
acquired as L1 Top of Atmosphere (TOA) reflectance 
(L1C). They were converted to accurate Bottom-Of-
Atmosphere (BOA) reflectance, with a good quality 
cloud mask (L2A product), based on the Multisensor 
Atmospheric Correction and Cloud Screening 
(MACCS) algorithm, developed and maintained at the 
Centre d'Etudes Spatiales de la BIOsphère (CESBIO - 
http://www.cesbio.ups-tlse.fr/) and included in the 
Sen2-Agri system. 

Figure 13. Sentinel-2 tiles overlaid on 
Senegal Administrative units  

http://www.cesbio.ups-tlse.fr/
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The specific strength of MACCS is to use multi-temporal criteria to build the various masks 
(land, water, snow, cloud and cloud shadow) and to detect the aerosols before the atmospheric 
correction. The multi-temporal detection of clouds benefits from the relative stability of surface 
reflectance values compared to the quick variations of reflectance values when clouds are 
present. The cloud shadows detection combines a multi-temporal detection (a shadow causes 
a quick decrease of reflectance values) and geometrical criteria to check that the reflectance 
decrease is really caused by a cloud. The aerosol detection makes use of a combination of (i) 
multi-spectral criteria (above vegetation, the surface reflectance value in the blue band is half 
of the surface reflectance value in the red band) and (ii) multi-temporal criteria (if a large 
variation of reflectance value is observed and no cloud is present, it is probably due to 
aerosols). 

The L2A processing was applied over all available tiles on the UN Global Platform, with a cloud 
cover lower than 90%. All images were pre-processed with the same set of parameters, 
including the aerosol model, which is a continental one made of small particles (log normal 
size distribution with a modal radius of 0.2 µm, low absorption).  

Gap filling – The L2A time series, The L2A was submitted to gap filling and temporal 
compositing, Normalized Difference Vegetation Index (NDVI) and biophysical indicators were 
then derived from the pre-processed Sentinel-2 L2A time series, resulting in NDVI and Leaf 
Area Index (LAI) time series. 

4. In situ data 
 

a. In-situ data preparation 
 

The COVID-19 lockdown situation did not allow for field survey activity. In this context, as a 
compromise solution, an existing data set of in-situ data gathered during the agricultural survey 
in 2018 was used (Figure 14).  

The data was provided by 
DAPSA in a “.dta” format, which 
we converted into a .csv file. The 
database contains 16,861 lines 
which correspond to the parcels 
belonging to about the 4,693 
households surveyed during the 
2018 census. Each line is thus 
dedicated to a single parcel for 
which the geographic 
coordinates are provided. The 
households and parcels are 
distributed all over Senegal. For 
each household, a set of parcels 
have been visited and described 
in terms of location (GPS 
coordinates), crop type and crop practices. This information is not fully complete for all parcels 
and a systematic quality check is needed. GPS coordinates exist at the parcel-level, which is 
very important, even if there is no parcel delineation.  

Figure 14. Household locations covered by the 2018 agricultural 
survey 
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Along with the database, DAPSA also provided about 4,000 GPS traces distributed in villages 
and mainly localized between Touba and Thies (Figure 15 – left). Each file provides the 
geographic boundary for a single or multiple parcel(s). These GPS traces were done by the 
enumerators to measure the parcels area. The enumerators usually don’t archive them – only 
a part of theses traces is kept for quality control purposes, and this is this part that we have 
received. 

 

Figure 15. GPS tracks location (left) and parcels boundaries with GPS point/lines (right) 

Post-processing was applied to convert these GPS traces into shapefiles Figure 16).  

 

Figure 16. GPS traces successfully converted in shapefiles and represented well parcels boundaries 

Both on the points database and on the GPC traces were subsequently quality controlled was 
needed and implemented. 
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b. Quality control of GPS traces 
 

The GPS traces needed also to be filtered to identify only the meaningful polygons. This 
filtering consisted in:  

• removing the GPS traces that cannot be linked with the database (because the name 
of the file is invalid);  

• removing the GPS traces that do contain not only the parcels but also the ways of the 
enumerators between parcels (Figure 17); 

• removing the GPS traces that correspond to polygons of less than 3 points (as they 
don’t form complete polygons). 
 

 

Figure 17. Example of GPS traces that contain more than parcels boundaries 

Each of the remaining polygon was associated by hand, when possible and logical, with a 
neighboring point whose area encoded on the field was similar. Polygons which did not belong 
to a GPS point were removed as well as outlier polygons. 

The last step consisted in removing too-small polygons: a 10-m internal buffer was drawn for 
each polygon and 63 polygons were removed. 

A last criterion was applied for the polygon to be included in the calibration database: their 
minimum area should cover at least 8 pixels, which removed another 210 polygons. At the 
end, the database counted 1,593 features, representing 2089 ha shared unequally into 22 crop 
type classes (Figure 18). 

These parcels boundaries were very useful when building the training dataset of the 
classification algorithm to complement the information from the points database. Indeed, even 
if the database includes much more parcels (16,861), these parcels are localized only by a geo 
point (i.e. a single point with GPS coordinates), which can create confusion depending on the 
exact location of the points (see next section) and which in any case, will cover a much smaller 
area (1 point = 1 pixel). 
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Figure 18. Distribution of crop polygons areas according to the crop type 

c. Quality control of points database (agricultural survey) 
 

Getting only a point to localize the parcels might be very challenging if the point is not taken at 
the center of the parcel. Figure 19 illustrates two situations where (i) point was taken at the 
middle of the parcels, thus making the parcels easily identifiable and (ii) point was taken on 
the path along the parcels which makes almost impossible to know which parcel it refers to. 

 

Figure 19. Challenge to localize the surveyed parcels in the statistical database due to the fact that parcels are 
localized by geo-points (i.e. a single GPS coordinate) 

In order to be able to exploit this database, different steps were performed. Two quality control 
steps are applied working with the points: 

1) Points for which a GPS trace exists are no more considered; 

2) Thanks to an OpenStreetMap service (HOTOSM), a 10-m buffer was drawn around roads 
and buildings of the whole country and all points falling within these buffers were removed as 
well. A mesh of 100-meters cells was created to confirm the first urban sorting. Cells that 
contained more than three OSM-buildings were considered as "urban". Points belonging to 
this area were removed. The objective was to identify all points taken at the border of fields 
(close from roads) or points not taken in parcels but in households. 

3) The proximity between points was controlled by removing those which (i) were distant of 
less than 20 meters and (ii) showed a different crop type. Then, a polygon was derived from 
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each remaining geo-point by applying a 20-m buffer. Working with these polygons, the 
following steps were conducted:  

• The 20-m circles which overlapped GPS polygons were removed. At this stage, it 
remained 12,056 crop points; 

• The homogeneity of the 20-m circles was checked. It was assumed that if the point was 
taken in the middle of the parcel, the resulting polygon would be homogeneous. 
Conversely, a point taken along the parcel would result in a heterogeneous polygon 
(mixing different parcels or crop types or including other land cover types such as roads 
or trees). The homogeneity of each polygon thus checked by looking at the NDVI 
standard deviation within the polygon along the growing season. Buffers that showed 
a high standard deviation on their surface were considered as too heterogeneous and 
were removed. Buffers that had a medium standard deviation were kept but shrunk to 
a 5m-radius buffer. 

• We observed that geo-points corresponding to “rice” were mostly located at the edges 
of the fields and thus included in heterogeneous 20-m circles and removed. In order to 
keep a good representation of rice in the reference database, all geo-points were 
replaced manually in the middle of the fields thanks to Google Earth imagery. 
 

d. Creation of non-cropland reference dataset 
 

Since the agricultural census only focused on agricultural parcels and on surveying crop types, 
non-crop information has been collected by visual interpretation of very high spatial resolution 
Google Earth and Planet imagery (Figure 20). In total, 3,004 non-crop polygons were manually 
drawn across the country, representing 22,188 ha divided into 14 land cover classes (Figure 
21). 

 

Figure 20. Interpretation of non-cropland information by visual interpretation of very high resolution imagery: Build 
up, water body, close forest 
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Figure 21. Distribution of non-crop polygons superficies according to land cover 

5. Proposed or implemented methodology. 

The project was implemented using the Sen2Agri tool box developed by ESA with contribution 
from FAO, and deployed on the UN Global platform. Sen2-Agri processors are based on the 
algorithm of Random Forest. 

The main steps of the methodology were: 

1) Acquisition of in situ data, QA-QC and enhancement, and split into training (70%) and 
validation (30%) subset 

2) Production of analysis ready data (ARD) from the L2A Sentinel, this in strict connection 
to the data requirements of the Random Forest Classifier. In fact, such classifier uses the dates 
of reflectances / vegetation indices, and therefore it is important to have the same dates 
throughout the area regardless of acquisition orbits of the Sentinel-2. In this context the L2A 
time series was subjected to “gap filling” to interpolate missing values due to clouds and was 
temporally resampled to finally produce a time series of 10 days’ composites for the entire 
agricultural season time window. 

3) Features were extracted at each in situ location from the L2A gap filled time series (Red 
band, NIR band, brightness, NDVI, LAI) 

4) An priori stratification of the national territory into smaller ""homogeneous"" regions was 
carried out based on agro-ecological zones, with the scope of improving the accuracy of the 
classification work with two main impacts: 

• No need for a complete learning set for each tile: the model is taught by stratum 
• Allowing to manage agro-climatic gradients, with different classification models 

 
5) A random forest classifier was used to generate a crop mask. The NDVI features were 
used as inputs and the in situ data as labels for crop and non-crop. 
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6) Within the crop mask, a further classification was performed by the random forest. The 
input features used were Red band, brightness, and NDVI. The in situ data was used to provide 
the labels for the crop type. 

7) A confusion matrix was finally built and the validation dataset was used to compute the 
User Accuracy (UA), the Consumer Accuracy (UC) and the Overall Accuracy, and the Kappa 
statistics. 

6. Classification algorithm 

Random forest was used as a classifier for both the crop mask and the crop type map. 
"Random Forest (RF)" is an improved implementation of decision trees Algorithm which 
multiplies the classifications of same dataset (down sampling). RF has four main components:  

• “Bagging”: individual trees for each sub-sample 
• Classification using a limited number predictive variables. However, RF can handle a 

very high number of features as it copes well with collinearity and autocorrelation 
• The creation of nodes continues until it finds the best combination of variables to 

discriminate between classes 
• Majority vote to decide which was the most frequent class 

 

7. Results & Recommendations 

As a final output the project delivered three main results: A) the Sent2agri available as a service 
on the UNGP, B) the national Crop Mask and the National Crop Type map (reference year 
2018), C) the crop area indicator statistics (crop area and crop type area per district).  

a. Crop mask 
 

A first version of the crop maps (cropland mask and crop type map) has been produced using 
as input in situ data the non-cropland polygons and the 1,593 crop polygons obtained from the 
GPS boundaries (see Figure 18). These crop data are expected to be the most useful ones 
because (i) they are polygons, thus including several pixels belonging to the same crop and 
(ii) the parcels boundaries have been checked manually. Nevertheless, these data don’t 
contain enough samples in all the crop types. Only the following crop types could be mapped: 
groundnut, maize, cassava, mil, cowpea and sorghum. In addition, these data are not spread 
over the whole country but are concentrated in the western and central parts of Senegal (Figure 
22). This dataset was split into two sub-data, one for calibration and one for training.  
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Figure 22. Location of the 1,593 crop polygons obtained from the GPS boundaries 

Figure 23 and Figure 24 present the national 10-m spatial resolution cropland mask obtained at 
the end of the season. 

 

Figure 23. Overview of the cropland mask (V1.0) at national scale 

(black = non cropland, white = cropland) 
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Figure 24. Zooms of the cropland mask (V1.0) in the right column (black = non cropland) overlaid with Google 
Earth imagery (left column) 

The overall accuracy of the crop mask is 96% and the F-Score values for the cropland and 
non-cropland classes are of 97% and of 88%, respectively. A visual inspection of the map 
reveals that it performs relatively well: the discrimination is well done between cropland and 
the natural shrub and tree vegetation, the urban areas and the bare soil (Figure 24a, b and d). 
The discrimination with the grassland is however of lower quality (Figure 24 c). It shall also be 
noted that the irrigated perimeters are not well identified as cropland (Figure 24 e), which is in 
fact quite logical because this crop class is poorly represented in the in situ data (Figure 18). 
A post-classification filtering could also be applied to remove the salt-and-pepper effect. 

b. Crop type map 
 

Figure 25 and Figure 26 present the national 10-m spatial resolution crop type map obtained 
at the end of the season, with the national cropland mask on top. 

A visual analysis of the crop type map shows that the patterns of the fields are generally well 
identified. Yet, it can note that there was a strong contamination of groundnut (arachide) and 
cassava (manioc). Interestingly, the irrigated fields which were not correctly identified in the 
cropland mask are correctly delineated in the crop type map, but of course they are not 
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associated with the correct label. This only proves that the Sentinel-2 10-m spatial resolution 
images have the capacity of mapping crop types at the field-level.  

 

 

 

 

 

 

 

 

 

 

Figure 25. Overview of the crop type map (V1.0) at national scale  

(non cropland areas from the cropland mask being mapped in white) 

 

Figure 26. Zooms of the crop type map (V1.0) overlaid with Google Earth imagery 

The confusion matrix of the crop type map is shown in Table 5, focusing only on the crops that 
were significantly represented in the in situ data set (Figure 18). The overall accuracy is of 68% 
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and the matrix reflects the significant contamination of the groundnut and to a lesser extent of 
the cowpea. 

Table 5. Confusion matrix of the Crop Type map (V1.0) 

 

c. Crop maps V2.0 (based on GPS traces and points database) 
 

A version 2.0 of the crop type map has been produced integrating also the points database in 
the training dataset. Even if the reliability of the GPS traces is higher, the points are needed to 
improve the representativeness of the different crop types in the in-situ calibration dataset, and  
thus the overall classification performance. Buffered points database and GPS polygons data 
base were merged. When looking at the sample distributions between crop types, it was visible 
that groundnut was over-represented, as well as rice but to a lesser extent.  

After several tries, it was decided to limit the number of samples for these two crops: the area 
of the groundnut samples could not exceed 400 ha while for the rice, the threshold was set to 
100 ha. The final samples distribution is illustrated in Figure 27, in which the mentioned 
thresholds are visible (rice class covering both rainfed and irrigated rice). Their spatial 
distribution is shown in Figure 28. In total, for the version 2, the Sen2-Agri system was 
launched with a reference dataset including 4,252 crop features (1,086 ha) and 3,000 non-
crop features (18,039ha) 
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Figure 27. Distribution of non-crop polygons superficies according to land cover (V2.0) 

 

Figure 28. Localization of the 4,252 crop polygons and buffered points obtained from the GPS data base 

Figure 29 presents the 2nd version of the national 10-m spatial resolution crop type map 
obtained at the end of the season, with the national cropland mask on top. 
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Figure 29. Overview of the crop type map (V2.0) at national scale  

(non-cropland areas from the cropland mask being mapped in white) 

 
 

The confusion matrix of the crop type map is shown in Table 6, focusing only on the crops that 
were significantly represented in the in situ data set. The overall accuracy is 78% and the 
matrix reflects the slight contamination between maize, sorghum and millet. The groundnut 
contamination seems to be very lower than in the 1st version and cowpea and sorghum are 
better recognized. 

Table 6. Confusion matrix of the Crop Type map (V2.0) 
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d. Crop area indicators 
 

Next to the crop maps, a second type of products generated was the crop area indicators. The 
aim of this crop area indicators is not to replace or to be equivalent to the agricultural statistics. 
It is derived from EO data and is in any case less accurate. Yet, the indicators have the 
advantage of being directly derived from the crop maps, and thus of being available much 
before the statistics (which usually come 6 months after harvest). The interpretation of these 
figures needs to be done having in mind the accuracy assessment of the crop maps 
(quantitative figures and visual assessment). Based on the cropland mask, the following crop 
/ no crop indicators can be derived at national and provincial levels ( 

  



44 
 

Table 7). 

As just mentioned, these figures need to be taken cautiously, given the general under-
estimation of the cropland in the product. The same kind of indicators can be derived from the 
crop type map, focusing on the main crops that are possible to discriminate given the available 
in situ datasets, i.e. groundnut, maize, millet, cowpea, sorghum. 

Results are based on the 2nd version of the crop type map, which is much better. The accuracy 
assessment of the crop type map has shown a good accuracy for all the crops, but still with an 
overestimation of groundnut and millet. This conclusion is confirmed - especially for the millet 
- when comparing the area indicators with the FAO Statistics: the explanation comes probably 
from the fact that the cropland mask (which overlays the crop type map) is still impacted by 
significant errors. Yet, the area indicators of the other crops seem to be really closed to the 
FAO Statistics which are taken as reference. 
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Table 7. Cropland - non cropland area indicators at national and provincial level 

 

The same kind of indicators can be derived from the crop type map, focusing on the main crops 
that are possible to discriminate given the available in situ datasets, i.e. groundnut, maize, 
millet, cowpea, sorghum (Table 8). These results are based on the 2nd version of the crop type 
map, which is much better. 

Table 8. Area indicators of the main crop types at national scale (V2.0) 

 

The accuracy assessment of the crop type map has shown a good accuracy for all the crops, 
but still with an overestimation of groundnut and millet. Such over estimation is due to the 
contamination of those two dominant crop classes into other crop classes as shown in the 
confusion matrix in Table 6. This conclusion is confirmed - especially for the millet - when 
comparing the area indicators with the FAO Statistics (Figure 30): the explanation comes 
probably from the fact that the cropland mask (which overlays the crop type map) is still 
impacted by significant errors. Yet, the area indicators of the other crops seem to be really 
closed to the FAOSTAT which were taken as reference. 
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Figure 30. Comparison of the main crop types area obtained from EO data (blue) and as reported in the 
FAOSTAT (orange) (V2.0) 

It should be reminded that the ultimate quality of a crop type map, hence its accuracy, heavily 
depends on the quality of the in-situ data that is used to train the algorithm and to validate its 
result. A high quality in-situ data set should provide information of crop locations across all 
agroecological zones in the effort to reflect as much as possible the variability of conditions.  
In which crops are grown. The proper positioning of the GPS in the field is another element of 
quality, jointly with the accuracy of the instrument.   

In order to improve the quality of EO products, FAO is supporting countries in the optimization 
of survey design, using geospatial datasets for stratification and probabilistic sampling. 

 
 

8. Solution Architecture 

Software used for the EO preprocessing and analysis was the Sen2Agri tool box. The 
requirements for such tool box were assessed as: 

• number of tiles: 40 Sentinel-2; 
• on average (accounting for cloud cover), we can assume having 6 valid products by 

month (valid meaning less than 90% cloud cover); 
• it results in a total of 2,880 Level 2A products to be processed (40*6*12); 
• assuming that the size of one L2A product is around 1.6GB, we need minimum around 

4,600 GB for the storage. Six TB would be more comfortable; 
• SSD storage is considered as optional but has been required to install the system 

(minimum of 50 GB). 
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Infrastructure: FAO partnered with the UN Big Data Working Group who provided technical 
assistance to deploy the Sen2Agri tool box on the UNGP 

The platform has been set up by the UN Group. The technical working group (University of 
Louvain) had access to the required infrastructure which was equipped with the relevant 
software. The main assets of the UN Global Platform are:  

• to provide storage and computing power; 
• to provide an optimized for performance and low running costs; 
• to be scalable; 
• to secure hosting of country data; 
• to allow the sharing of trusted data, methods and algorithms; 
• to be potentially an incubator/accelerator for innovations; 
• to facilitate the dissemination/visibility; 
• to ensure an easy deployment of Sen2-Agri tool box. 

 
The infrastructure was implemented so that the installation script could be easily replicated. 
This to make the uptake easier and second, to facilitate the deployment of the tool during the 
activity. The solution diagram as implemented by the UN Global Platform is presented in Figure 
31. 

 

Figure 31. UN Global Platform solution diagram for the EO-STAT project in Senegal 

In June 2020, a group of EO experts in Senegal was created and they were presented with the 
platform and the tool through a first training. The composition of this expert group will evolve 
for the last months of the project, with new partners coming also from ANSD, ISRA and CSE 

9. Terminology 

Random forest, Temporal composites, Sen2Agri toolbox  
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Improvement of land cover classification process using Machine 
Learning in cloud computing from Sentinel-2 satellite images with 
RPAS image injection. Submitted by: National Administrative 
Department of Statistics (DANE)3 
 

 

1. Project background 

The project started in 2019 as part of the work done by the Geostatistical Development and 
Research Unit of the Geostatistics Directorate of the Colombian National Statistical Office 
(DANE for its acronym in Spanish). 

To obtain accurate information on land cover changes in the agricultural sector over Colombia, 
DANE has proposed a supervised classification method that integrates Sentinel-2 satellite 
imagery with images collected from Remotely-piloted Aircraft System (RPAS) for the 
improvement and continuous updating of the land cover variable of the Rural and Agricultural 
Master Framework. This method uses Earth Observation (EO) data and applies techniques to 
strengthen the production of agricultural statistical information in Colombia by offering more 
reliable data for the design of the National Agricultural Survey4. 

This project enabled the Geostatistics Directorate to apply alternative methods for obtaining 
information with greater precision on the land cover and contributing to the generation of 
statistical information on the Colombian agricultural sector. 

2. Study areas 

The study was carried out in four municipalities of Colombia (see Figure 32) where there was 
available RPAS images: Salento (Quindio), Tununguá, Pajarito and Cómbita in the department 
of Boyacá.  

 
3 The source of this case study is: Ramírez, M., Martínez, L., Montilla, M., Sarmiento, O., Lasso, J., & Díaz, S. 
(2020). “Obtaining agricultural land cover in Sentinel-2 satellite images with drone image injection using Random 
Forest in Google Earth Engine”. Revista de Teledetección, 0(56), 49-68. doi: 
https://doi.org/10.4995/raet.2020.14102 
4 “This Survey seeks to estimate the use of land, size and distribution of sampling segments. It also provides data 
on the area, production and yield of major temporary and permanent crops; pasture area, milk production, and 
livestock inventory”. https://www.dane.gov.co/index.php/en/statistics-by-topic-1/agricultural-sector/national-
agricultural-survey-ena 

https://doi.org/10.4995/raet.2020.14102
https://www.dane.gov.co/index.php/en/statistics-by-topic-1/agricultural-sector/national-agricultural-survey-ena
https://www.dane.gov.co/index.php/en/statistics-by-topic-1/agricultural-sector/national-agricultural-survey-ena
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Figure 32. Location of study areas for DANE’s project. 

Source: Adapted from Ramírez, M., Martínez, L., Montilla, M., Sarmiento, O., Lasso, J., & Díaz, S. (2020). 

3. EO data / preprocessing 

Sentinel-2, the multispectral high-resolution imaging mission enabled users to access images 
in the repository of the Google Earth Engine (GEE) at 2A processing level. These images were 
used for their spectral bands of spatial resolution of 10 or 20 meters. 

To ensure the land use coherence obtained from both sources, Sentinel-2 and RPAS images, 
the existence of a temporal correspondence was required, so the selected collection date of 
the satellite image in each one of the study areas were similar to the one of the RPAS images. 
In Table 9, the Sentinel-2 images collection date range used is showed, as well as, the number 
of images required. Due to COVID-19 mobility restrictions, RPAS datasets captured by other 
public entities were used as input to classify crops in different spatial and temporal frameworks 
to those initially proposed. 

Table 9. Characteristics of the Sentinel-2 images collection. 

Study area Date Range Number of images 
Salento 11/09/2019 2 
Tununguá 07/08/2018 1 
Pajarito 24/08/2018 to 18/09/2018 3 
Cómbita 01/01/2019 1 
Source: Adapted from Ramírez, M., Martínez, L., Montilla, M., Sarmiento, O., Lasso, J., & Díaz, S. (2020). 
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The RPAS images were received in an orthophoto mosaic format produced by different 
providers, so they have different characteristics in terms of spatial, spectral and temporal 
resolutions. Nonetheless, for all of them were applied a radiometric calibration obtaining a 
reflectance value to pixel level. Table 10 indicates the sensor, its bands, spatial resolution and 
collection dates of the RPAS images used by study area. 

Table 10. Characteristics of RPAS images. 

Area Extension 
(Ha) Sensor Bands 

Spatial 
resolution 
(m)  

Collection date 

Salento 3950 Parrot Sequoia-
eBee 

Red, Green, Red Edge 
and NIR  0,48 20/09/2019 

Tununguá 2100 S.O.D.A-eBee Red, Green and Blue  0,5 05/08/2018 and 
06/08/2018 

Pajarito  530 S.O.D.A-eBee Red, Green and Blue  0,45  2/08/2018 

Cómbita 53 
FC330_3.6 -
Phantom4 Red, Green and Blue  0,5  29/11/2018 

Source: Adapted from Ramírez, M., Martínez, L., Montilla, M., Sarmiento, O., Lasso, J., & Díaz, S. (2020). 

 

4. Proposed or implemented methodology. 

The methodological flow was focused on two phases: a) data preparation and preprocessing, 
and b) processing (supervised image classification and thematic quality calculation). 

a. Data preparation and preprocessing 

Sentinel-2 image collection must be found in Surface Reflectance (SR) and those with less 
than 40% cloud cover and corresponding to the time range of interest, were selected and cut 
by the extension of the study area. A cloud mask was applied to each image in the collection 
(Traganos et al., 2018) to decrease the possibility of clouds in the final mosaic. To perform the 
classification from a single image, a reduction of the collection of the images was done to 
generate a median mosaic since it is not affected by atypical reflectance values (Flood, 2013). 

The spatial resolution of the RGB spectral bands varies with respect to that of SWIR-1, SWIR-
2, and Red Edge bands, from 10 m to 20 m, respectively. To improve the spatial resolution of 
all Sentinel-2 bands without losing their original spectral resolution (Li et al., 2018), the high-
pass filter (HPF) pansharpening image fusion method (HC, 2019; Kaplan, 2018) was applied 
to obtain a final spatial resolution of 10 m.  

On the other hand, the limitations related to the spatial and temporal resolutions of each input 
were considered, in the sense, they are not comparable with each other (Rocchini,2007) due 
to their type of capture. To integrate the RPAS images into the Sentinel-2 median mosaic, a 
normalization of the RPAS image was carried out applying a Gaussian texture filter of size 5x5 
to resample it five times the pixel size and iteratively until reaching the spatial resolution of the 
Sentinel-2 mosaic. 
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Once the images had the same spatial resolution, the bands from the Sentinel-2 median 
mosaic and the resampled RPAS bands were stacked into one raster file. Additionally, to 
improve the differentiation of the coverages of interest, the subset of the 30 m spatial resolution 
DEM SRTM available in the GEE repository and its slope raster, calculated from the DEM, 
were added to the stacked raster. 

b. Processing 

To improve the final classification, the most used spectral indices for agricultural applications 
were calculated using the median mosaic and the resampled RPAS bands. 

The supervised classification was performed to the Sentinel-2 image including the RPAS 
image and in order to be able to make a comparison it was also done using exclusively 
Sentinel-2 images. Initially, a thematic expert manually digitalized the set of crop seeds, using 
the categorization of coverages established by the Colombian Rural and Agricultural Master 
Framework. The sample dataset was divided into two groups, the first one corresponding to 
the training data and the other one, to be used with validation purposes. For the selection of 
the validation data set, the recommendations made by Millard and Richardson (2015) were 
taken, in which 30% of the total sample corresponds to it and without spatial autocorrelation 
with the training sample.  

As indicators of the thematic quality of the overall classification were used the most 
representative metrics that correspond to percentage of map classification and kappa index 
that does not have bias derived from the errors of omission and commission (Foody, 2002; Liu 
et al., 2007). At the coverage level, errors of omission and commission were calculated. Those 
indices were derived from the confusion matrix generated from the comparison of the 
classification result with the validation data. 

5. Classification algorithm 

The supervised classification was performed using the Random Forest learning method, which 
is the most common and with the best thematic accuracy for agricultural information production 
(Belgiu & Drăgu, 2016; Chen et al., 2017; Dash et al., 2018; Zhao et al., 2019)). The 
parameters used were 100 trees and 4 branches; the number of branches was established 
according to the theoretical recommendation of Belgiu & Drăgu, (2016) who argue that it should 
be the square root of the number of target classes. 

6. Results & Recommendations 

As it was mentioned in the methodology, to perform the injection of the RPAS images to the 
Sentinel-2 mosaic, it was necessary to make an iterative resampling process by applying a 
Gaussian filter. Figure 33 shows the result of the resampling process in an area with multiple 
coverages. From the visual analysis it was evident that the resampled image retained the 
texture characteristics of the original one, despite the spatial generalization. Consequently, the 
resampled image enriches the coverage classification process. 
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Figure 33. Visual comparison among images. 

Source: Adapted from Ramírez, M., Martínez, L., Montilla, M., Sarmiento, O., Lasso, J., & Díaz, S. (2020). 

 

Analyzing visually the result of the classifications, despite not finding significant improvements 
in the classification that included RPAS images compared to the one made with Sentinel-2 
images only, in specific cases, improvements were evident in the definition of coverage limits. 
As an example Figure 34 rows A and C, there was a better delimitation for the forest cover and 
in row B, a better delimitation of the river was observed. 

 

Figure 34. Classification visual comparison. 

Source: Translated from Ramírez, M., Martínez, L., Montilla, M., Sarmiento, O., Lasso, J., & Díaz, S. (2020). 

 

Nevertheless, the general accuracy and the Kappa index were increased when the 
classification was performed using the integration of the Sentinel-2 image with the RPAS 
image, fluctuating from 1.1% to 26.7% (see Table 11), which allows to affirm that the injection 
of the RPAS image to Sentinel-2 images improves the cover land classification results. 
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Table 11. Thematic quality synthesis. 

S2: Sentinel-2 image classification; S2/RPAS: Sentinel-2 with RPAS injection classification; Var.: Variation 

Study Area Salento Tununguá Pajarito (Rural) 

Experiment S2 S2/ 
RPAS Var. S2 S2/ 

RPAS Var. S2 S2/ 
RPAS Var. 

General 
Accuracy 0,92 0,94 1,5% 0,79 0,82 2,6% 0,96 0,99 2,8% 

Kappa Index 0,88 0,90 2,4% 0,75 0,78 3,0% 0,94 0,98 4,8% 
 

Study Area Pajarito (Urban) Cómbita 

experiment S2 S2/ 
RPAS Var. S2 S2/ RPAS Var. 

General 
Accuracy 0,94 0,95 1,1% 0,74 0,96 21,8% 

Kappa index 0,90 0,92 1,8% 0,54 0,81 26,7% 
 

Source: Translated from Ramírez, M., Martínez, L., Montilla, M., Sarmiento, O., Lasso, J., & Díaz, S. (2020). 

Since April of 2020, the National Geostatistical Framework Unit of the Geostatistics 
Directorate, has been using the developed script for classifying Sentinel-2 images without 
RPAS image injection, because of the limited availability of RPAS orthoimages in the 
Colombian territory. Nevertheless, it has improved the processing time and accuracy of 
agricultural geospatial information generated compared to the previous method, in which the 
delimitation of agricultural land cover areas was done manually.  

7. Solution Architecture 

To carry out the image processing, Google Earth Engine (GEE) was used, a platform that 
implements a friendly user interface which offers remote sensing data processing, spatial 
analysis data tools and has open access to satellite imagery catalogs. GEE allows to develop 
complex processes that involve a large amount of information on Google's servers and finally 
it is able to visualize and download the results to be used later either within the same platform 
or through an external software of Geographic Information System (Google, 2021). 
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Earth Observation data analytics for Greenhouse detection and 
production area estimation Submitted by: Statistics Canada 
1. Project background 
Statistics Canada’s greenhouse project has been using satellite imagery for identification of 
greenhouses within major greenhouse growth areas in Southern Ontario since 2014. In 2018, 
the proposal to expand and automate the identification process was accepted and navigated 
towards a machine learning approach. The new approach to the identification of greenhouses, 
using new technologies, was responding to call at Statistics Canada to integrate more 
administrative data sources, such as satellite imagery, to replace survey questions or reduce 
the need for survey respondents, in addition to applying a timelier approach to producing 
estimates. The Agriculture Division created the Ag-Zero project, which is aimed to replace 
conventional surveys with alternative data sources and data collection methods in replacement 
of some fundamental questionnaires. 

The first iteration of the use of satellite imagery for the identification of greenhouses was 
performed in 2018-2019 where five-meter resolution Rapid Eye imagery was used. This 
imagery included five bands, three of which were for vegetation analysis. The project study 
area was within three substantial greenhouses economic regions within Canada: Fraser 
Valley, British Columbia, Essex County, Ontario and Niagara County, Ontario. The satellite 
data was accompanied by hand-digitized greenhouse GIS data as training and verification. 

The project focused on the use of open data sources to identify greenhouses, which allowed 
the project to be placed onto the new Azure Microsoft Cloud on boarded with a NVIDIA Tesla 
V100 GPU 114 GB RAM, 1 TB premium SSD, 10 TB storage account. Access to these online 
cloud resources had resolved many of our storage and processing questions, which we 
encountered during the project’s proposal period. 

The primarily goal of the second stage of the project in 2019 was  to refine the machine learning 
technique used, but also to provide a more realistic cost saving approach to widespread annual 
earth observation coverage – which, with the previous use of Rapid Eye imagery, was not 
obtainable at the time for total agricultural land coverage across Canada. Open source, high 
resolution aerial imagery was available from provincial and municipal GIS websites for 
download. Imagery in this form was encountered in 23 municipalities across 5 provinces. This 
data had 3 or 4 bands and ranged in pixel resolution between 0.30m -0.07m – which provided 
the resolution needed to detect greenhouses independent of size. In addition, the machine 
learning technique had migrated from a pixel-by-pixel classifier, convolutional neural network 
– to an image segmentation and object identification method by means of a U-Net with Res-
Net neural network classifier. The analysis for this second round of the project was done on 
secure offline GPU housed within Statistics Canada.  

In addition to the use of aerial imagery, mid-range resolution Sentinel-2 10m imagery was also 
used for the identification of greenhouses which had evidence of vegetation inside for Spring 
2019. This development for classifying greenhouses is deemed important for understanding 
production cycles of greenhouses while utilizing open source imagery availability for a routine 
update, as the satellite imagery’s revisit time is approximately every 5-10-days. The results of 
the second phase development for the greenhouse identification project using high resolution 
aerial imagery were improved from the first phase. 

2. Study areas 
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Niagara, Ontario 

Essex, Ontario 

3. EO data / preprocessing 
Greenhouse Detection: Aerial imagery, spatial Resolution 0.1-0.3m, bands used: Red, Green, 
Blue, Near-infrared, indices: Normalized Difference Vegetation Index (NDVI) 

Greenhouse Area Production Monitoring: Sentinel-2 imagery, spatial resolution: 10m, bands 
used: red, green, blue, near-infrared, indices: NDVI 

4. In situ data 
Hand digitized greenhouse polygons in the area of interest. Number of shapes: 620 
representing 2,710,439 square meters of greenhouse area. 

5. Proposed or implemented methodology. 
a. Area of interest 

Part of the work for the Phase 2 project, was ensuring that there was a significant coverage by 
aerial imagery of agricultural area in Canada. Other elements of the imagery include: how it 
can be obtained, metadata and how often it was collected. It was found that there were many 
provincial and municipal resources available, in high quality through provincial and municipality 
open source websites. Imagery was available, in BC, Alberta, Manitoba, Ontario, and New 
Brunswick. Further, data partnerships were established with Niagara and Brampton, Ontario – 
where interest in the greenhouse project helped obtain in house data through data acquisition 
agreements, free of cost. During the course of the project, January 2020 to March 2020, two 
areas of interest were used for machine learning training and testing: Niagara County and 
Essex County in Ontario. All other areas were obtained to get a better understanding of the 
resources available for when the project is approved for further testing and training. 

b. Ground -Truth Data 

For the machine learning classification and deep learning methods, ground-truth data in the 
form of geographic shapefiles were necessary for both the training and testing sites. The 
ground truth data provide a view of what in the imagery would be considered a greenhouse, 
and what was not, this provided in binary values within the provided imagery. The data from 
training sites are used to train the machine learning model while the testing sites are used to 
calculate the precision and accuracy of the trained model. The training sites also provide 
information of the spectral details of the greenhouses for training the algorithm, so that when 
testing and production efforts are in effect, the algorithm can find greenhouses within imagery, 
with little to no error, based on previously obtained details of what to search for. These are 
therefore some of the most important steps taken, and some of the most effort in the project 
as a result. In an ideal production scenario, aerial imagery from across the country would be 
provided to the algorithm trained on detecting greenhouses as the geography and surrounding 
terrain varies significantly  

For the estimation of greenhouse production area, the ground-truth data served another 
purpose in reducing the areas of attribute extraction from the vegetation analysis raster layer, 
to gain area estimation within the greenhouses. 

c. Aerial Imagery 
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The imagery from Niagara, Ontario was from spring 2018 at 0.16m pixel resolution, presented 
in 1km x 1km tiles. The acquisition was collected in the spring of 2018 for a “leaf off” and 
relatively cloud free image, thus allowing little obstructions in the overall analysis of the 
underlying buildings. The aerial imagery collection in Niagara, Ontario totaled about 2 TB of 
data, for this reason only a fraction of the data was used for analysis to those tiled areas which 
contain known greenhouses, as the entire set presented storage and data processing issues. 

d. Satellite imagery 
 

The area of interest for the satellite imagery was concentrated in the three areas of the highest 
number of greenhouses in Canada: Niagara, Fraser and Essex County. Since the 
greenhouses should already be detected by this stage, it should not be necessary to have less 
than 10 meter resolution for the imagery to use in practice. 

For the estimation of the production area of the greenhouses, it has been proven necessary to 
look for another means of imagery which is still open source, and provides equal coverage 
across the country. For this reason, Sentinel-2 imagery with 4 bands (red, green, and blue, 
near infrared) at 10 meter pixel resolution was chosen. It is used for estimating the total area 
within the greenhouse for production. There is no limitation, minus the appearance of clouds, 
which reduces visibility and natural vegetation. The repeat schedule for the acquisition was 
approximately every 5 to 10 days for coverage across the globe. This also allowed a more 
seasonal estimation of the greenhouses production estimations as they change throughout the 
season.  

e. Machine learning classification and Deep Learning methods 
 

The machine learning project utilized the higher resolution aerial imagery discussed above 
(with pixel resolution between 0.075 meters and 0.20 meters and 3 or 4 spectral bands). 

The machine learning consists of two components: 

• Training, during which the machine learning algorithm was fed images from “training 
sites” together with the labels (identifiers specifying exactly which pixels in the image 
correspond to greenhouses) and had to determine which patterns in the images 
corresponded to greenhouses. A machine learning model that can be applied to new 
images was the output of this phase. 

• Testing, in which the model was applied to “testing sites” that were disjoint from the 
training sites. The model generated predictions for every pixel in the testing sites, which 
were then compared to the ground truth. From this model quality estimates were 
produced. 

For this project, Statistics Canada used U-Net based convolutional neural network 
architectures for image segmentation. The U-Net architecture generated predictions for each 
pixel in the image, effectively highlighting areas of interest. 
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f. Greenhouse production 
 

In order to provide an accurate representation of the greenhouse industry in Canada, it was 
therefore necessary to not only find the total greenhouse area, but the total greenhouse 
production area, as this is the concept surveyed in the census of agriculture. The greenhouse 
production area model also provided an understanding of the consistencies within the 
greenhouse sector, along with the successes of the greenhouse and agriculture industry. As a 
response, a remote sensing approach was used to monitor the greenhouse production inside 
the greenhouses. Using vegetation indices and analysis of the greenhouse shapes, allowed 
the area of greenhouses within the buildings to be monitored. Further, the analysis was done 
multiple times within a year, with Sentinel-2 multispectral data, which is free and open data. 
This analysis was completed on Essex County, Ontario with success in 2018 and 2019 
datasets.  

6. Classification algorithm 
Machine Learning 

• Batch size: 64 
• Loss function: dice loss 
• Optimizer: RMSprop 
• Learning rate: 10-5 
• Weight decay (L2 regularization): 10-6 

 

7. Results & Recommendations 
 

a. Greenhouse Detection model 
 

The classifier for Greenhouse detection in aerial images did very well for the vast majority of 
areas. In eleven areas the MCC (Matthews Correlation Coefficient) is between 0.9 and 1.0, in 
five areas the MCC is between 0.8 and 0.9, and in three areas the MCC is less than 0.8. In all 
areas with a large number of greenhouses, the MCC is at least 0.8 and is usually over 0.9. 

Further testing on ResNet and DenseNet architectures are planned for future phases of the 
greenhouse detection project to improve testing accuracy. A future phase will be to explore 
other greenhouse classifications from the high-resolution imagery, such as the cover type. 

b. Greenhouse Production model 
Although there was insufficient data to validate the model at the time, the classification of the 
greenhouses under production performed well given the understanding of the greenhouse 
industry and the science behind the use of an NDVI for vegetation analysis. The next iteration 
of the project, ongoing in 2021-2022, will be modelled using fine resolution validation data, 
which will allow the model to move into a production environment.  

The model performed well in areas of large greenhouses, such as Essex County in Ontario, 
but the greenhouses were harder to identify with the NDVI at the 10m level in areas such as 
Niagara, Ontario and Fraser Valley in British Columbia because of the larger area of interest 
and the smaller, on average, size of the greenhouses. This has caused the research team to 
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look into finer resolution data within the private sector, at the 5m or 1.5m resolution for these 
areas of interest.  

The model was also meant to perform analysis several times a year, within the growing season 
of the spring and summer; in addition to outside of the growing season in the fall and winter. 
This has been proven to be difficult in some areas where clouds, rain and snow reduced the 
effectiveness of the optical satellites. Consequently, the number of iterations in a year was 
reduced to 2 or 3 times for the model, instead of 4 or 5 times.  

8. Solution Architecture 
The work was done on an in-house GPU system with the following specifications: 

• NVidia Quadro P6000 GPU. 
• Two Intel CPUs with 14 cores each, for total of 28 physical cores and 56 virtual cores. 
• 256 GB of RAM. 
• 1 TB SSD with system installation and two 4 TB HDD for storage. 
• Ubuntu Linux 18.04 LTS. 
• Necessary software installed such as R, Python, QGIS, NVidia drivers, and CUDA / 

cuDNN. 
• Standalone system not connected to any network. Data transfers to and from the 

machine were done using special hardware encrypted external hard drives. 
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Understanding the Requirements for Surveys to Support Satellite-
Based Crop Type Mapping: Evidence from Sub-Saharan Africa 
Submitted by: World Bank5 
 

1. Project Background 
 
Satellite-based approaches to mapping agricultural outcomes, such as crop-specific estimates 
of cultivated areas and yields, require data for training and validating the underlying remote 
sensing models. The quality and spatial resolution of satellite-based estimates is directly 
impacted by the data used for model training and validation (Lobell et al., 2019, 2020). Recent 
earth observation research that has focused on low-income countries has relied largely on two 
sources of training and validation data: (i) manually-labeled optical imagery (DeFourny et al., 
2019; Xiong et al., 2017; Wei et al., 2020), and (ii) ground data collection, including as part of 
household and farm surveys (Hegarty-Craver et al., 2020; Jin et al., 2017, 2019; Kerner et al., 
2020; Lambert et al., 2018; Richard et al., 2017). This paper is related to earth observation 
applications that rely on georeferenced survey data to meet model training and validation 
needs. 
 
Despite the expanding knowledge base regarding the use of earth observation techniques in 
low-income countries that are primarily characterized by smallholder farming, research studies 
have largely remained sub-national in scope and have exhibited heterogeneity in terms of the 
ground data used to fulfill comparable analytical objectives pursued in different settings. Lack 
of methodological research to identify the required volume of and approach to ground data 
collection for training and validating remote sensing models is arguably one of the hurdles 
against the scale-up of satellite-based estimation of agricultural outcomes across countries 
and expansive geographies. Identifying ground data requirements for key earth observation 
applications in low-income countries, including high-resolution crop type mapping and crop 
yield estimation, would be important not only for assessing the utility of existing georeferenced 
household survey data for earth observation research but also informing the design of future 
large-scale household and farm surveys that can provide the required training and validation 
data for downstream earth observation efforts. 
 
Against this background, this case study addresses several operational and inter-related 
research questions in the context of high-resolution maize area mapping in Malawi and 
Ethiopia: 1) what is the minimum volume of household survey data that is required to reach an 
acceptable level of accuracy of a crop classification algorithm? and 2) how does the approach 
to georeferencing plot locations in household surveys impact the accuracy of the same crop 
classification algorithm? Furthermore, it has been demonstrated how the algorithmic accuracy 
is affected based on 1) the type of satellite data used (optical only, radar only or both) - given 
the considerable differences in the complexity and costs of imagery processing across the 
various options, and 2) whether plots under specific area thresholds are excluded from the 
training data - given the potential concerns around the mismatch between the relatively small 
scale of farming in Malawi and Ethiopia and the Sentinel-2 imagery used in our analysis. To 
our knowledge, this is the first study that attempts to systematically answer these questions in 
the context of high-resolution crop area mapping in smallholder farming systems. 
 

 
5 The case study is an excerpt from Azzari, G., Jain, S., Jeffries, G., Kilic, T., and Murray, S. (2021). “Understanding 
the Requirements for Surveys to Support Satellite-Based Crop Type Mapping: Evidence from Sub-Saharan Africa.” 
Remote Sensing, 13(23), 4749, https://doi.org/10.3390/rs13234749. The research has been conducted with support 
from the 50x2030 Initiative to Close the Agricultural Data Gap, as part of the on-going work program to identify the 
approach to and volume of georeferenced survey data collection for calibrating and validating remote sensing 
models for high resolution estimation of crop areas and crop yields in smallholder farming systems. 

https://doi.org/10.3390/rs13234749
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2. Study Area 
 
Malawi, Ethiopia 
 
3. EO data/preprocessing 

 
Two types of satellite imagery were used in the maize area mapping experiments - optical and 
synthetic aperture radar (SAR). Each data source captures different crop properties useful for 
crop type mapping. Both optical and SAR data were processed and extracted to the survey 
plot locations for maize area mapping. 
 
a. SAR imagery processing 
 
Sentinel-1 (S1) satellites carry a Synthetic Aperture Radar (SAR) sensor that operates in a 
part of the microwave region of the electromagnetic spectrum which is unaffected by clouds or 
haze. Sentinel-1 Interferometric Wide swath mode (IW) provides images with dual polarization 
(VV and VH) centered on a single frequency. Google Earth Engine provides S1 images at 10m 
resolution which are corrected for noise (Gorelick et al. 2017). Sentinel-1 data is pre-processed 
to generate calibrated, orthorectified images at a resolution of 10 m before being ingested in 
the GEE data pool (Jin et al. 2019). To use this imagery, it was applied Local Incidence Angle 
(LIA) correction, and computed RATIO and DIFF bands (Table 12.). 
 
b. Optical Imagery processing 
 
Sentinel-2 (S2) satellites provide multispectral imagery for 13 spectral bands with a 10 m 
resolution for red, green, blue, and near infrared bands. One band was retained and five 
vegetation indices (VIs) were calculated for all available S2 images (Table 12). The bands and 
indices shown in Table 12 were specifically chosen due to their use in literature (Jin et al. 2019, 
Cai, Y., et al. 2018), and because they covered the imagery bands of interest for the most part. 
Note that using lower resolution bands to produce higher resolution maps (e.g. 20m SWIR 
bands to produce 10m maps) can sometimes lead to artifacts in the final output, however we 
did not observe any in the outputs. 
 
Table 12. Satellites, bands and indices used in the analysis. 
 

Band / 
Index 

Name Central wavelength / Index 
formula 

Satellite 

VV Vertically polarized backscatter 5.5465763 cm  Sentinel-1 

VH Horizontally polarized backscatter 5.5465763 cm Sentinel-1 

RATIO Ratio VV / VH Sentinel-1 

DIFF Difference VV – VH Sentinel-1 

RDED4 Red Edge 4 865 nm Sentinel-2 

GCVI Green Chlorophyll Vegetation 
Index 

(NIR – GREEN)/1  Sentinel-2 

NBR1 Normalized Burn Ratio 1 (NIR – SWIR1) / (NIR + 
SWIR1) 

Sentinel-2 

NDTI Normalized Difference 
Temperature Index 

(SWIR1 – SWIR2) / (SWIR1 
+ SWIR2) 

Sentinel-2 
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NDVI Normalized Difference Vegetation 
Index 

(NIR – RED) / (NIR + RED) Sentinel-2 

SNDVI Smoothed Normalized Difference 
Vegetation Index 

(NIR – RED) / (NIR + RED + 
0.16) 

Sentinel-2 

 
S2 Level-1C imagery hosted in Google Earth Engine was used in the analysis (Gorelick et al. 
2017). This imagery consists of top-of-atmosphere reflectance observations. The European 
Space Agency (ESA) also distributes S2 Level-2A imagery, which consists of surface 
reflectance values. However, this higher-level product did not provide complete coverage in 
the geographic areas of interest, in years prior to 2019. A second alternative was to generate 
Level-2A imagery from Level-1C imagery using the ESA’s Sen2Cor toolbox (Louis, J., et al., 
2016). However, this approach would have been challenging in terms of computation and 
storage requirements. Hence, a simple linear regression model was used to convert top-of-
atmosphere reflectance values for each band to surface reflectance values, as given in 
Equation 1. The 𝛽𝛽 0 and  𝛽𝛽1 were calculated separately for Malawi and Ethiopia, using about 
1,000 pairs of pixels sampled randomly from the Level-1C and Level-2A products for the 
respective country from 01/01/2019 to 12/31/2019. Furthermore, pixels containing clouds, 
shadows, haze, or snow were masked out from the S2 imagery using a decision-tree classifier 
(Jin et al., 2019). 
 
Equation 1 
𝑆𝑆𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 = 𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑇𝑇𝐴𝐴𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 + 𝜖𝜖 
 
Harmonic regressions for characterizing crop phenology 
 
Multi-temporal collection of bands and indices from S1 and S2 were used to capture changes 
in crop phenology over time. To identify temporal patterns that characterize crop phenology, a 
harmonic regression model was fit at a pixel level to the time series of each unique band and 
index (Deines et al. 2020, Jin et al. 2019). See Equations 2 and 3 for Malawi and Ethiopia, the 
latter of which includes an additional pair of harmonic terms. Here, 𝛽𝛽 0, 𝛽𝛽1, 𝛽𝛽 2 etc. are the 
harmonic regression coefficients, 𝜔𝜔 refers to frequency, and 𝑡𝑡 refers to time (which spans 
November 2018 to July 2019 in Malawi, and April 2019 to November 2019 in Ethiopia). The 
algorithm produced features that captured the seasonality of different crop types and that 
included harmonic coefficients, seasonal mean, and goodness of fit measures. These features 
were useful to map crop types because a maize pixel undergoes seasonal changes in 
greenness that differ from those of other crops. 
 
Equation 2 

𝐺𝐺𝐺𝐺𝐺𝐺𝐼𝐼𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑡𝑡 + 𝛽𝛽2𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝜔𝜔1𝑡𝑡) + 𝛽𝛽3𝑐𝑐𝑠𝑠𝑠𝑠(2𝜋𝜋𝜔𝜔1𝑡𝑡) + 𝛽𝛽4𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝜔𝜔2𝑡𝑡) + 𝛽𝛽5𝑐𝑐𝑠𝑠𝑠𝑠(2𝜋𝜋𝜔𝜔2𝑡𝑡) + 𝜖𝜖 
(where 𝜔𝜔1 = 1 and 𝜔𝜔2 = 2) 
 
Equation 3 

𝐺𝐺𝐺𝐺𝐺𝐺𝐼𝐼𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑡𝑡 + 𝛽𝛽2𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝜔𝜔1𝑡𝑡) + 𝛽𝛽3𝑐𝑐𝑠𝑠𝑠𝑠(2𝜋𝜋𝜔𝜔1𝑡𝑡) + 𝛽𝛽4𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝜔𝜔2𝑡𝑡) + 𝛽𝛽5𝑐𝑐𝑠𝑠𝑠𝑠(2𝜋𝜋𝜔𝜔2𝑡𝑡) 
+𝛽𝛽6𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝜔𝜔3𝑡𝑡) + 𝛽𝛽7𝑐𝑐𝑠𝑠𝑠𝑠(2𝜋𝜋𝜔𝜔3𝑡𝑡) + 𝜖𝜖 

(where 𝜔𝜔1 = 1, 𝜔𝜔2 = 2, and 𝜔𝜔3 = 3) 
 
c. Additional EO Data 
 
In addition to multispectral imagery from S2 and SAR imagery from S1, data sources were 
leveraged that captured landscape and climatological factors correlated with crop type 
selection. Topography features including elevation, slope, and aspect are commonly 
incorporated into land cover and land use classifications (Hurskainen et al. 2019). These three 
features were obtained from the Shuttle Radar Topography Mission (30 m resolution) as 
proxies for cropland suitability based on the assumption that areas with high slope and 
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elevation are less likely to be suitable for agriculture due to erosion and soil degradation 
potential. Climate conditions are additional key determinants of crop suitability and therefore 
can contribute meaningful information in cropland classification models (Konduri et al. 2020). 
Weather variables were also included in the models such as total precipitation, average 
temperature, and growing degree days (GDD) during the cropping season. Gridded weather 
estimates were obtained from the aWhere daily observed weather API (0.1-degree resolution 
for Sub-Saharan African countries, included for Malawi only). Weather data from aWhere was 
limited to Malawi only due to data licensing constraints. Table 13. shows the additional data 
used in the pipeline. 
 
Table 13. Additional EO data used in the maize classification pipeline 

Feature Explanation Data Source Included in 

Elevation Obtained using GEE’s inbuilt 
terrain algorithm that uses an 
elevation raster to generate 
slope and aspect bands 

Shuttle Radar 
Topography Mission 
(30-meter resolution) 

Malawi, Ethiopia 

Slope Malawi, Ethiopia 

Aspect (direction of slope) Malawi, Ethiopia 

Average temperature Mean daily temperature 
during growing season 

aWhere daily 
observed weather 
API (0.1-degree 
resolution) 

Malawi 

GDD Growing degree days* 
accumulated during growing 
season 

Malawi 

Total precipitation  Total precipitation during 
growing season 

Malawi 

Notes: * A growing degree day is one in which the mean temperature is greater than a base value that must be 
exceeded for crop growth to occur. For maize, this base value is 10 ℃. 
 
4. In situ data 
 
Nationally representative, multi-topic household survey data was collected in Malawi and 
Ethiopia by the respective national statistical offices over the period of 2018-2020 with support 
from the World Bank Living Standards Measurement Study-Integrated Surveys on Agriculture 
(LSMS-ISA) initiative. The key variables that drive each survey’s sampling design is household 
consumption expenditures and poverty. However, the surveys do provide large samples of 
agricultural households and extensive data on their agricultural activities. Maize is the primary 
crop grown in Malawi, while in Ethiopia, small grains are more prevalent, but maize still plays 
an important role as a staple crop. More details regarding the survey data are provided below.  
 
The survey data in Malawi stem from the Integrated Household Panel Survey (IHPS) 2019 and 
the Fifth Integrated Household Survey (IHS5) 2019/20. The surveys were implemented 
concurrently by the Malawi National Statistical Office. The anonymized unit-record survey data 
and documentation associated with the IHPS 2019 and the IHS5 2019/20 are publicly available 
on the World Bank Microdata Library. The IHPS 2019 fieldwork was conducted from April to 
December 2019, and the households that were determined to have owned and/or cultivated 
land during the 2018/19 rainy season were attempted to be visited twice, once in the post-
planting period and once in the post-harvest period, following the same set of fieldwork 
protocols that had been used in the prior IHPS rounds. 
 
The IHS5 2019/20 is the second source of survey data in Malawi. Unlike the IHPS 2019, the 
IHS5 is a cross-sectional survey that is designed to be representative at the national-, 
urban/rural-, regional- and district-levels. The IHS5 sample included a total of 11,434 
households, distributed across 717 EAs throughout Malawi. The fieldwork was implemented 
from April 2019 to April 2020, and each sampled household was visited once. The households 
that were determined to have owned and/or cultivated any land reported information on the 
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last completed rainy season, which could have been 2017/18 or 2018/19 depending on the 
interview date. 
 
The IHPS 2019 and the IHS5 2019/20 used identical, extensive agricultural questionnaires that 
elicited information at the parcel-, parcel-plot-, and parcel-plot-crop-level, depending on the 
topic. Of particular importance to the research is that the surveys identified each crop cultivated 
on each plot, and in the process, determined whether a given plot was monocropped or 
intercropped. The fallow plots within each parcel were also identified. Further, each cultivated 
or fallow plot that was determined to be within 2 hours of travel (irrespective of the mode of 
transport) was attempted to be visited with the farmer. The plot area was captured with a 
Garmin eTrex 30 handheld global positioning system (GPS) unit, and the plot location was 
georeferenced in two ways: (i) the enumerator captured the GPS coordinates for the corner 
point at which the plot area measurement commenced and manually inputted the GPS 
coordinate into the computer-assisted personal interviewing (CAPI) application (i.e. the corner 
point method), and (ii) the enumerator also captured the perimeter of the plot during the plot 
area measurement exercise and stored the resulting geospatial polygon on the GPS unit 
following a naming convention that facilitates the linking of the polygon to the plot record in the 
household survey data (i.e. the full boundary method). 
 
We refined the initial data set to isolate the best quality data for the analysis. Plot records were 
retained only if they possessed both a corner point and a full plot boundary and had a crop 
type record for the referenced rainy agricultural season. Furthermore, if the location information 
(either corner point, or plot boundary, or both) was duplicated across two or more plots, then 
all duplicated records were dropped, except in cases where one, and only one, of the 
duplicated records had a high degree of confidence assigned to their location data quality - in 
these cases, the record with the high degree of confidence was kept and the remaining records 
were dropped. Lastly, only records with a high degree of confidence in the location data quality 
(both for the corner point and the plot boundary), as indicated by a metric provided by the GPS 
unit, were retained. Plots that were cultivated with any maize were treated as “maize plots”, 
otherwise they were labeled as “non-maize.” Maize plots were inclusive of both purestand and 
intercropped maize plots.  
 
To begin investigating how the approach to georeferencing plot locations would affect the 
accuracy of remote sensing models that combine survey and satellite data for high-resolution 
crop type mapping, full plot boundaries were used to first derive several additional sets of 
coordinates that could have been generated with alternative plot geolocation methods and that 
include: 
 

i. The coordinates of one plot corner that was recorded by the enumerator, i.e. “corner 
point. 

ii. The coordinates of the plot centroid that was derived from the full boundary, i.e. 
“centroid.” 

iii. The coordinates of 4 to 8 plot corner points that were derived from the boundary, based 
on the complexity of the plot shape (geometric simplification) and that were in turn used 
to: 

o Derive the geospatial predictors for each pixel corresponding to a given corner 
point and use these pixels and the associated predictors as the training data, 
i.e. “boundary points.” 

o Randomly select 20% of the pixels within the convex hull that was formed by 
the corner points; derive the geospatial predictors of interest for each sampled 
pixel; and use these pixels and the associated predictors as the training data, 
i.e. “convex hull.” 

o Derive the geospatial predictors for all pixels within the convex hull and 
aggregate the information to the plot-level by taking the average, for each 
predictor, across all pixels, i.e. “hull mean.” 

iv. The full plot boundary that was in turn used to: 
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o Randomly select 20% of the pixels from a 10m grid within the plot; derive the 
geospatial predictors of interest for each sampled pixel; and use these pixels 
and the associated predictors as the training data, i.e. “plot points.” 

o Derive the geospatial predictors for all pixels from a 10m grid within the plot and 
aggregate the information to the plot-level by taking the average, for each 
predictor, across all pixels, i.e. “plot mean.” 

 
The survey data in Ethiopia originated from the Ethiopia Socioeconomic Survey (ESS) 
2018/19, which was implemented by the Central Statistical Agency as the new baseline for the 
national longitudinal household survey program. The anonymized unit-record survey data and 
documentation associated with the ESS 2018/19 are publicly available on the World Bank 
Microdata Library. 
 
The ESS 2018/19 has been designed to be representative at the national-, urban/rural- and 
regional-levels, and the sample includes a total of 7,527 households, distributed across 565 
EAs throughout Ethiopia. The rural ESS sample includes 3,792 households that originated 
from 316 EAs that were subsampled from the sample of EAs that were visited by the Annual 
Agricultural Sample Survey 2018. In each rural EA, the ESS households that cultivated any 
land during the 2018 (meher) agricultural season were visited twice by the resident 
enumerator, once in the post-planting period and once in the post-harvest period. Similar to 
the IHS5 and the IHPS, the ESS 2018/19 also used extensive agricultural questionnaires that 
elicited information at the parcel-, parcel-plot-, and parcel-plot-crop-level, depending on the 
topic. Each cultivated crop was identified on each plot, and the data were indicative of whether 
a given plot was monocropped or intercropped. Finally, the ESS CAPI application that 
leveraged the GPS functionality of the Android tablets enabled each resident enumerator to 
georeference the corner point for starting the plot area measurement (which was then 
conducted with a Garmin eTrex 30 handheld GPS unit).  
 
For the analysis, the plot records were retained only if they possessed corner point information 
and had a crop type record for the 2018 meher season. The exact set of GIS data checks were 
followed, as outlined in the prior section, to convergence on the sample of plots used for 
analysis. Plots that were cultivated with any maize plantings were treated as maize plots, and 
otherwise labeled them as “non-maize.” Maize plots were again inclusive of both purestand 
and intercropped maize plots. 
 
5. Methodology (including classification algorithm) 
 
A methodological framework was developed to quantify the ability of a random forest 
supervised classification model to identify pixels as maize or non-maize under scenarios with 
limited training data quantity, various data collection methods, and type of satellite-derived 
variables used. The overarching approach was to (i) define a common modeling pipeline that 
trains and evaluates a maize classification model for a given data set, (ii) feed the modeling 
pipeline with each data set in a sequence designed to emulate hypothetical scenarios of field 
data collection (varying the number of training observations (varying from 2 to 10 percent, at 2 
percentage point increments), one of seven plot geolocation methods (as explained above), 
and the minimum plot size, with the following thresholds: 0 ha, 0.05 ha, 0.1 ha, 0.15 ha, and 
0.2 ha), (iii) vary the type of satellite data used by the modeling pipeline (optical only, radar 
only, both optical and radar), and compare evaluation metrics across different scenarios.  
 
The complete data set of surveyed plots in Malawi was divided into subsets for model training, 
validation, and performance testing (i.e. evaluation). We stratified the data set by district and 
crop type (maize and other crops), then divided the records into train, validation, and test 
subsets (70, 15, and 15 percent of total, respectively). Stratifying by geography and crop type 
ensured that train, validation, and test subsets shared the same balance of crop and non-crop 
plots. No stratification by year was applied. The same sampling design was employed in 
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Ethiopia (~13,000 plots). Training and validation subsets were used in the maize classification 
pipeline stages 1 through 3, while the test subset was reserved for model evaluation only. 
 
Feature pre-selection was implemented to prevent model overfitting due to a high number of 
features (for example, in Malawi: 60 features from S2, 40 from S1, 3 from topography, and 3 
from weather). Pre-selection was performed for each data set passing through the pipeline, 
rather than the complete data set, as feature importance may vary with data set properties 
(e.g. minimum plot size). Only features with a high Mutual Information score against the 
observed dependent variables were kept, such that no two remaining high-ranking features 
had a correlation of 0.8 or more.  
 
A hyperparameter tuning process was designed to minimize overfitting on the training data 
while maximizing classification performance. A range of values for each of six model 
parameters were tested in an automated process. Model parameters used in the tuning 
process included: number of preselected features to use, number of trees in the forest, 
maximum number of features to consider when looking for the best split in a tree, maximum 
tree depth, minimum number of samples required to split an internal node, and minimum 
number of samples required to be at a leaf node. Model parameters were selected for each 
data set by considering feedback from the automated tuning process, in addition to modeler 
expertise. Models were trained and values for in- and out-of-sample predictions were logged.  
 
Each model was evaluated on its ability to correctly distinguish between maize and non-maize 
pixels in the testing segment of the data set (out-of-sample). We calculated two performance 
metrics: accuracy and the Matthews’ Correlation Coefficient (MCC).  
 
Furthermore, plot size can influence modeled crop yields due to rounding errors [3, 5]. Models 
trained on observations that exclude very small plots (e.g. < 0.2 ha) commonly perform better 
because smaller plots can include satellite data pixels that are affected by heterogeneous land 
use around plot edges. In order to conduct experiments on the effect of a minimum plot size 
threshold on crop classification accuracy, four copies were created of the stratified and split 
data set where training data was filtered to include only plots with areas greater than 0 ha, 0.05 
ha, 0.1 ha, 0.15 ha, and 0.2 ha. Plots of all sizes were retained in the validation and test subsets 
to evaluate each model with real-world plot size distributions.  
 
A series of data sets designed to emulate data collection scenarios was applied to the maize 
classification pipeline. This was defined as a function of three types of EO data, seven plot 
geolocation methods, and five minimum plot size thresholds for training data that may influence 
maize classification performance (in Ethiopia there were fewer factors). For each of these 105 
scenario data sets, a range of sample size constraints were also included to articulate tradeoffs 
between data collection effort and classification performance. Subsamples were defined for 
each data set where the amount of training data was constrained to between 2% and 100% 
(unconstrained) of the total, iteratively increasing the amount of data available to the modeling 
pipeline in steps of 2 percentage points. Subsampling of training data was also done in a 
stratified manner (by district and class label). Each subsample was passed through the maize 
classification pipeline and evaluation results were recorded. In total, 26,250 scenarios were 
tested, comprising: 
 

• 7 geolocation methods - boundary points, centroid, convex hull, corner, hull mean, plot 
points, and plot mean 

• 50 data subsets - 2% to 100% subsets of training data, at an increment of 2% points 
• 5 area thresholds - 0, 0.05, 0.1, 0.15, and 0.2 ha 
• 3 feature types - optical only, radar only, both optical and radar 
• 5 replications to capture variability due to random sampling 
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To compare performance across countries, we applied a similar workflow to the Ethiopia 
survey data set. However, due to the limitations of that data set, we only tested the corner point 
geolocation method, with no area threshold, and with optical data only. 
 
Finally, the sensitivity of national-level maize area estimates to the choice of the model was 
assessed, specifically the best performing model for each geolocation method. To do so, seven 
different models were trained - one for each geolocation method and using the area threshold 
and satellite feature set that performed best (in terms of MCC) for each geolocation method.  
 
Each model was then used to estimate the probability that each 10-meter pixel in Malawi was 
maize (a 0 to 1 continuous variable) during the 2018/19 rainy season. The pixel-level maize 
probabilities were converted into a binary classification using a threshold. Pixels with a maize 
probability above 0.6 were classified as maize, and otherwise are classified as non-maize. 
Absent objective data on which to empirically calibrate the classification threshold value, a 
threshold higher than the typical value (0.5) was selected in order to reduce the over 
classification of pixels in maize resulting from the overrepresentation of maize plots in our 
training data set. Data set users can select a threshold value that suits their use case. 
 
The maize land maps were used in conjunction with a cropland mask (showing seasonal 
cropland coverage) trained on crowdsourced land cover labels over Malawi to estimate which 
pixels were cropped with maize in a particular season. Specifically, the cropland mask was 
first used to remove all pixels in Malawi that were not cropped. Each of the trained maize 
classification models was used to identify cropped pixels where maize was present. The 
process resulted in seven different maize land maps, one for each geolocation method. 
 
6. Results and Recommendations/Lessons Learned 
 
There are seven headline findings that emerge from our analysis. First, a simple machine 
learning workflow can classify pixels with maize cultivation with up to 75 percent accuracy - 
though the predictive accuracy varies with the survey data collection method and the number 
of observations available for model training.  
 
Second, collecting a complete plot boundary is preferable to competing approaches to 
georeferencing plot locations in large-scale household surveys and that seemingly-small 
erosion in maize classification accuracy under less preferable approaches to georeferencing 
plot locations consistently results in total area under maize cultivation to be overestimated - in 
the range of 0.16 to 0.47 million hectares (8 to 24 percent) in Malawi vis-a-vis the results from 
the best performing model (i.e. plot mean).  
 
Third, collecting GPS coordinates of the complete set of plot corners, as a second-best 
strategy, can approximate full plot boundaries and can in turn train models with comparable 
performance. 
 
Fourth, when only a few observation plots (fewer than 1,000 plots) can be visited, full plot 
boundaries or multiple corner points provide significant gains vis-a-vis plot corner points or plot 
centroid. With mid-sized samples (3,000 to 4,000 plots), plot centroids can produce similar 
performance to full plot boundaries. With large sample sizes (around 7,000 plots), plot 
centroids fall behind full plot boundaries.  
 
Fifth, if only a single GPS point is to be gathered by data collectors, that location should be 
near the center of the plot rather than at the plot corner. However, georeferencing plot centroids 
should be understood as a third-best strategy for remote sensing model training purposes. The 
findings suggest that classification performance almost always peaks before or at around 
4,000 plots under the preferred geolocation strategies - corresponding to roughly less than 60 
percent of the training data. As such, it is better to collect high-quality plot boundaries from 
4,000 plots as opposed to corner points from 7,000 plots. 
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Sixth, we demonstrate that no plot observations should be excluded from model training based 
on a minimum plot area threshold - another important note for future surveys.  
 
Finally, the experiments to quantify the effect of satellite data sources on crop type 
classification performance suggest that optical features alone can provide sufficient signal to 
maximize prediction quality. We observed only small differences between models built only 
with optical features and those using optical and SAR features. In the case of maize area 
mapping in Malawi, the potential benefits offered by SAR - providing signals unaffected by 
cloud cover - were offset by additional noise introduced with SAR imagery. 
 
The high-resolution crop and maize area maps that have been produced with best performing 
models have been made publicly available for Ethiopia and Malawi through the World Bank 
Development Data Hub and can be accessed through the following links: 
 

• Ethiopia: https://datacatalog.worldbank.org/search/dataset/0037937/High-
resolution-crop-and-maize-area-mapping-for-Ethiopia  

• Malawi: https://datacatalog.worldbank.org/int/search/dataset/0037935/High-
resolution-crop-and-maize-area-mapping-for-Malawi  
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Final recommendations and lessons learned 
 

The preceding examples demonstrate the diversity of applications, platforms, sensors and 
analytics that EO can offer for the purpose of land use (agricultural) classifications. However, 
in order to establish global interoperability and compatibility of data as well as to achieve 
accurate and robust results and adoption, there are a number of key points that need to be 
considered, these include: 

• Temporal resolutions (how often the maps are updated),  
• Spatial resolution (the smallest spatial unit the commodities are mapped at i.e. growing 

unit, farm, regional, national scale; minimum pixel size: 1m – 250 m);  
• Level of classification of EO applications (coarse: broad acre, irrigated, perennial. fine: 

commodity level) 
• Standards for ground-truth training data (mapping standards, appropriate calibration 

and validation with in situ data);  
• Accuracy of delineation (accuracy of the field boundaries); 
• Standards for accuracy of classification (errors of omission and commission when 

defining commodity type); 
• Extent of attribute information provided (variety, management practices, grower names, 

productivity);  
• Data security (what level of information is available for public consumption; how will the 

data be used); 
• Data format and interoperability; 
• Data presentation, access and costs (dashboards);  
• Industry participation 

 

Some of these points are described further below. 

Temporal Resolutions of EO Applications: 

The classification of land cover, particularly for agriculture is very much time specific due to 
seasonality of crop rotations, access to key inputs (water, seed, land), responses to labour 
availability, market trends, natural disasters and pest and disease incursions. Therefore, it is 
imperative that the temporal currency of the mapping best matches the region, the farming 
systems and the application being developed.  

The DLR and QDES example adopted Landsat, Sentinel-2 and as a backup option MODIS 
archive from 1987 to 2018 within a multi-temporal mapping approach, with spatial, spectral 
and temporal information. The focus site of the western cropping region of Queensland has a 
summer (November to May) and winter dominated (June to October) cropping cycle.  

In the Colombian case developed by DANE, it would be required to improve the temporal 
resolution of RPAS images, however, the high cloud coverage is always a permanent obstacle 
for using EO data. 

The FAO Lesotho example quickly identifies the limitations of the original Lesotho mapping 
project (completed in 2015), making the output now 7 years old. Understanding this limitation 
FAO has recently (2020) launched the EOSTAT Lesotho project under the umbrella of the 
Integrated Catchment Management programme (ICM) funded by the multi donor consortium 
(EU, GIZ, Ministry of Lesotho), with the aim of i) developing a new methodology that allows for 
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the production of annual national land cover maps, ii) to update the land cover atlas of Lesotho 
to the year 2020, and iii) to produce a time series of national land cover maps for the period 
2016-2022. This will significantly improve the temporal resolution of the mapping.  

For example, the mapping of all greenhouses in Canada may only need to be undertaken 
annually. Whilst new greenhouses may be built through the year, in general existing structures 
will not move or be deconstructed multiple times.  

Spatial Resolution and Level of Classifications of EO Applications: 

DLR and QDES example encompassing an amalgamation of ‘Coarse-grain’ and ‘Pulse’ into a 
single summer group was a pragmatic response to preliminary analyses that revealed strong 
confusion between the two, due to few observed summer-growing legumes 

Examples such as for Lesotho offers very coarse land cover types: Built up, Crop land, trees, 
water bodies etc.) and the FAO themselves acknowledge that such classifiers cannot 
adequately handle heterogeneous land cover classes (that contain a mixture of multiple land 
cover classes) 

In the Colombian case developed by DANE, to maximize the use of EO data (ground based 
and satellite) it is required to have access to a better spatial resolution in order to get more 
accurate and detailed land cover classification, especially for non-permanent crops. 

In contrast, the high resolution, spring collection, of aerial imagery (0.16m resolution), was 
used for the machine learning portion of the Statistics Canada project. The imagery enabled 
the geospatial analyst to delineate a highly-detailed sample of detectable objects in the images, 
for the purpose of creating training and validation data for the model. The highly detailed data 
provided by the geospatial analyst, was of the highest quality and provided the optimal 
resources for the classification of greenhouses. 

In the Colombian case, to integrate the RPAS images into the Sentinel-2 median mosaic, a 
resampling process was done to the RPAS image until the spatial resolution of the Sentinel-2 
mosaic was attained, from 0.05m to 10m. This process has limitations because it reduced the 
spatial capabilities provided initially by RPAS images. In the FAO case of Lesotho, the 
resolution drop from 0.52m to 10m (Sentinel-2) has limited impacts on overall predicted surface 
areas. 

Standards for Ground-Truth Training Data 

In situ data used in a project that uses earth observation data is a key point of interest. The 
information collected in situ allows analysts to calibrate and validate a range of remote sensing 
approaches that are covered in this paper.  

The approach to collecting in situ data must be in accordance with the objective of the project. 
For example, the DANE case study reveals that if the objective is to classify crops, it is 
necessary to collect in situ information regarding the cultivation of these crops as well as others 
to ensure the proper training and validation of potential classification models. For the deep 
learning classification methods applied by Statistics Canada, the training sites provide a 
ground truth view of what in the imagery would be considered a greenhouse, and what is not.  

At the same time, not all in situ data are created equal. As revealed by the case study submitted 
by the World Bank, the approach to collecting georeferenced plot locations on the ground has 
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a direct effect on the estimates of area cultivated with maize. The analysis reveals that 
collecting a complete plot boundary is preferable to competing approaches to georeferencing 
plot locations in large-scale household surveys (including georeferencing a single plot corner, 
or the plot centroid) and that seemingly-small erosion in maize classification accuracy under 
less preferable approaches to georeferencing plot locations consistently results in total area 
under maize cultivation to be overestimated - in the range of 0.16 to 0.47 million hectares (8 
to 24 percent) in Malawi vis-a-vis the results from the best performing model. The authors 
make a convincing case for accelerating research to identify the optimal methods of ground 
data collection as part of recurrent household and farm surveys to appropriately train and 
validate remote sensing models.  

On the whole, the case studies submitted by the FAO and the World Bank reveal the difficulties 
in collecting georeferenced in situ data in lower-income contexts and the need to provide 
technical assistance to country partners towards the adoption of recommended approaches to 
in situ data collection as to be able to inform downstream EO applications. Relatedly, the on-
going research supported by the 50x2030 Initiative (www.50x2030.org) will culminate in 
guidelines for large-scale household and farm surveys regarding the collection of 
georeferenced survey data for training and validating EO applications for high-resolution 
estimates of crop areas and crop yields in smallholder farming systems. These guidelines 
should then be promoted widely by international organizations and development partners, 
countries should be supported in implementation. 

Furthermore, it is difficult to determine exactly how much in situ data is needed before starting 
a project, and future research is encouraged to help fill knowledge gaps in this regard. It is 
possible that techniques like transfer learning and data augmentation can reduce the amount 
of data needed, especially for image segmentation, which is being performed in the model 
implemented by Statistics Canada. However, the evidence base for this assertion needs to be 
strengthened. From DANE’s experience, according to the size of agricultural farms, it is 
necessary to modify the amount of samples to be collected for the different growth stages of 
the crop. Classifying crops of small–scale farms, is more complicated because they are 
especially difficult to locate and distinguish from other coverages, which demands an increase 
in the number of samples required.  

The case in DLR and QDES, it was essential to have a large number of field data spread 
across time and space. In this study about 10,000 data points were used to classify area of 
300,000 km2 over 30 years with two growing seasons. Where in contrast, World Bank studies 
found that classification performance almost always peaks before or at around 4,000 plots 
under the preferred geolocation strategies - corresponding to roughly less than 60 percent of 
the training data. As such, it is better to collect high-quality plot boundaries from 4,000 plots as 
opposed to corner points from 7,000 plots. 

Lesotho Case the land cover class nomenclature of LCDB 2015 required adaptation for the 
new LCDB 2020 methodology. Results are promising, but require in-depth analysis of 
discrepancies between 2015/2020 and zonal statistics to assess usability. The cloud 
infrastructure costs to produce a national land cover update map are negligible. This 
methodology could be deployed for other countries requiring a land cover update at 
manageable costs. Cloud infrastructure costs could be pooled across projects to further reduce 
costs. 

http://www.50x2030.org/
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From the Senegal case, worked by FAO, the poor quality of in situ data led to poor performance 
of the random forest classifier, despite the relative high number of records. The main issues 
encountered were, i) the overabundance of few crop classes, ii) the low quality of the 
georeferencing technique used during the national agricultural survey which introduced further 
bias. In contrast, the World Bank demonstrated in their sample of georeferenced points, that 
no plot observations should be excluded from their model for training based on a minimum plot 
area threshold. However, georeferencing plot centroids should be understood as a third-best 
strategy for remote sensing model training purposes. 

For the estimation of greenhouse production area as part of the Statistics Canada project, the 
shapefiles served in reducing the areas of attribute extraction from the vegetation analysis 
raster layer, and to gain area estimation within the greenhouses. In situ data created from 
survey data is used to validate the results and determine the legality of the model to perform 
for official surveys. 

While the quantity and quality of in situ data have a direct bearing on the accuracy of remotely 
sensed estimates, there is a continuing need to advance research to identify in situ data 
requirements for a range of EO applications across a diverse set of geographic contexts and 
farming systems.  

Standards for Accuracy of Classification 

DNR example ‘Coarse-grain & Pulse’ correctly in 79% of cases. The values for ‘Cotton’, 
‘Cereal’ and ‘Pulse’ were 91%, 84%, and 73%, respectively. Were predicted ‘Bare soil’ 
correctly in 72% of cases in summer, and 88% of cases in winter. The largest source of error 
was ‘Bare soil’ mistakenly predicted as ‘Other’. This error is due to the continuum of 
coexistence between bare soil and heavily grazed pastures, or bare soil and sparse crop 
residues. 

Further, DLR and QDES used a time-series model with flexible, robust parsimonious, 
parallelizable, and able to deal with irregular observations. The output of the time-series model 
was a set of metrics that summarized land-surface phenology. These metrics served as 
explanatory variables in a tiered, tree-based classification model. Prior to training the 
classification model, GEOBIA changed the scale of analysis from pixel-based to 
(approximately) field-based. 

To expand, the main sources of error in the maps from DLR and QDES were: (i) while 
sampling, incorrect allocation of a group, particularly ‘Bare soil’, which can exist as a continuum 
with other groups; and, (ii) while map-making, detection of a green flush, leading to the 
incorrect prediction of an actively growing crop. Green flushes encompass a variety of difficult-
to-characterize fluctuations, such as the growth of annual and perennial pastures, the growth 
of grain-sorghum versus forage-sorghum, or failed crops. For these reasons, were accepted 
some over-estimation compared with the official statistics for the ‘Coarse-grain & Pulse’ and 
‘Cereal’ groups. 

In the case study submitted by FAO on Lesotho, results from the validation showed an overall 
accuracy of 77% which is per se not very satisfactory. The most likely factors for such low 
accuracy are mainly two: 1) classification errors present in the original land cover layer 2015. 
Such map in fact was not subjected to a rigorous validation process (e.g. confusion matrix). 
Being such map used to extract representative (pseudo in-situ data) of the spectral profile for 
each land cover class, this can introduce noise and confusion into the Random Forest classifier 
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and result into errors of commission (and omission). 2) the other reason for a low overall 
accuracy is the actual lack of an in situ-data set that has been collected in the field following 
an optimized field survey design and implemented along with best practices in geo-referencing.  

In the case study submitted by FAO on Senegal, there was a recommendation to improve the 
design of the National Agricultural Survey in order to ensure higher sampling (in proportion) 
for minor crop classes (whose with few occurrences in the field), and by implementing proper 
georeferencing of crop parcel boundaries (ideally) or of the parcel centroid (if resources are 
limited). 

The case study submitted by the World Bank6 reveals that a random forest machine learning 
model trained on the in situ data with plot outlines can classify pixels with maize cultivation 
with up to 75 percent accuracy in Malawi and Ethiopia - though the predictive accuracy varies 
with the survey data collection method and the number of observations available for model 
training. And the in silico experiments conducted to quantify the effect of satellite data sources 
on crop type classification performance suggest that optical features alone can provide 
sufficient signal to maximize prediction quality. Only small differences were observed between 
models built only with optical features and those using optical and SAR features. In the case 
of maize area mapping in Malawi, the potential benefits offered by SAR - providing signals 
unaffected by cloud cover - were offset by additional noise introduced with SAR imagery. 

On the whole, there is a pressing need to converge on accuracy standards and a shared 
approach to validation and computation of a common suite of accuracy metrics across the EO 
applications. 

Data Presentation, Access and Cost 

The FAO Senegal Sen2-Agri system is able to generate national crop maps which can be used 
to generate crop statistics. The system was finally delivered in 2016/2017 and is still evolving. 
However, while NSO’s are under struggle due to limited reporting capacity, the uptake of the 
Sen2-Agri is still limited, and it has never been used to better assist NSOs addressing the ever 
increasing data demand related to agriculture and the SDG reporting. 

In DANE’s case, due to COVID-19 mobility restrictions, RPAS datasets captured by other 
public entities were used as input to classify crops in different spatial and temporal frameworks 
to those initially proposed. 

For Statistics Canada, broad coverage is required, in order to provide coverage across a 
majority of agricultural regions and provide annual results of greenhouse births and deaths 
across the country. In addition, for the greenhouse production model, the changes needed to 
be met are those which rely on results to which the production model can be verified against 
for understanding the validity of the production model using vegetation indices. The model, 
once verified, should later be produced with an automated model for semi-annual production 
area updates several times a year for each greenhouse industry region of interest in Canada.  

To expand the Statistics Canada model across more agricultural greenhouse operations in 
Canada, the agency strives to further expand the in situ data collected, so that more 
characteristics of greenhouses are in the training data for the machine learning model. The 
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intention of this method was to no longer require in situ data for further greenhouse surveys, 
where imagery is provided to the model on an annual basis and a resultant geographic file of 
the greenhouses is provided as the models output. 

The lack of geographical coverage with the highest spatial resolution of EO data is a common 
hindrance in Colombia and Canada cases.  Nevertheless, the spatial resolution of free satellite 
imagery as Sentinel-2 and its spectral one with four bands at 10-m resolution (Red, Green, 
Blue, Near-Infrared) allowed vegetation analysis to occur in both cases. 

In the case of DLR and QDES, it was critical to have well calibrated and atmospherically and 
geometrically corrected data as analysis ready data, so that data form different satellites can 
be beneficially merged. 

Related to the sustainability of the system (Sen2Agri) as an operational tool, in relation to the 
costs associated with the cloud computing and storage, which takes place on an AWS 
infrastructure, the total running costs incurred was approximately 7K USD for one agricultural 
season. After optimization of the use of the Sen2Agri, and optimal deployment the technical 
team could assess that such costs could be reduced by as much as 3K USD per agricultural 
season. In this context a funding or sponsorship mechanism should be put in place so that 
cloud services from AWS or from other cloud service provider could be ensured in the long 
term to the beneficiary country. In this context FAO, in Senegal case, has successfully applied 
and obtained sponsorship from the GEO-AWS initiative in order to cover the annual costs in 
2022. 

Common Lesson Learnt and Conclusion 

The open data frame of the imagery gives more flexibility in the acquisition and use of the data, 
and allows for a low-cost solution to survey replacements strategies. Also the use of free 
satellite processing platforms with Google Earth Engine enables public entities to generate 
geospatial information for supporting statistical information production and dissemination.  

In addition,  using publicly-available satellite imagery, most notably Sentinel-2 imagery, brings 
about more flexibility in the acquisition and use of the data, and allows for a cost-effective 
approach to analysis.  

To conclude, working with earth observation data and in situ data in agricultural models, 
changes are often applied for reasons based on the quality of data collected, the software 
requirements, budgeted resources or unexpected classification results as seen in most 
contributors. Further, COVID-19 which had affected some of the contributors, mainly FAO, 
DANE and Statistics Canada, had forced further changes to data collection strategies or 
solution architecture. Therefore, as outlined, it is important to expect changes in classification 
models and use of agricultural in situ data and earth observation data and to remain flexible in 
resources and strategies.  
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Terminology 
 

Ag-Zero 

Like other data users, farmers want timely, accurate and detailed data, while completing the 
least number of traditional surveys. That is why in April 2019, Statistics Canada set a goal to 
move beyond a survey-first approach by replacing survey data with data from administrative 
sources. 

This project, dubbed AgZero, is using alternative data sources and advanced technologies, 
such as Earth Observation data and machine learning, to reduce the response burden on 
farmers to as close to zero as possible by 2026. Through this process, Statistics Canada will 
continue to provide the same high-quality information, while applying the same rigorous privacy 
and confidentiality standards that Canadians expect and deserve. 

By 2026, farmers will spend less time answering survey questions. 

(https://www.statcan.gc.ca/en/trust/modernization/agzero)  

Analysis-Ready Data (ARD) 
ARD are pre-packaged and pre-processed bundles of imagery data products that make the 
archive more accessible and easier to analyze, and reduce the amount of time users spend 
on data processing for time-series analysis. ARD are tiled, georegistered, top of atmosphere, 
and atmospherically corrected products defined in a common projection for immediate use in 
monitoring and assessing landscape change (https://www.usgs.gov/faqs/what-are-us-landsat-
analysis-ready-data-ard) 

API 
Application programming interfaces, or APIs, simplify software development and innovation by 
enabling applications to exchange data and functionality easily and securely. 
Most application programming interfaces are web APIs that expose an application's data and 
functionality over the internet (https://www.ibm.com/topics/api) 

Azure Microsoft Cloud 
The Azure cloud platform is more than 200 Microsoft products and cloud services. Build, run 
and manage applications across multiple clouds or on-premises. 
https://azure.microsoft.com/en-ca/overview/what-is-azure  

BG 
Bare ground lacks vegetation and significant re-growth for at least three years. 
https://earthobservatory.nasa.gov/images/91025/the-global-spread-of-bare-ground 

Bottom-Of-Atmosphere (BOA) 

The Bottom Of Atmosphere (BOA) reflectance, also known as the surface reflectance, i.e., 
satellite derived Top Of Atmosphere (TOA) reflectance corrected for the scattering and 
absorbing effects of atmospheric gases and aerosols, is widely used to monitor the land 
surface reliably and generate the greater majority of global land products(J. Chen, Y. Li, Q. 
Ma, X. Shen, A. Zhao and J. Li, "Preliminary Evaluation of Sentinel-2 Bottom of Atmosphere 
Reflectance Using the 6Sv Code in Beijing Area," IGARSS 2018 - 2018 IEEE International 

https://www.statcan.gc.ca/en/trust/modernization/agzero
https://azure.microsoft.com/en-ca/overview/what-is-azure
https://earthobservatory.nasa.gov/images/91025/the-global-spread-of-bare-ground
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Geoscience and Remote Sensing Symposium, 2018, pp. 7760-7763, doi: 
10.1109/IGARSS.2018.8517598.) 

Centre d'Etudes Spatiales de la BIOsphère (CESBIO) 

CESBIO is a joint research laboratory, and part of the Midi Pyrénées Observatory. They also 
contribute to the development and promotion of Earth Observation by participating in the 
definition, implementation and scientific exploitation of space missions. 

(https://www.cesbio.cnrs.fr/homepage/) 

Computer-assisted personal interviewing (CAPI) 
A new monitoring program of household survey interviews conducted by Statistics Canada 
field interviewershttps://www.statcan.gc.ca/en/about/pia/capi 

Confusion matrix 
A confusion matrix is a table that is often used to describe the performance of a classification 
model (or "classifier") on a set of test data for which the true values are known. 

(https://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/) 

DEM SRTM 
Global digital elevation model (DEM) from the Shuttle Radar Topography Mission (SRTM) with 
a resolution of 1 arc-second. https://www.usgs.gov/centers/eros/science/usgs-eros-archive-
digital-elevation-shuttle-radar-topography-mission-srtm-1 

DenseNet 
In machine learning, the Dense Convolutional Network (DenseNet) is a convolutional network 
that is substantially deeper, more accurate, and efficient to train. 

(https://github.com/liuzhuang13/DenseNet) 

Dual polarization 
Dual-polarization system, or “dual-pol,” might transmit in one polarization but receive in two, 
resulting in either HH and HV or VH and VV imagery - in this case, VV and VH. Dual 
polarization provides additional detail about surface features through the different and 
complementary echoes. 

Earth Observations (EO) 
Earth observation is the gathering of information about planet Earth’s physical, chemical and 
biological systems via remote sensing technologies, usually involving satellites carrying 
imaging devices. Earth observation is used to monitor and assess the status of, and changes 
in, the natural and manmade environment.(https://ec.europa.eu/jrc/en/research-topic/earth-
observation)  

Ethiopia Socioeconomic Survey (ESS) 
The Ethiopia Socioeconomic Survey (ESS) is a collaborative project of the Central Statistics 
Agency, Ethiopia (CSA) and the World Bank. ESS objectives include development of an 
innovative model for collecting agricultural data, interinstitutional collaboration, and 
comprehensive analysis of welfare indicators and socioeconomic characteristics. 

(https://microdata.worldbank.org/index.php/catalog/3823)  

https://www.cesbio.cnrs.fr/homepage/
https://www.statcan.gc.ca/en/about/pia/capi
https://www.dataschool.io/simple-guide-to-confusion-matrix-terminology/
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-1
https://www.usgs.gov/centers/eros/science/usgs-eros-archive-digital-elevation-shuttle-radar-topography-mission-srtm-1
https://github.com/liuzhuang13/DenseNet
https://ec.europa.eu/jrc/en/research-topic/earth-observation
https://ec.europa.eu/jrc/en/research-topic/earth-observation
https://microdata.worldbank.org/index.php/catalog/3823
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European Space Agency (ESA) 
The European Space Agency (ESA) is Europe’s gateway to space. Its mission is to shape the 
development of Europe’s space capability and ensure that investment in space continues to 
deliver benefits to the citizens of Europe and the world. (https://www.esa.int/) 

EVI 
Enhanced Vegetation Index (EVI) is similar to Normalized Difference Vegetation Index (NDVI) 
and can be used to quantify vegetation greenness. However, EVI corrects for some 
atmospheric conditions and canopy background noise and is more sensitive in areas with 
dense vegetation. (https://www.usgs.gov/landsat-missions/landsat-enhanced-vegetation-
index)  

FAO 
The Food and Agriculture Organization (FAO) is a specialized agency of the United Nations 
that leads international efforts to defeat hunger. (https://www.fao.org/home/en)  

F-Score 

The F score is a value on the F distribution. Various statistical tests generate an F score. The 
score can be used to determine whether the test is statistically significant. 

(https://www.ibm.com/docs/en/cognos-analytics/11.1.0?topic=terms-f-value)  

Gaussian texture filter 
The Gaussian filter is the most common filter and suits the widest variety of applications. It is 
based on a Gaussian (or “bell curve”) shaped moving average that runs through the data to 
create a waviness profile or surface.(https://digitalmetrology.com/tutorials/areal-surface-
texture-analysis/)  

Geographic Information System 
A spatial system that creates, manages, analyzes, and maps all types of data 

(https://www.esri.com/en-us/what-is-gis/overview)  

Geographic object analysis (GEOBIA) 
is a sub- discipline of Geographic Information Science (GIScience) devoted to developing 
automated methods to partition remote sensing imagery into meaningful image-objects, and 
assessing their characteristics through spatial, spectral and temporal scales, so as to generate 
new geographic information in GIS-ready format.  

Georeference 
A georeferenced digital map or image has been tied to a known Earth coordinate system, so 
users can determine where every point on the map or aerial photo is located on the Earth's 
surface. (https://www.usgs.gov/faqs/what-does-georeferenced-mean) 

GLCM Correlation 
A gray-level co-occurence matrix correlation is a way of extracting second-order statistical 
texture features. 

( Mohanaiah, P., Sathyanarayana, P., & GuruKumar, L. (2013). Image Texture Feature 
Extraction Using GLCM Approach. International Journal of Scientific and Research 
Publications, 3(5), 1–5.) 

https://www.esa.int/
https://www.usgs.gov/landsat-missions/landsat-enhanced-vegetation-index
https://www.usgs.gov/landsat-missions/landsat-enhanced-vegetation-index
https://www.fao.org/home/en
https://www.ibm.com/docs/en/cognos-analytics/11.1.0?topic=terms-f-value
https://digitalmetrology.com/tutorials/areal-surface-texture-analysis/
https://digitalmetrology.com/tutorials/areal-surface-texture-analysis/
https://www.esri.com/en-us/what-is-gis/overview
https://www.usgs.gov/faqs/what-does-georeferenced-mean
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Google Cloud Stack 
Google Cloud Platform, offered by Google, is a suite of cloud computing services that runs on 
the same infrastructure that Google uses internally for its end-user products.  

(https://cloud.google.com/)  

Google Cloud Storage 
Google Cloud Storage is a RESTful online file storage web service for storing and accessing 
data on Google Cloud Platform infrastructure (https://cloud.google.com/)  

Google Compute 
Secure and customizable compute service that lets you create and run virtual machines on 
Google’s infrastructure. 

https://cloud.google.com/computer  

Google Earth Engine (GEE) 
Google Earth Engine combines a multi-petabyte catalog of satellite imagery and geospatial 
datasets with planetary-scale analysis capabilities. 

https://earthengine.google.com/  

GPS 
The Global Positioning System (GPS) is a satellite-based radio-navigation system which can 
provide precise time and position information. 

https://nrc.canada.ca/en/certifications-evaluations-standards/canadas-official-time/global-
positioning-data-gps  

Growing degree days (GDD) 
Growing Degree Days (GDD) are used to estimate the growth and development of plants and 
insects during the growing season. The basic concept is that development will only occur if the 
temperature exceeds some minimum development threshold, or base temperature (TBASE). 
The base temperatures are determined experimentally and are different for each organism. 

https://mrcc.purdue.edu/gismaps/info/gddinfo.htm  

In-situ data 
Data collected adjacent to the measuring instrument, like temperature readings by a 
thermometer. 

https://insitu.copernicus.eu/state-of-play/understanding-in-situ-data  

Integrated Catchment Management programme (ICM) 

Tools for managing water resources and land use on a catchment scale. 

https://www.giz.de/en/worldwide/92617.htm  

Integrated Household Survey (IHS5) 
The Integrated Household Survey (IHS) is one of the primary instruments implemented by the 
Government of Malawi through the National Statistical Office (NSO; 

https://cloud.google.com/
https://cloud.google.com/
https://cloud.google.com/computer
https://earthengine.google.com/
https://nrc.canada.ca/en/certifications-evaluations-standards/canadas-official-time/global-positioning-data-gps
https://nrc.canada.ca/en/certifications-evaluations-standards/canadas-official-time/global-positioning-data-gps
https://mrcc.purdue.edu/gismaps/info/gddinfo.htm
https://insitu.copernicus.eu/state-of-play/understanding-in-situ-data
https://www.giz.de/en/worldwide/92617.htm
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http://www.nsomalawi.mw/) to monitor and evaluate the changing conditions of Malawian 
households. 

https://microdata.worldbank.org/index.php/catalog/3818  

Interferometric Wide swath mode (IW) 
The Interferometric Wide (IW) swath mode is the main acquisition mode over land and satisfies 
the majority of service requirements. It acquires data with a 250 km swath at 5 m by 20 m 
spatial resolution (single look).  

https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-1-sar/acquisition-
modes/interferometric-wide-swath 

Kappa statistics 
The kappa statistic is frequently used to test interrater reliability. 

McHugh M. L. (2012). Interrater reliability: the kappa statistic. Biochemia medica, 22(3), 276–
282. 

K-means clusters 
An analytical method of identifying clusters within data. 

Na, S., Xumin, L., & Yong, G. (2010, April). Research on k-means clustering algorithm: An 
improved k-means clustering algorithm. In 2010 Third International Symposium on intelligent 
information technology and security informatics (pp. 63-67). Ieee. 

LightGBM 
LightGBM, short for Light Gradient Boosting Machine, is a free and open source distributed 
gradient boosting framework for machine learning originally developed by Microsoft. 

https://lightgbm.readthedocs.io/en/latest/  

Machine Learning (ML) 
Machine learning is a branch of artificial intelligence (AI) and computer science which focuses 
on the use of data and algorithms to imitate the way that humans learn, gradually improving 
its accuracy. 

https://www.ibm.com/cloud/learn/machine-learning  

MCC (Matthews Correlation Coefficient) 
A statistical coefficient that evaluates binary classifications. 

Chicco, D., Tötsch, N., & Jurman, G. (2021). The Matthews correlation coefficient (MCC) is 
more reliable than balanced accuracy, bookmaker informedness, and markedness in two-class 
confusion matrix evaluation. BioData mining, 14(1), 13. https://doi.org/10.1186/s13040-021-
00244-z 

Minimum mapping unit (MMU) 
The MMU (minimum mapping unit) is the specific size of the smallest feature that is being 
reliably mapped in your map. 

https://www.esri.com/about/newsroom/insider/a-question-of-scale-resolution-and-mmu/  

http://www.nsomalawi.mw/
https://microdata.worldbank.org/index.php/catalog/3818
https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes/interferometric-wide-swath
https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-1-sar/acquisition-modes/interferometric-wide-swath
https://lightgbm.readthedocs.io/en/latest/
https://www.ibm.com/cloud/learn/what-is-artificial-intelligence
https://www.ibm.com/cloud/learn/machine-learning
https://www.esri.com/about/newsroom/insider/a-question-of-scale-resolution-and-mmu/
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Ministry of Agriculture and Food Security (MAFS) 
Lesotho Ministry of Agriculture and Food Security empowers our clientele to make informed 
decisions and access necessary resources for sustainable agricultural production and food 
availability. 

https://www.gov.ls/ministry-of-agriculture-and-food-security/  

MOD13Q1 
The Terra Moderate Resolution Imaging Spectroradiometer (MODIS) Vegetation Indices 
(MOD13Q1) Version 6 data are generated every 16 days at 250 meter (m) spatial resolution 
as a Level 3 product. 

https://lpdaac.usgs.gov/products/mod13q1v006/  

MODIS 
MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard 
the Terra (originally known as EOS AM-1) and Aqua (originally known as EOS PM-1) 
satellites. 

https://modis.gsfc.nasa.gov/about/  

Multisensor Atmospheric Correction and Cloud Screening (MACCS) 
MACCS (Multi-sensor Atmospheric Correction and Cloud Screening) is a level 2A processor, 
which detects the clouds and their shadows, and estimates aerosol optical thickness (AOT), 
water vapour and corrects for the atmospheric effects. 

https://labo.obs-mip.fr/multitemp/maccs-how-it-works/  

National Administrative Department of Statistics (DANE) 
The National Administrative Department of Statistics, commonly referred to as DANE, is the 
Colombian Administrative Department responsible for the planning, compilation, analysis and 
dissemination of the official statistics of Colombia (www.dane.gov.co)  

National Statistics Offices (NSO’s) 
The United Nations Statistics Division, in its mission to promote the development of national 
statistical systems, has developed a central repository of country profiles of statistical systems. 

https://unstats.un.org/home/nso_sites/  

NPV 

Non-photosynthetic vegetation, such as senescent or dead vegetation. 

https://www.l3harrisgeospatial.com/docs/nonphotosyntheticvegetation.html  

Object classification 
Classifies groups of pixels into objects (i.e. vectors with size and geometry) 

https://gisgeography.com/image-classification-techniques-remote-sensing/  

Orthophomosaics 

https://www.gov.ls/ministry-of-agriculture-and-food-security/
https://lpdaac.usgs.gov/products/mod13q1v006/
http://terra.nasa.gov/
http://aqua.nasa.gov/
https://modis.gsfc.nasa.gov/about/
https://labo.obs-mip.fr/multitemp/maccs-how-it-works/
http://www.dane.gov.co/
https://unstats.un.org/home/nso_sites/
https://www.l3harrisgeospatial.com/docs/nonphotosyntheticvegetation.html
https://gisgeography.com/image-classification-techniques-remote-sensing/
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An orthophoto is a raster image of surface features in their geometrically corrected position 
and in uniform scale. Multiple orthophotos can be joined together seamlessly to create an 
orthophoto mosaic. 

https://www2.gov.bc.ca/gov/content/data/geographic-data-services/digital-
imagery/orthophotos/orthophoto-mosaics  

Permanent crops 
Permanent crops are crops that, after each harvest, do not have to be planted for several years 

https://stats.oecd.org/glossary  

Pixel classification 
The process of assigning land cover classes to pixels. For example, classes include water, 
urban, forest, agriculture, and grassland. 

https://gisgeography.com/image-classification-techniques-remote-sensing/  

Python 
Python is an interpreted high-level general-purpose programming language. 

https://www.python.org/  

QGIS 
QGIS is a free and open-source cross-platform desktop geographic information system 
application that supports viewing, editing, and analysis of geospatial data. 

https://www.qgis.org/  

R  
R is a programming language and free software environment for statistical computing and 
graphics. 

https://www.r-project.org/  

Random forest 
Random forests or random decision forests are an ensemble learning method for classification, 
regression and other tasks that operates by constructing a multitude of decision trees at 
training time. 

Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32. 

RapidEye imagery 
RapidEye is a constellation of five identical satellites owned and operated by Planet, and 
launched on 29 August 2008. The constellation was deactivated on March 31st, 2020 but 
Planet still offers data archive. 

https://earth.esa.int/eogateway/missions/rapideye  

Regression block-kriging’ 
Regression kriging on an area larger than single pixels. 

https://www.aspexit.com/spatial-data-interpolation-tin-idw-kriging-block-kriging-co-kriging-
what-are-the-differences  

https://www2.gov.bc.ca/gov/content/data/geographic-data-services/digital-imagery/orthophotos/orthophoto-mosaics
https://www2.gov.bc.ca/gov/content/data/geographic-data-services/digital-imagery/orthophotos/orthophoto-mosaics
https://stats.oecd.org/glossary
https://gisgeography.com/image-classification-techniques-remote-sensing/
https://www.python.org/
https://www.qgis.org/
https://www.r-project.org/
https://earth.esa.int/eogateway/missions/rapideye
https://www.aspexit.com/spatial-data-interpolation-tin-idw-kriging-block-kriging-co-kriging-what-are-the-differences
https://www.aspexit.com/spatial-data-interpolation-tin-idw-kriging-block-kriging-co-kriging-what-are-the-differences
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Remotely-piloted Aircraft System (RPAS) 
Remotely piloted aircraft system or RPAS means a set of configurable elements consisting of 
a remotely piloted aircraft, its control station, the command and control links and any other 
system elements required during flight operation. 

https://www.gazette.gc.ca/rp-pr/p2/2019/2019-01-09/html/sor-dors11-eng.html  

ResNet 
Residual Network (ResNet) are networks where adding layers makes them strictly more 
expressive rather than just different. 

https://d2l.ai/chapter_convolutional-modern/resnet.html#function-classes  

Sen2Agri toolbox 
The Sen2-Agri system is an operational standalone processing system generating agricultural 
products from Sentinel-2 (A&B) and Landsat 8 time series along the growing season. 

http://www.esa-sen2agri.org/  

Sen2Cor toolbox 
Sen2Cor is a processor for Sentinel-2 Level 2A product generation and formatting; it performs 
the atmospheric-, terrain and cirrus correction of Top-Of- Atmosphere Level 1C input data. 

https://step.esa.int/main/snap-supported-plugins/sen2cor/  

Sentinel-1 (S1) 
The Sentinel-1 mission comprises a constellation of two polar-orbiting satellites, operating day 
and night performing C-band synthetic aperture radar imaging, enabling them to acquire 
imagery regardless of the weather. 

https://sentinel.esa.int/web/sentinel/missions/sentinel-1 

Sentinel-2 
The Copernicus Sentinel-2 mission comprises a constellation of two polar-orbiting satellites 
placed in the same sun-synchronous orbit, phased at 180° to each other. It aims at monitoring 
variability in land surface conditions, and its wide swath width (290 km) and high revisit time 
(10 days at the equator with one satellite, and 5 days with 2 satellites under cloud-free 
conditions which results in 2-3 days at mid-latitudes) will support monitoring of Earth's surface 
changes. 

https://sentinel.esa.int/web/sentinel/missions/sentinel-2 

Sentinelhub 
Sentinel Hub is an engine for processing of petabytes of satellite data. It is opening the doors 
for machine learning and helping hundreds of application developers worldwide. It makes 
Sentinel, Landsat, and other Earth observation imagery easily accessible for browsing, 
visualization and analysis.  

https://www.sentinel-hub.com/about/ 

Shapefiles 
A shapefile is an Esri vector data storage format for storing the location, shape, and attributes 
of geographic features. It is stored as a set of related files and contains one feature class. 

https://www.gazette.gc.ca/rp-pr/p2/2019/2019-01-09/html/sor-dors11-eng.html
https://d2l.ai/chapter_convolutional-modern/resnet.html#function-classes
http://www.esa-sen2agri.org/
https://step.esa.int/main/snap-supported-plugins/sen2cor/
https://sentinel.esa.int/web/sentinel/missions/sentinel-1
https://sentinel.esa.int/web/sentinel/missions/sentinel-2
https://www.sentinel-hub.com/about/


87 
 

https://doc.arcgis.com/en/arcgis-online/reference/shapefiles.htm  

STATCAN 
Statistics Canada (STATCAN), formed in 1971, is the agency of the Government of Canada 
commissioned with producing statistics to help better understand Canada, its population, 
resources, economy, society, and culture.  

https://www.statcan.gc.ca/ 

Supervised classification 
In supervised classification, you select training samples and classify your image based on your 
chosen samples. Your training samples are key because they will determine which class each 
pixel inherits in your overall image. 

https://gisgeography.com/supervised-unsupervised-classification-arcgis/ 

Surface Reflectance (SR) 
Surface reflectance (ρ) is defined as the fraction of incoming solar radiation that is reflected 
from Earth’s surface for specific incident or viewing cases (directional, conical, and 
hemispherical cases). 

Liang, S. (2017). 5.07.2.1 Definition of Reflectance Quantities, Comprehensive Remote 
Sensing. Elsevier 

Synthetic Aperture Radar (SAR) 
SAR is a type of active data collection where a sensor produces its own energy and then 
records the amount of that energy reflected back after interacting with the Earth. While optical 
imagery is similar to interpreting a photograph, SAR data require a different way of thinking in 
that the signal is instead responsive to surface characteristics like structure and moisture. 

https://earthdata.nasa.gov/learn/backgrounders/what-is-sar 

Task Team (TT) 
Task Team (TT) of the UN Committee of Experts on Big Data and Data Science for Official 
Statistics has been established in 2014 under the coordination of the UNDESA, with the scope 
of providing strategic vision, direction, and development of a global work plan on utilising 
satellite imagery and geo-spatial data for official statistics and indicators for post-2015 
development goals. 

Top of Atmosphere (TOA) 
Top of Atmosphere (TOA) Reflectance is a unitless measurement which provides the ratio of 
radiation reflected to the incident solar radiation on a given surface.  

https://www.earthstartsbeating.com/2017/04/27/top-of-atmosphere-reflectance-on-sentinel-3/ 

Training data 
The chosen data sample used for training supervised classification methods. 

https://gisgeography.com/supervised-unsupervised-classification-arcgis/ 

UN Committee of Experts on Big Data and Data Science for Official Statistics 
The Statistical Commission agreed at its 45th session to create the UN Committee of Experts 
on Big Data and Data Science for Official Statistics (UN-CEBD) to further investigate the 

https://doc.arcgis.com/en/arcgis-online/reference/shapefiles.htm
https://www.statcan.gc.ca/
https://gisgeography.com/supervised-unsupervised-classification-arcgis/
https://earthdata.nasa.gov/learn/backgrounders/what-is-sar
https://www.earthstartsbeating.com/2017/04/27/top-of-atmosphere-reflectance-on-sentinel-3/
https://gisgeography.com/supervised-unsupervised-classification-arcgis/
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benefits and challenges of Big Data, including the potential for monitoring and reporting on the 
sustainable development goals.  

https://unstats.un.org/bigdata/about/ 

UN General Assembly 
The UN General Assembly (UNGA) is the main policy-making organ of the Organization. 
Comprising all Member States, it provides a unique forum for multilateral discussion of the full 
spectrum of international issues covered by the Charter of the United Nations. Each of the 193 
Member States of the United Nations has an equal vote. 

General Assembly of the United Nations 

UN Global Platform 
The UN Global Platform has 4 physical hubs all over the world working together to educate, 
collaborate and develop new technologies to work with new Big Data sources and 
methodologies. 

https://unstats.un.org/bigdata/un-global-platform.cshtml 

United Nations (UN) 
The United Nations is an international organization founded in 1945. Currently made up of 193 
Member States, the UN and its work are guided by the purposes and principles contained in 
its founding Charter. 

https://www.un.org/en/about-us 

Universal Transverse Mercator (UTM) 
UTM is the acronym for Universal Transverse Mercator, a plane coordinate grid system named 
for the map projection on which it is based (Transverse Mercator). The UTM system consists 
of 60 zones, each 6-degrees of longitude in width. The zones are numbered 1-60, beginning 
at 180-degrees longitude and increasing to the east. 

https://www.usgs.gov/faqs/what-does-term-utm-mean-utm-better-or-more-accurate-
latitudelongitude 

Web Map Tile Service (WMTS) 
A Web Map Tile Service (WMTS) provides access to cartographic maps of geo-referenced 
data, not direct access to the data itself.  

https://www.nrcan.gc.ca/earth-sciences/geomatics/canadas-spatial-data-infrastructure/web-
map-tile-service-wmts/8940 

World Bank Microdata Library 
The Microdata Library is a collection of datasets from the World Bank and other international, 
regional and national organizations 

https://microdata.worldbank.org/index.php/home 

World Reference System-2 (WRS-2) 
The Worldwide Reference System (WRS) is a global system that catalogs Landsat data by 
Path and Row numbers. Landsat satellites 1, 2 and 3 followed WRS-1, and Landsat satellites 
4,5,7,8, and 9 follow WRS-2. 

https://unstats.un.org/bigdata/about/
https://www.un.org/en/ga/
https://unstats.un.org/bigdata/un-global-platform.cshtml
https://www.un.org/en/about-us/member-states
https://www.un.org/en/our-work
https://www.un.org/en/about-us/un-charter
https://www.un.org/en/about-us
https://www.usgs.gov/faqs/what-does-term-utm-mean-utm-better-or-more-accurate-latitudelongitude
https://www.usgs.gov/faqs/what-does-term-utm-mean-utm-better-or-more-accurate-latitudelongitude
https://www.nrcan.gc.ca/earth-sciences/geomatics/canadas-spatial-data-infrastructure/web-map-tile-service-wmts/8940
https://www.nrcan.gc.ca/earth-sciences/geomatics/canadas-spatial-data-infrastructure/web-map-tile-service-wmts/8940
https://microdata.worldbank.org/index.php/home
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https://www.usgs.gov/faqs/what-worldwide-reference-system-wrs 

World Bank 

The World Bank is an international financial institution that provides loans and grants to the 
governments of low- and middle-income countries for the purpose of pursuing capital projects.  

https://www.worldbank.org/en/home 

  

https://www.usgs.gov/faqs/what-worldwide-reference-system-wrs
http://en.wikipedia.org/wiki/World_Bank
http://en.wikipedia.org/wiki/World_Bank
http://en.wikipedia.org/wiki/World_Bank
http://en.wikipedia.org/wiki/World_Bank
https://www.worldbank.org/en/home
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