Collecting data on sensitive topics and on rare events through surveys

Angela Me
Chief
Research and Trend Analysis Branch
How Many People Do You Know?: Efficiently Estimating Personal Network Size

Tyler H. McCormick, Matthew J. Salganik, and Tian Zheng

In this article, we develop a method to estimate both individual social network size (i.e., degree) and the distribution of network sizes in a population by asking respondents how many people they know in specific subpopulations (e.g., people named Michael). Building on the scale-up method of Kilbourne et al. (1999) and other previous attempts to estimate individual network size, we propose a latent non-random mixing model which resolves three known problems with previous approaches. As a hypothesis, our method also provides estimates of the rate of social mixing between population groups. We demonstrate the model using a sample of 1,730 adults originally collected by McCarty et al. (2001). Based on insights developed during the statistical modeling, we conclude by offering practical guidelines for the design of future surveys to estimate social network size. Most importantly, we show that if the first names asked about are chosen properly, the estimates from the simple scale-up model yield the same bias reduction as the estimates from our more complex latent non-random mixing model.

KEY WORDS: Latent non-random mixing model; Negative binomial distribution; Personal network size; Social networks; Survey design.

Counting hard-to-count populations: the network scale-up method for public health

H Russell Bernard,1 Tim Hallett,2 Alexandrina Lovita,3 Eugene C Johnson,4 Rob Lyerla,5 Christopher McCarty,6 Mary Mahy,7 Matthew J Salganik,8 Tetiana Saliuk,9 Ottilie Scutelniciuc,10 Gene A Shelley,11 Petchsi Sirirund,12 Sharon Weir,13 Donna F Stroup14

ABSTRACT

Estimating sizes of hidden or hard-to-reach populations is an important problem in public health. For example, estimates of the sizes of populations at highest risk for HIV and AIDS are needed for designing, evaluating and allocating funding for treatment and prevention programs. A promising approach to size estimation, relatively new to public health, is the network scale-up method (NSUM), involving two steps: estimating the personal network size of the members of a random sample of a total population and, with this information, estimating the number of members of a hidden or hard-to-reach population. The network scale-up method (NSUM) is described. The background and limitations of the method, results of the applications in public health, and an evaluation of its strengths and limitations are presented. Finally, we report on further work in research and public health implementation for improving the method’s utility for planning and programming based on the consensus of an expert panel (see online supplementary appendix 1).

SCALE-UP METHODS AS APPLIED TO ESTIMATES OF HEROIN USE

Charles Kadushin, Peter D. Kilbourne, H. Russell Bernard, Andrew A. Beveridge

The feasibility of using the network scale-up method to estimate heroin use is described. A random sample was asked “how many people do you personally know who use heroin, and how many in other subpopulations – robbery, assault, burglary, auto-theft victims, binge drinkers, and marijuana users – whose size is more accurately known. A model estimated the overall number of persons each respondent knew and the size of each subpopulation. Estimates of the subpopulation are compared with known subpopulation sizes to assess the plausibility of the model. Data came from the 1999 survey evaluating the “Fighting Back” substance prevention program. Fourteen sites with clear political boundaries were used (n=5892). Heroin use varied from city to city. Rates estimated for heroin use correlated .832 with the level of respondents’ sense of crime in their neighborhood.” The average risk between the known populations and the estimates is .943. Members of each subpopulation, especially drug users, tended to know more people within their own subpopulation.

Practicing Epidemiology

Assessing Network Scale-up Estimates for Groups Most at Risk of HIV/AIDS: Evidence From a Multiple-Method Study of Heavy Drug Users in Curitiba, Brazil

Matthew J. Salganik*, Dimitri Fazito, Neilane Bertoni, Alexandre A. Abdo, Mavee B. Melo, and Francisco I Bastos

* Correspondence to Dr. Matthew J. Salganik. Department of Sociology and Office of Population Research, Princeton University, 148 Wallace Hall, Princeton, NJ 08544 (email: mj3@princeton.edu).
Network scale up

• People’s social network … set of people they know … are on average representative of the general population
How does it work:

• In a random sample that is representative of the general population
 – How many people do you know?
 – How many people do you know who use drug x?

<table>
<thead>
<tr>
<th>Estimated size of the subpopulation</th>
<th>=</th>
<th>Total # of members in the subpopulation from all participant networks</th>
<th>x</th>
<th>Size of the general population</th>
</tr>
</thead>
</table>
Estimating personal network size

- How many people do you know………
- Knowing some characterized by:
 - Live in the area of interest
 - You know them they know you
 - You have had contact with them over 1 or 2 years
 - You could contact them if needed
Two methods to estimate personal network

- **Known population method**
 - Number of people they know various population of known size (people named Michael; primary school teachers - 0.1% to 4% of the population)
 - Knows 5 people named Michael,
 - 2 million people named Michael
 - Total population is 90 million
 - \(\frac{5}{2000000} \div 90\text{ million total population} = 225\) size of the network

- **Internal consistency checks with the existing data**
- **Can lead to under reporting in larger population and over reporting in smaller populations**
Two methods to estimate personal network

• Summation method
 – No or unreliable data for known populations
 – Participants asked to enumerate people they know in a list of specific relationships or categories
 – exclusive relationship types (family, co-workers, neighbours, friends)
 – Comprehensive list of relationship type eliminating overlap
 • Culturally relevant
 • Limitation - lead to over counting from overlaps
Two main biases in network scale up

• Transmission error
 – Respondent is unaware of someone in network (is heroin user) – especially when behaviour is stigmatized – underestimation

• Barrier effect
 – Social barriers (ethnicity, race, occupation, location of residences) causes variation in likelihood a respondent will know the people with behaviour (underestimation)
Applying network scale up: UNODC experience

• Pakistan – national household survey on drug use (50,000 respondents)

• Self reported drug use in past 12 months
 – cannabis 0.5%
 – Heroin 0%
 – Non medical use of prescription opioids 1.4%
Pakistan.....

Using Dunbar number 150 as average size of network

Problem drug use survey (using treatment multiplier benchmark)

Combined to get

Prevalence of
- Cannabis 3.5%
- Heroin 0.8%
Nigeria – drug use survey

- Household survey Self reported use of substances (40,000 across 36 states and Federal Capital)
- NSUM - Known population method
- Problem drug use assessment (RDS – benchmark) (9,400 across 36 states and Federal Capital)
Comparison of results

Self reported

- Cannabis use 1.4%
- Heroin use – 0.03%
- Non medical use of opioids (tramadol) 3.8%

National estimate using NSUM, MBM

- Cannabis use – 10.4%
- Heroin use – 0.1%
- Non medical use of opioids (tramadol) 4.8%