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I. Motivation 
 

International development organizations, national statistics agencies and research institutions invest 

significant resources each year in the collection of household, health facility, farm and firm surveys. The 

collection of geographical locations of dwellings, agricultural parcels and plots, facilities and other 

locations directly associated with surveyed communities and respondents is now common practice. 

Exact coordinates could be used to identify individual respondents and are therefore typically removed 

from public-use datasets. Recognizing the added value of GPS1 data, efforts have been made to 

disseminate anonymized spatial data that meets a spectrum of research needs while maintaining 

confidentiality: these include dissemination of anonymized coordinates, production and dissemination 

of relevant spatial covariates and production of spatial variables by request, among others.  

While the dissemination strategies listed above have thus far provided a satisfactory solution, several 

issues are driving a renewed interest in the topic of spatial anonymization, fueled by the potentially 

huge analytical gains of greater access. First, the concept of data privacy and obligation of data 

providers to safeguard personal data has come into greater focus. The EU General Data Protection 

Regulation (GDPR) includes location data in its definition of “personal data”, holding collectors of such 

data to high standards in data protection and security. At the same time, there are numerous examples 

of unintentional but consequential data exposure. Such examples are made increasingly likely because 

of the advancement in technologies, expansion of publicly available data and satellite imagery, as well as 

open source tools and cloud computing that facilitate integration of data from many different sources. 

Lastly, this rich data landscape and analytical applications in turn spur greater demand for access to 

more precise location information for valuable cutting-edge research applications.  

In response to this changing context a review of existing protocols is warranted. Drawing on more than a 

decade of experience by the teams of the USAID funded Demographic and Health Surveys Program (DHS 

Program) and the Living Standards Measurement Study - Integrated Surveys on Agriculture (LSMS-ISA) 

program of the World Bank, this report describes current spatial anonymization protocols and 

alternatives under consideration, presents some methods for assessing spatial disclosure risk and offers 

a set of recommended best practices. Figure 1 below summarizes issues covered in the report; blue 

boxes contain topics covered in detail, light blue indicates minimal coverage and orange boxes highlight 

important areas for future work. 

 
1 Global Positioning System (GPS) is used here as the more familiar term for generic Global Navigation Satellite 
System (GNSS) 



 

 

Figure 1 Spatial anonymization topics and coverage in the report 

 

II. Review of literature 
The proliferation of free and open source high spatial resolution data has led to a rapid increase in 

detailed publicly available datasets in the past few decades (Wegmann, Leutner & Dech 2016). At the 

same time, interest in local data for local analyses and decision-making has heightened demand on 

society to provide detailed geographic and even individual level data (Samarati and Sweeney 1998; 

Pickle et al. 2006; Mennis and Guo 2009, United Nations General Assembly 2015). The benefits of 

integrating high spatial resolution data from remote sensing or mobile data with survey data have been 

demonstrated by many researchers; gaining new insights into poverty (e.g. Jean et al. 2016, Steele et al. 

2017), health outcomes from environmental changes (Brown et al. 2014), HIV elimination strategies 

(Coburn et al. 2017) and health (Richardson et al. 2013, Buckee et al. 2013). 

Although the opportunities of using spatially referenced microdata are well demonstrated, assessment 

of the magnitude of spatial risk of disclosure, or positive identification of place, is challenging (Duncan 

and Lambert 1989). Richardson et al. (2015) discuss several legal and ethical challenges, as well as 

weaknesses in standards and practices. While standards exist for non-spatial microdata (Dupriez and 

Boyko 2010), the guidance does not extend to the spatial domain. In this context data providers have 



 

 

used a variety of methods to anonymize location information, to partially address these challenges and 

access the untapped potential of spatially referenced microdata. 

Anonymization techniques include aggregation, obfuscation, and record swapping. Aggregating a 

sufficiently large enough number of individual records within a geographic area can address individual 

privacy concerns (Armstrong et al. 1999; Wieland et al. 2008). This can be applied using hierarchical 

locality variables, or directly to GPS coordinates. The DHS Program pioneered a geographic displacement 

method based on cluster-level aggregation and fixed range offset for public use datasets (Burgert et al. 

2013, Perez-Heydrich et al. 2013). This method uses different ranges for urban or rural strata, but it does 

not account for other local characteristics, such as population density. Variants include the donut 

method, which ensures both a minimum and maximum distance from the location (Hampton et al. 

2010). The Verified neighbor method by Richter (2017) “guarantees the specified level of privacy even 

where population density is uneven while minimizing spatial distortion and changes to the values of 

environmental variables assigned to subjects”. The location swapping method selects a location to 

replace the original from the universe of masked locations within a specified proximity that have similar 

spatial characteristics (Zhang et al. 2015). The Adaptive Areal Elimination method considers both the 

population density to ensure a minimum k-anonymity or an aggregation to the median centers of the 

areas (Kounadi and Leitner 2016). Cassa et al. (2006) developed a method based on a population-

density-based Gaussian spatial blurring. Horey et al. (2012) develop a Negative Quad Tree algorithm to 

reconstruct geographic density as an extension of the concept of the negative survey. Lastly, Wieland et 

al. (2008) developed a linear programming model to address the risk of identification. 

However, methods to mask the identification may introduce too much distortion, resulting in greatly 

diminished data utility for certain applications. A seminal work by Samarati and Sweeney (1998) defined 

k-anonymity when an individual cannot be identified from at least k-1 individuals in the individual level 

data.  This method is a popular approach to introduce minimum generalization, which attempts to 

provide maximum utility while achieving a k-anonymity of a given threshold (Samarati and Sweeney 

1998; Narayanan and Shmatikov 2006). The concept of using a target k-anonymity is compelling due to 

the release of high spatial resolution gridded population datasets in recent years, making an approach 

focusing on location parameters technically feasible on a wider scale. However, it is also important to 

understand the sources of gridded population data (Leyk et al. 2019) and examine uncertainty in the 

underlying population models (e.g. Hillson et al. 2014; Gaughan et al. 2019). Some constraints to 

standardizing this approach are that the ideal minimum size of k is still undefined, and it is a use-case-

specific decision. In addition, there are conditions under which the measure of k-anonymity may not be 

sufficiently private (Machanavajjhala et al. 2007) as the approach does not necessarily incorporate other 

relevant parameters besides location.  

Multiple studies have recently demonstrated that high dimensionality of data that is coupled with 

greater and quicker access to data presents a concern to previous practice of anonymization of the data 

(e.g. Hartter et al. 2013). For example, when the user can take advantage of the combination of 

variables such as gender, birth date, etc. it can be possible to reidentify individuals such as a list of 

voters (e.g. Sweeney 1997 in Samarati and Sweeney 1998).  In mobile data, de Montjoye et al. (2013), 

found that four spatial-temporal points were sufficient to uniquely identify individuals and concluded 

that even coarse spatial resolution data provide a risk. Brownstein et al. (2006) also documented how 

easily one can reverse the identification of patients from low resolution disease maps.  



 

 

In the following sections we grapple with this challenge, present new methods tested on multiple 

household survey datasets, and propose some tests for validation of spatial disclosure risk. In the final 

section we address other issues in the area of data provision.  

 

III. Geomasking Methods 
Spatial anonymization has dual objectives: to provide a geographic reference that enables users to 

integrate additional information from spatial datasets into a household survey and at the same time 

preserve confidentiality of place, preventing positive identification of the location of survey 

respondents. Geomasking, by altering or “blurring” coordinates, serves to conceal the actual location 

and, when mask parameters are revealed, also enables users to incorporate uncertainty into spatial 

variables derived using the anonymized locations. In this section we present a range of options for 

generating masked coordinates, starting with a method developed by the DHS Program and used in the 

dissemination of survey datasets since the early 2010s. Subsequently, the World Bank LSMS program 

applied this method as part of the dissemination of household survey data with masked coordinates. 

Referring to this as the “current” method we assess variations of and alternatives to the current method 

that may impart superior protections to respondents while preserving the data’s spatial integrity. 

The section below is based on an in-depth review of methods that has been undertaken by the DHS 

program. The review seeks to strike a balance between respondent privacy and data availability, with 

the intent to produce a revised protocol for dissemination. It is informed in part by consultations with 

DHS users (e.g. researchers, academic institutions), and other groups in the household survey sphere, 

which revealed the consensus that the existing geomasking method overly displaces urban sample 

points2, compromising analyses of DHS data. Additionally, these groups suggest that rural clusters may 

be inadequately displaced to properly protect survey respondents. The DHS Program explored several 

population-based alternatives to the current method. While these approaches hold the greatest promise 

for striking the correct balance between respondent confidentiality and preservation of spatial integrity, 

additional work will be necessary to identify population datasets that most accurately reflect the survey 

clusters visited. This, in turn, will allow for the best performance of the population displacement tools. 

A. Urban/Rural displacement 
Under the current method, clusters are displaced based upon their urban-rural status. Circular buffers 

are drawn surrounding each cluster, with a 2km radius for urban clusters and a 5km radius for rural 

clusters. Using an automated tool, clusters are displaced using a random angle and random distance 

within these buffers. An additional 1% of rural clusters are displaced up to 10km to further minimize 

disclosure risk (Burgert et al. 2013). This approach is also coded to ensure that these displacement 

buffers do not allow the point to be displaced out of the administrative level 2 area within which it is 

located. This method has been in use since the early 2010s and has become the standard for 

geomasking of household survey data. 

The current displacement method has been adopted widely since its implementation and extensively 

studied and accounted for by analysts using DHS GPS data. The main advantage of this method is the 

simplicity with which the displacement occurs (built on a buffer-based approach). However, it has also 

 
2 Sample sites are interchangeably referred to in this document as sites, enumeration areas (EAs) or clusters 



 

 

been surmised that the current displacement method overly displaces urban points – compromising the 

spatial relationships of these clusters. Conversely, rural points may be considered inadequately 

displaced from a confidentiality perspective. As it stands, the displacement of rural clusters does not 

necessarily make it more difficult to identify the original, undisplaced rural cluster, whereas a greater 

displacement distance may do so. This does mean, however, that the spatial relationships affecting rural 

clusters will be further compromised for analytic purposes. 

To address some of the limitations of the current method, two parameter modifications have been 

evaluated, both based on buffer ranges. In the first modification, the urban displacement is reduced 

from 2 km to 1 km, while rural clusters are displaced up to 10 km and 1% of rural clusters being 

displaced up to 30 km. A second, more extreme modification is aimed directly at addressing the 

excessive displacement in urban and inadequate displacement in rural areas. In this implementation, the 

urban range is reduced to 0.5 km, while rural clusters are displaced up to 20 km and 1% of rural clusters 

displaced up to 30 km. While it has not been tested, it is worth noting that the parameter of percentage 

of rural clusters subjected to the maximum displacement range might also be modified. For instance, an 

increase from 1% to 10% could serve to encourage users to recognize the upper bound, without 

significantly increasing the average offset. 

The main advantages of the parameter modifications are consistency with a well-documented and 

familiar method and use of existing tools. The modifications seek to address the two main concerns with 

the existing displacement: that urban points are overly displaced, compromising analysis, and rural 

clusters are inadequately displaced, potentially compromising respondent confidentiality. However, the 

negative impact of increased displacement on analysis of rural clusters remains unclear. 

B. Population equation 
An alternative to the existing displacement method, the population equation method is predicated upon 

the inverse relationship between the population at a given cluster and the distance the cluster must be 

displaced to adequately obfuscate it among its neighbors. As the population increases, the distance a 

cluster must be moved to reach a target population within which to hide decreases. A tool for 

implementation has been developed that measures the population at the undisplaced cluster, compares 

it to the threshold population value set by the user, and plots this value in the population equation to 

identify the maximum distance the cluster must move to achieve the threshold population. This 

maximum distance is used as the radius for a circular buffer drawn around the cluster, and the point is 

displaced at a random angle and random distance within the buffer. 

An advantage of the population equation method is that it is dynamic due to the use of underlying 

population raster data. This means that each cluster can be displaced uniquely based on the population 

at and around the undisplaced cluster, ultimately doing away with the need for static “urban” and 

“rural” classifications for each cluster. A dynamic method helps reduce the risk of users reverse-

engineering the displacement logic to identify undisplaced points. The method is also easy to modify by 

fitting custom equations that best capture the distribution of population between urban and rural 

clusters across surveys, and this information can in turn be used to “train” the model to increase its 

compatibility and applicability across surveys. However, this method will perform poorly if using an 

unoptimized equation to displace the GPS data. Further, it is reliant on the quality of the population 



 

 

raster dataset used in conjunction with the equation tool, another potential source of error, where the 

user must decide the best-fit.3  

C. Adaptive masking by population buffer 
The population buffer method also uses a threshold population value chosen by the user as the basis for 

the displacement of DHS cluster data. A 0.5 km buffer is drawn surrounding each cluster, and the 

population within the buffer is summed. If this value equals or exceeds the threshold, the cluster is 

displaced at a random angle and distance within the buffer. If the threshold is not equaled, the buffer is 

redrawn with a radius of 1 km, the population is re-estimated, and the process is repeated. This will 

continue with buffers of increasing radii until the threshold population is met. The sequential buffer 

generation may alternatively be implemented by a process of cumulative sum when adjacent pixels are 

sorted by distance to the cluster centerpoint, or seed location (adapted from R package gridsample). 

Once the cells required to meet the population threshold are identified, the maximum distance or final 

radius is the buffer within which the cluster is displaced using a random angle and distance. 

As with the population equation, this approach is population-based and dynamic, meaning each cluster 

is displaced uniquely based on the cluster’s population. However, the buffer tool also takes into account 

characteristics of the surrounding environment. An advantage of this is that it is built on the current 

method’s basic framework of buffers being built around the undisplaced cluster, allowing for easier 

interpretation by users. Urban/rural classifications are discarded as population count is used instead: 

the measured population at each undisplaced cluster is compared to a threshold population value (k). 

For these analyses, the threshold k was selected following consultation with sampling and data quality 

experts at The DHS Program to identify a rough estimate of k. Transparency of mask parameters is up to 

the data provider. Withholding the exact value of “k” in public metadata will increase the difficulty of 

reverse engineering the method. However, without explicit knowledge of the displacement range the 

end user cannot properly account for uncertainty in derived spatial variables. The method is also 

computationally more intense and must be optimized to ensure it can be used with larger datasets. 

Much like the population equation, the buffer tool is reliant on – and limited by – the quality of the 

population raster dataset used in tandem with the buffer tool itself. 

D. Summary of method results 
These methods have been preliminarily assessed by the DHS Program for their ability to adequately 

displace clusters a minimum distance while ensuring respondent confidentiality. Currently, the 

population buffer tool was ranked highest performing against the current method (the existing 

urban/rural displacement method). This tool, on average, decreased the distance urban clusters were 

displaced and ensured each cluster, urban or rural, was displaced within an area encompassing the 

threshold k (target population), conferring adequate obfuscation of the respondent cluster. 

The population equation tool performed worse than the buffer method, ranking last among the tested 

methods. The primary drawback of the tool was the unpredictable displacement that resulted from the 

tool’s equation. Urban clusters would often be displaced further than they are under the existing 

displacement parameters, and rural clusters often displaced far less. Although uncommon, there are 

also instances where an extreme outlying data point can strongly skew the displacement of clusters 

 
3 see Leyk et al. 2019 for a review of global and continental population gridded datasets 



 

 

within a dataset. However, this is likely due to the tool being trained with insufficient data, resulting in a 

sub-optimal equation that models the relationship between population and displacement distances.  

The other displacement methods tested, including the two modifications to the existing displacement 

methodology, demonstrated mixed results. Both modifications successfully reduced the distance urban 

clusters are displaced while increasing the displacement of rural clusters. However, the selected 

parameters resulted in excessive displacement of rural clusters, to the extent that the population (k) 

value within which rural clusters were hidden were far above the threshold required. A summary of the 

methods tested, their parameters, and the successes and limitations of each is found in Table 1, below. 

Table 1: Summary of DHS Displacement Method Testing 

Displacement 
Method 

Parameters Pros Cons 

Urban/Rural 
(Current) 

U: < 2 km 
R: < 5 km 
1% of R: < 10 
km 

• Operationalized by 
DHS and other groups 
for 11 years 

• Well documented & 
studied 

• Excessive urban cluster 
displacement 

• Insufficient displacement of 
some rural clusters 

Modification 1 

U: < 1 km 
R: < 10 km 
1% of R: < 30 
km 

• Successful reduction of 
urban displacement 

• Successful increase of 
rural displacement 

• Excessive rural cluster 
displacement 

• Excessive k values for rural 
clusters 

• Insufficient k values for urban 
clusters 

Modification 2 

U: < 0.5 km 
R: < 20 km 
1% of R: < 30 
km 

• Successful reduction of 

urban displacement 

• Successful increase of 
rural displacement 

• Insufficient k values for urban 
clusters 

• Excessive k values for rural 
clusters 

• Excessive rural cluster 
displacement 

Population 
Equation 

1.593 + 824.209 
* 1/x 

• Achieves k 
anonymization for 
both urban and rural 
clusters 

• Extremely excessive 
displacement for both urban 
and rural clusters 

• Greatly exceeds target k 
values for urban and rural 
clusters 

Population Buffer 

k = 5,000 • Achieves moderate 
reduction of 
displacement distance 
for urban clusters 

• Achieves moderate 
increase of 
displacement distance 
for rural clusters 

• Displacement for rural 
clusters in one test was 
reduced, rather than 
increased 

• Computationally intensive 

• Could not successfully 
process large datasets 

 

 



 

 

E. Other Considerations 
It is important to consider the effect of location variables when planning for dissemination of any 

household survey. The displacement tools employed by the DHS Program, including the newly 

developed population-based methods, are constrained to the administrative 2 level unit of the country. 

That is, regardless of the displacement distance estimated by the tools, the cluster will not be displaced 

outside of the administrative 2 level unit from which it originates, which helps maintain the accuracy of 

the dataset. At the same time the actual size of the known zone, or target population, is reduced in 

cases where the zone overlaps an administrative boundary, by the process of elimination. The second 

administrative level was chosen for DHS surveys as it is, generally, the lowest level of administrative 

division across all DHS survey countries that can be provided to the user – in conjunction with 

geomasked GPS data – without compromising the privacy of the survey respondents. There is increasing 

demand from users to provide the most accurate geospatial data possible, including a standard data 

release at the administrative 3 level, but further investigation is required.  

Exclusion in geomasking is a technique wherein an exclusion zone, or donut, is drawn around the 

undisplaced clusters within which the tool will not displace the cluster. Rather, the cluster is displaced in 

the area outside of the exclusion zone, thereby providing a minimum safe zone of obfuscation 

surrounding the respondents. While this method does theoretically confer protection to the 

respondents by way of this exclusion zone, it also reduces the overall area within which a cluster can be 

displaced within the administrative unit wherein the respondents are located. Ultimately, this reduces 

the effectiveness of the method in conferring protections to the survey respondents. Although a popular 

method explored in literature, this technique has not been incorporated into the population-based 

approaches tested by the DHS and World Bank teams.   

 

IV. Quantifying risk of disclosure  
Most household survey datasets include location variables, region or district or other place name, that 

define a base level of spatial disclosure risk. The provision of masked coordinates allows for spatial 

refinement, or reduction, of these areas, adding to this risk. This could act as a deterrent to the 

provision of masked coordinates or additional spatial attributes. However, by clearly defining 

anonymization objectives and making deliberate efforts to meet these objectives, the risk can be 

measured and therefore managed. In the following sections we illustrate how the concept of k-

anonymity can be applied to the spatial dimension, how violations can be identified using different 

reference data sources and how the choice of reference data may impact results. We employ LSMS-ISA 

datasets anonymized using the Urban/Rural (current) and the Population Buffers method, as described 

in the previous section, to demonstrate these approaches. We then explore the uncertainty associated 

with different inputs and additional risk deriving from the depth of attribute information available in the 

spatial domain. We close with a brief discussion of data sensitivity and disclosure tolerance. 

A. Spatial k-anonymity 
We start with a naïve interpretation of spatial k-anonymity as a function of the characteristics of the 

zone of uncertainty, or anonymizing spatial region (ASR), within which the survey site is contained. For 

this analysis we make use of mask parameters, or displacement ranges, for both the fixed range and 

variable range adaptive method. We generate the cluster-level ASR using the fixed radius (Urban/Rural 



 

 

Displacement) and two implementations of the Population Buffer method, with a high (10,000) and low 

(5,000) target population threshold using the WorldPop gridded population dataset.  

Availability of spatial data to accurately assess the population count for an ASR is an undeniable 

challenge. Ideally this would be based on resident information for every building, but this level of 

information is rarely if ever available. Although aggregated, census Enumeration Area (EA) counts are 

accurate at the time of census. Survey listing results may be more current but would not fully cover the 

ASR. Some modeled population datasets are gridded at a finer spatial resolution, however pixel-level 

accuracy is affected by the administrative level of input population data, as well as modeling approach 

and other spatial inputs. For the purpose of this analysis we use enumeration areas as the authoritative 

source to measure k-Anonymity. 

Acknowledging that digital EA boundaries are not always available; we make use of datasets that are 

becoming increasingly commonplace in the public domain to measure potential for reidentification. We 

compare results using three gridded population models: High Resolution Settlement Layer4, WorldPop 

High Resolution Population5, Global Human Settlement Population6. We also assess the suitability of 

feature datasets including building footprints7, village locations8, populated places9 and small settlement 

areas10. In each case we benchmark the zonal statistics against the authoritative source, digital EAs, in 

terms of identifying violations of a k-anonymity threshold.  

1. Household re-identification risk 
To estimate the probability of re-identification of a household within the explicit zone of uncertainty, we 

use the spatial intersection to derive attributes of population and building count. The total population 

within this zone, divided by average household size, represents the minimum risk as it does not account 

for other known household attributes. For reference datasets we choose thresholds based on averages 

representative of the area of interest. In this case a threshold of 5,000 population represents 

approximately 1,250 households. For building footprints, we assume that 60% of building stock is 

residential11, so a threshold of 2,000 total buildings represents a ratio of almost one building per 

household. These thresholds are somewhat arbitrary and would require thorough investigation for 

actual implementation. 

For demonstration we use an EA count of less than 5 as the definition of a violation of the 

anonymization objective, where the zone of uncertainty provides insufficient protection. Results 

presented in Table 2 show that violations are more common in urban areas, across all methods. This 

finding is counter to expectations and may be an indication that use of a lower EA count would be 

acceptable in urban areas, given the high density of population. Also notable is that a large portion of 

 
4 High Resolution Settlement Layer. Facebook Connectivity Lab and Center for International Earth Science 
Information Network - CIESIN - Columbia University. 2016 
5 WorldPop spatial distribution of population in 2015 (DOI: 10.5258/SOTON/WP00645), November 2018 
6 GHSL Global Population Grids, R2015A. JRC and CIESIN. October 2015 
7 Building footprints from DigitizeAfrica, a Bill and Melinda Gates Foundation and Government of Canada funded 
effort implemented by Maxar and Ecopia. September 2017 
8 Village locations downloaded from ICRAF landscapeportal.org, incomplete metadata  
9 GRID3 Settlement Extents Version 01, Alpha accessed from data.humdata.org 12/22/2020 
10 NGA GEOnet Names Server (GNS). Populated places accessed from https://geonames.nga.mil 1/3/2021 
11 Residential building stock estimation based on number of features in the building footprint dataset and number 
of housing units reported by Habitat for Humanity (https://www.habitat.org/) 

https://geonames.nga.mil/


 

 

the dataset produced using low-threshold Population Buffer method does not meet k-5 Anonymization 

criteria. However, this could be mitigated by withholding cluster-level mask parameters. The other 

methods perform similarly to each other, with a slight advantage for Urban/Rural in urban settings and 

for high-threshold Population Buffer in rural.  

Table 2 Violations of k5-Anonymity and Potential for Household Re-identification 

  Violations Percent of violations identified by proxy datasets 

 Strata 
EA  

count < 5 
HRSL < 
5000 

WorldPop  
< 5000 

GHSPOP  
< 5000 

Buildings  
< 2000 

Combined 
(any) 

Concordance 
 (2 or more) 

Urban/Rural 
rural 13% 50% 60% 54% 27% 62% 54% 

urban 25% 57% 75% 68% 39% 79% 71% 

Population Buffer  
(5,000) 

rural 61% 41% 64% 44% 22% 77% 54% 

urban 85% 44% 52% 38% 69% 86% 56% 

Population Buffer  
(10,000) 

rural 9% 7% 7% 7% 11% 17% 7% 

urban 37% 17% 24% 15% 32% 46% 20% 

 

We further explore how many violations of k5-anonymity identified by EA count are also identified by 

proxy datasets of population and building footprints using the thresholds described above. Findings are 

that proxy datasets are least successful overall with the high-threshold Population Buffer method and 

that for the other methods WorldPop performs best across datasets. Combining all proxy datasets 

results in some gains, however the gains come with many false positives (not shown) that would 

undermine the effectiveness of this approach in the absence of EA counts. If datasets are given equal 

weight, then a more reliable approach might be to look at agreement of at least 2 proxy datasets 

(presented in the last column), where a maximum of 54% of the violations are identified in rural areas 

and 71% in urban areas.  

The data-driven anonymization methods (Population Buffer) should have an advantage with respect to 

population summary statistics in that the threshold is encoded in the process when an explicit 

population target is specified. Nevertheless, there are occurrences in Table 2 of zones of uncertainty 

that do not meet the target thresholds. This is an indication that while the target population is met 

around the actual location, this property does not extend to a zone of uncertainty derived around the 

anonymized location. 

2. Community re-identification risk 
Re-identification may also occur at the neighborhood, community or town level. To illustrate, we again 

use violations of k5-Anonymity defined by EA count, and assess how well these critical cases are 

captured in proxy datasets representing community features. Results presented in Table 3 show that in 

most cases proxy datasets appear to perform better in urban areas. However, this is a misleading 

conclusion, stemming from the fact that the absence of features is the determinant of success (although 

we do exclude zero counts). In fact, it is an indicator of incompleteness of the village and populated 

place datasets in the urban context: urban neighborhoods are not well captured. 

.    



 

 

Table 3 Violations of k5-Anonymity and Potential for Community Re-identification 

  Violations Percent of violations identified by proxy datasets 

 Strata 
EA  

count < 5 
Village  

count < 5 
Populated 
places < 5 

Small 
settlement 
areas < 5 

Combined 
(any) 

Concordance 
(2 or more) 

Urban/Rural 
rural 13% 17% 35% 17% 53% 12% 

urban 25% 43% 64% NA 79% 57% 

Population Buffer  
(5,000) 

rural 61% 15% 46% 29% 63% 23% 

urban 85% 62% 17% NA 73% 11% 

Population Buffer  
(10,000) 

rural 9% 4% 48% 28% 59% 19% 

urban 37% 46% 29% NA 61% 15% 

 

Furthermore, the large difference between combination and concordance measures across the datasets 

indicates a lack of agreement which does not promote confidence. As such, we can only conclude that 

the datasets used in this analysis would not support accurate estimation of community-level re-

identification risk, particularly in the urban context, and there is a need for additional data exploration. 

3. Actual k-Anonymity 
Two additional factors affecting risk of disclosure are the use of constraining boundaries in the 

displacement process and the degree of overlap between zones of uncertainty. Note that in previous 

sections we have consistently used data that is constrained by known administrative units, and that 

should be standard procedure. However, to gain some understanding of the effect of constraining by 

administrative unit we present a comparison of summary statistics in Table 4.   

Table 4 Comparison of Methods and Effect of Masking by Administrative Unit 

   Unmasked 
Masked by known 
administrative unit 

  Strata 

Mean 
displacement 

(km) 
Mean 

EA count 
Mean pop 
WorldPop 

Mean 
EA count 

Mean pop 
WorldPop 

Urban/Rural 
rural 2.4 16 19,344 12 13,451 

urban 1.0 26 48,220 11 20,471 

Population Buffer  
(5,000) 

rural 1.5 7 8,238 4 5,050 

urban 0.4 4 6,239 3 5,033 

Population Buffer  
(10,000) 

rural 2.1 13 15,829 9 10,085 

urban 0.5 9 16,066 6 8,838 

 

The largest mean displacement in high density areas (Urban/Rural method for urban) results in 

significantly higher reduction in anonymization metrics: mean zonal population is reduced by nearly 60 

percent, from 48,220 to 20,471. This category also exhibits potentially excessive displacement with 

respect to other methods, with an average displacement twice that of the high Buffer method. 



 

 

Finally, the issue of overlap between zones of uncertainty affects actual k-anonymity. We find this to be 

a significant factor, as evidenced by the summary shown in Table 5. Not unexpectedly, the overlap is 

closely related to zone size within stratum and is most acute within large urban zones.  

Table 5 Extent of overlap between zones of uncertainty 

  Strata 

Mean 
displacement 

(km) 
Percent 
overlap 

Urban/Rural 
rural 2.4 25% 

urban 1.0 46% 

Population Buffer  
(5,000) 

rural 1.5 12% 

urban 0.4 5% 

Population Buffer  
(10,000) 

rural 2.1 25% 

urban 0.5 17% 

 

B. Uncertainty in modeled population data 
Accurate and complete spatial datasets are necessary for understanding spatial risk of disclosure. 

Whether they are used to define or describe ASRs, the reliability of input datasets determines the level 

of confidence in the product of anonymization. Uncertainty itself may confer some protection in the 

short-term. However, given the current trend of increasing data availability and tools for integration, 

this protection is likely to wane over time with improvements in data and modeling. 

In an effort to understand the differences between population datasets, we use ASRs generated using 

the fixed radius by stratum method to derive zonal population sums for each dataset in two country 

contexts. Table 6 shows general agreement of basic summary statistics, with the exception of GHSPOP in 

country B.  

Table 6 Cluster level summary statistics from gridded population datasets 

  HRSL WorldPop GHSPOP 

 Strata mean          stdev mean          stdev mean          stdev 

Country A 

rural 14,637 8,687 13,451 7,904 14,667 8,740 

urban 22,571 19,600 20,471 18,349 22,515 19,739 

Country B 

rural 24,636 26,958 22,590 31,955 37,280 66,233 

urban 66,197 75,651 65,644 70,245 112,991 90,108 

 

Table 7 provides further evidence that GHSPOP is potentially problematic in the rural context of country 

B. The number of missed clusters, defined as zonal total population less than 100 people, is high, 

indicating that small rural communities are not well captured in the dataset for country B. 

 



 

 

Table 7 Number of missed clusters (population < 100) 

 Strata HRSL WorldPop GHSPOP 

country A 

rural 4 4 2 

urban 0 0 0 

country B 

rural 4 1 128 

urban 0 0 3 

 

Looking more closely at cluster level population sums across the datasets we find striking differences 

between the two countries. Figure 2 shows deviation of cluster level population from HRSL and GHSPOP, 

from WorldPop (represented by zero vertical), using the same scale for both countries. While there are 

outliers in both graphs, the magnitude of differences is far greater in country B, shown on the right.  

Figure 2 Cluster level difference from WorldPop for country A (left) and country B (right) 

 

We hypothesize that one factor driving the differences is the administrative level of input population 

data. The number of input administrative units is more than an order of magnitude greater for country A 

than country B12. Differences are also more extreme for small extraction zones, when grids are sampled 

over very limited areas. Zonal statistics at the cluster level serve to highlight uncertainties in the 

modeled output, with implications for the suitability of the datasets in different contexts for applications 

such as adaptive masking and assessment of risk of disclosure.   

C. Second order risk 
Place names provide linkages with a profusion of data points in the public domain (Facebook advertising 

data and public posts, news sources, Twitter, and Google) or privately held repositories. Natural 

language processing algorithms and AI are powerful tools for data mining, allowing users to extract 

relevant and potentially identifying information from massive amounts of text data. Even unstructured 

location data provides linkages, as evidenced by the pooling of data by location known as geofencing. 

Deeper exploration of the implication for reidentification deriving from these linkages is beyond the 

 
12 Center for International Earth Science Information Network - CIESIN - Columbia University. 2016. Documentation 
for the Gridded Population of the World, Version 4 (GPWv4). Palisades NY: NASA Socioeconomic Data and 
Applications Center (SEDAC). http://dx.doi.org/10.7927/H4D50JX4. 



 

 

scope of this guideline. However, the methods described above provide some idea of the potential 

narrowing of the field, through auxiliary datasets representing towns, localities and other place 

descriptors.   

Additionally, there may be pseudo-spatial attributes in microdata that can be geocoded with minimal 

effort. These include both record identifiers that include official administrative codes and responses that 

make direct reference to spatial features (distance to main/tarred road, distance to health clinic or 

secondary school, etc), among others. Although often imprecise or generalized, these responses are 

highly valuable in the absence of masked coordinates. However, they can significantly increase 

disclosure risk when combined with an explicitly spatial zone of uncertainty around a masked location. 

An initial screening of microdata for such pseudo-spatial information, and treatment prior to 

dissemination will help manage this risk. 

D. Tolerance 
Any discussion of risk of disclosure is incomplete without considering the consequences of re-

identification associated with a particular survey. The potential consequences are wide ranging and 

highly contextual. For example, in longitudinal surveys, panel interference is a concern in the case of 

reidentification at EA level. Alternatively, at the individual level respondents may be targeted for 

advertising, or more directly harmful actions based on specific characteristics. The control of personal 

information may be lost.  

This guideline stops short of making explicit recommendations regarding risk thresholds. This is a 

judgement specific to each survey, although there are some guardrails common to all: respondent 

notification and consent, internal governance structures. Many providers of data have an internal 

advisory board which would dictate protocols. However, in the absence of such an authority, data 

providers may look to other areas of applied research for guidance. The ethical matrix originally 

presented as a conceptual tool designed to help in making decisions about the ethical acceptability of 

different technologies applied in the fields of food and agriculture (Mepham et al. 2006) has lately been 

promoted as a framework for assessing the pros and cons of powerful algorithms that affect the daily 

lives of individuals (O’Neil, 2016). This framework could provide a useful tool for assessing potential for 

harm associated with reidentification from household survey in greater depth.  

Several initiatives have been launched more recently, specifically aimed at promoting ethical use of 

geographic data. This is in part due to the increased use of location data for tracking and monitoring 

individuals, as well as research, during the global covid-19 pandemic. One example is an effort by the 

Dutch government foundation Geonovum to develop an ethical framework to guide the collection and 

use of location data. Similarly, the EthicalGEO Initiative is supporting adoption of an international 

charter, the Locus Charter, on the ethical use of geodata. These resources may be helpful in design of 

dissemination strategy for household survey geodata. 

 

V. Data utility trade-off 
The use of anonymized locations comes at some analytical cost. The magnitude of this cost is currently 

not known across a wide range of data applications but can be estimated as a function of the spatial 

resolution and smoothness of geospatial variables researchers would be seeking to integrate with the 



 

 

survey data, as well as the contextual scale of relevant spatial information. This is an area of ongoing 

research for both DHS and LSMS-ISA programs. We discuss work that serves to inform both users, on 

data limitations, as well as providers, in the preparation of data for dissemination.  

In the guidance document for users of DHS GPS data three common location-based research 

applications, each illustrated using case studies, are investigated to demonstrate the effect of 

anonymization on analysis. In the first study, the effect of anonymization on distance-based measures 

and closest facility allocation is shown to result in some bias and is related to spatial density of target 

features. The second study assesses the impact of anonymization on integration of spatial variables from 

raster sources and finds that spatial autocorrelation of source data is a factor in effect bias. The final 

study evaluates the results of attribute information derived using areal overlays, presents a method for 

quantifying the probability of misspecification and proposes the use of weighted covariates to reduce 

the effect of errors. It should be noted that these studies assume transparency of geomasking 

parameters, or explicit range of uncertainty.  

As noted above, the effect of displacement on data for research can be captured in part by comparing 

key spatial statistics derived using raw and anonymized locations. However recent research on the utility 

of displaced geographic data for health research (Broen et al. 2021) reinforces the notion that there is a 

clear trade-off. In an assessment of multiple anonymization techniques, methods that produced the 

least impact on spatial metrics were also the most vulnerable to de-identification. Although the 

displacement ranges used in this work are smaller than is currently used in dissemination of LSMS-ISA 

and DHS survey data, their findings with regard to effectiveness of spatial anonymization are cautionary. 

Assessment of risk is necessary and iterative approaches may be helpful in mitigating the risk.  

Forthcoming research from the World Bank examines the relationship between anonymization 

techniques and the quality of machine learning (ML) approaches to mapping economic well-being. The 

experiment is grounded in consumption-expenditure data surveyed in Ethiopia and Malawi, 

georeferenced using actual EA locations, and three anonymization methods.  A convolutional neural 

network (CNN) is built to generate estimates of wealth at each location using satellite imagery from 

Sentinel-2 and VIIRS. As part of our work, we additionally document whether the impact of using 

confidential versus spatially anonymized varies by (i) the spatial resolution of the satellite imagery – 

specifically using Sentinel-2 (10-m resolution) versus Landsat (30-m resolution), and (ii) the size of tiles 

(i.e. the geographic extent) that the satellite imagery is parsed into for a convolutional neural network to 

isolate spatial features that are used as poverty predictors in the model. Preliminary findings are that 

the effect of anonymization can be largely mitigated relative to the non-anonymized EA locations by 

employing a larger geographic extent as input to the model as well as by leveraging inputs that capture 

critical information but at a coarser spatial resolution, such as VIIRS. The implication is that reducing 

displacement distance would not necessarily improve the predictive power of comparable models. 

Other forthcoming research (van der Weide et al. mimeo) compares the performance of an approach 

that estimates poverty through a geographically weighted regression model that uses: (a) public use 

coordinates (Burgert et al. 2013) versus (b) precise coordinates provided by the Malawi National 

Statistical Office that are not publicly available. The authors find that the use of public coordinates 

reduces the in-sample goodness-of-fit of the model, as is to be expected, although the reduction in 

adjusted R-square is reasonably modest. The regression models based on public versus private 

coordinates provide qualitatively similar results; all regression coefficients remain significant and are of 



 

 

the same order of magnitude. Furthermore, the estimates of these two models of poverty are highly 

correlated with a gold-standard benchmark estimate of poverty from the method developed by Elbers, 

Lanjouw and Lanjouw (2003). 

There is a clear need for further research to gain a deeper understanding of the impact of spatial 

anonymization on data utility in a variety of applications. Nevertheless, there are some general lessons 

data providers may glean from existing evidence: reduced displacement is not a guarantee of improved 

data utility, mask parameters have been a valuable reference for users in the assessment of potential 

error due to anonymization. Furthermore, understanding the trade-off between reduced accuracy and 

the impact on analysis can inform decisions on dissemination. Incurring additional risk for little gain in 

analytical value could be avoided, as well producing data that are not fit for purpose due to excessive 

displacement. Lastly it is worth noting that at least in select examples of poverty estimation described 

here, use of anonymized coordinates does not unduly diminish model performance. 

VI. More options for supporting priority/cutting-edge research  
The provision of explicit spatial references, for example anonymized coordinates, is the most direct 

method for enabling users to integrate additional spatial variables of interest. However, there are a 

range of other options for enabling research through dissemination, services, remote access, on-site 

access.  

A. Dissemination of spatial variables 
The dissemination of record-level spatial variables with survey data can be a means of providing more 

spatial detail, when unmodified coordinates are used, or simply promoting ease of access and 

standardization, when generalized coordinates, ranges or polygons are used.  

IPUMs and the DHS program have collaborated on a set of spatial variables described as “contextual 

variables”, which characterize the general landscape surrounding survey clusters. The DHS Program also 

provides geospatial covariate datasets, linking survey cluster locations to ancillary data - known as 

covariates – that contain data on topics including population, climate, and environmental factors. In a 

similar vein, all waves of LSMS-ISA data are accompanied by a set of spatial variables, mostly related to 

agriculture and household welfare. 

These datasets are typically generated using anonymized location data and do not add to the existing 

risk of disclosure. However, they may not accurately capture characteristics of sample sites, particularly 

with high spatial resolution or surfaces with high local variation. Some variable-level tests would 

improve utility and reliability of the datasets. The DHS Program is planning to investigate the effects of 

the existing displacement method on the accuracy of the geospatial covariate data produced by DHS. 

Similar efforts should be done to measure the impact of the population-based displacement methods on 

geospatial covariate accuracy. 

While the approaches described above can add great value to survey datasets, they do not likely meet 

research needs for detailed spatial information. Spatial variables that are generated using more precise 

location data than anonymized location (cluster centerpoint or household location) will add to the risk of 

disclosure. Untreated variables produced in this way using publicly available reference datasets create a 

spatial signature. Depending on the number of variables and characteristics of the reference datasets, 

the spatial signature can dramatically refine the zone of uncertainty for sample points. Some approaches 



 

 

to managing risk of disclosure include reducing dimensionality (number of spatial variables) by 

producing a core set of the most relevant variables for analysis (i.e. accessibility, rainfall, vegetation 

indices, terrain for agricultural surveys). In addition, inputs datasets with high value depth (number of 

values) or high spatial resolution should be managed by rounding or ranging results. Each of these 

measures necessarily reduces the specificity of variables, and there is strong evidence that it is not 

possible to produce a dataset suitable for public dissemination without undermining the primary 

purpose. Although the terms of use likely preclude re-engineering of location, it is advisable to restrict 

access to any datasets that present an increased risk of disclosure.  

B. Interpolated surfaces / small area estimation 
Since 2016, The DHS Program has been producing interpolated modeled surfaces for a suite of health 

and demographic indicators, providing decision-makers with high spatial resolution and small area 

estimates for relevant issues that are central to meeting the sustainable development goals (SDGs). 

These surfaces are freely available on the Spatial Data Repository. These methods are cutting-edge 

solutions to the questions of inadequate funding to increase survey sample size, allowing decision 

makers to get the high-quality health and demographic information needed to successfully address the 

pressing issues their countries face in resource-constrained environments.  

The DHS program has been collecting various geospatial covariate layers that are used for spatial 

analysis. These layers are obtained from a myriad of sources, and hence therefore have different spatial 

reference, projections, extents and dimensions. Thin plate smoothing spline and bilinear interpolation 

methods are used to downscale and resample the geospatial covariates to the same spatial resolution 

used in the modeling process. It should be noted that interpolation is not suitable for all types of 

variables. A summary of key characteristics to be considered is outlined in the DHS Spatial Analysis 

Report 9. 

Another approach to downscaling is the use of small estimation techniques. Statistical models leverage 

the spatial relationships between survey locations and spatial covariates in order to produce reliable 

estimates of key variables at a level below representative unit (e.g. Mayala et al. 2019).  

C. Restricted access 
There are limits to the effectiveness of spatial anonymization by design. Even after treatment, location 

data may not be sufficiently anonymized, or required modifications render a data product unsuitable for 

its intended purpose. In this case access to confidential data may be the only option to support some 

research applications. Access can be provided through a secure physical or virtual enclave, where 

approved users interact with the data but cannot make copies or extract source data, or by way of 

analytical platforms. 

Some National Statistical Agencies and organizations do provide this type of access. The US Census 

Bureau, for example, enables access to confidential data through a system of Federal Statistical 

Research Data Centers. Likewise, the UK Data Service provides controlled access to potentially disclosive 

data through both physical and virtual enclaves. The South African DataFirst initiative provides access to 

restricted data through a secure physical enclave at the University of Cape Town. 

These examples all benefit from an economy of scale and, as national institutions, have a common 

frame of reference with respect to national statistical laws and security standards. Nevertheless, 

considerable resources are required to build and sustain the effort. They must support the maintenance 

http://spatialdata.dhsprogram.com/modeled-surfaces/


 

 

of secure physical or digital infrastructure, with proper safeguards. Dedicated staffing is required to 

engage with data depositors in defining level of access and standards for disclosure control, to review 

applications and to evaluate results derived within the enclave environment. Furthermore, the hosting 

agency is responsible for ensuring compliance with confidentiality agreements. 

Unfortunately, many National Statistical Agencies, particularly in low-income countries, lack the 

resources to maintain these services. If legal and regulatory frameworks allow, one option to consider is 

external hosting of the restricted data. While such arrangements are not common, one example is the 

platform being developed for the Millennium Challenge Corporation (MCC) by the Inter-university 

Consortium for Political and Social Research (ICPSR) at the University of Michigan. The goal is to expand 

access to microdata, including restricted data through a virtual data enclave, collected in multiple 

countries where MCC works and conducts evaluation projects. 

In lieu of providing direct access to restricted data, there is the idea of bringing research to the data 

through online services. The Open Algorithms (OPAL) Project maintains data on-site but allows certified 

algorithms to be applied to the data resource. Lastly, data providers may choose to provide analytical 

services, wherein confidential location data is used to run analyses in response to specific requests that 

have a demonstrated need for higher locational accuracy. Though only the results are shared, as with 

spatial variables, results must be assessed for disclosure risk and treatment applied as needed.  

 

VII. Recommendations for discussion 
This section pulls together evidence from preceding sections. Although not prescriptive we attempt to 

identify best practices and highlight areas for further research.  

A. Current best practices 
1. Tolerance for disclosure risk should be based on sensitivity of microdata, as well as respondent 

consent and organizational practices. Given the availability of tools for automating the 

displacement procedures it is feasible to test different approaches and assess their utility with 

respect to a particular dataset and anonymization objective. 

 

2. With increasing focus on privacy and data breaches, it is important to implement due diligence 

to verify that anonymization objectives are achieved. Checks should be implemented to 

measure risk of disclosure, aimed at identifying both excessive and inadequate displacement. 

 

3. EA boundaries or centerpoints are optimal reference datasets for assessing risk of disclosure. 

Alternative datasets are not always suitable substitutes. Some level of data curation, for 

completeness and accuracy, should be applied to all reference datasets. 

 

4. Flexibility in treatment of outliers may be required. If a chosen method of anonymization is 

inadequate in a small subset of sparsely populated regions, use of aggregation or administrative 

level reference may be an option. 

 



 

 

5. Assessment of spatial risk of disclosure should be cumulative, with respect to all spatial and 

pseudo-spatial attributes in a dataset, as well as derived outputs. In other words, the total risk 

of disclosure should be based on the spatial intersection of all relevant information. 

 

6. Efforts to ensure spatial anonymity will be strengthened by disclosure control (reducing sample 

uniqueness) applied to linked non-spatial microdata. In some cases, data providers must also 

consider suppression of sensitive microdata. 

 

7. Standardization of procedures promotes transparency, ease of use, tracking and compliance: 

• standardized data download page and request protocol similar to that currently 

employed by DHS 

• standard level of disclosure, similar to that currently employed by programs such as DHS 

• standardized “template” for displacement (methodological options) allowing data 

providers to modify as needed 

 

B. Future work 
1. Transparency in mask parameters (what information to provide to the end-user) is a critical 

issue. Withholding mask parameters is a powerful way for data providers to ensure anonymity. 

However, withholding this information undermines the ability of users to incorporate discrete 

measures of spatial uncertainty. Further investigation into the impacts of withholding this 

information is required. 

 

2. Replication would build confidence in important findings and help hone messaging. Future work 

should include the training of these tools using the full suite of DHS and LSMS-ISA GPS datasets, 

to ensure the methods work consistently over time within the same survey regions, and across 

regions.   

 

3. There is a trend toward increased volume and specificity of individual-level data in the public 

domain (Facebook Advertising, etc.) as well as democratization of data analytics: open source 

tools and lower-cost computing resources (Google Earth Engine, cloud services). More research 

is needed to understand how these developments will affect disclosure risk. 

 

4. The interaction of non-spatial microdata attributes and spatial information needs to be 

investigated. 

 

5. A better understanding of the data utility trade-off associated with spatial anonymization will 

help guide data providers in defining dissemination protocols. 

 

6. Current findings with respect to adaptive approaches are driven by inaccuracies in the input 

gridded population datasets. Improvements in quality of inputs would potentially make these 

approaches more feasible. They should be reassessed with advancements in modeling methods 

and increased availability of data. 
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