Using satellites to amplify the power of household surveys

Marshall Burke

Stanford University | AtlasAl

UN Statistical Commission, NY Feb 28 2020

Our benchmark measurement technology: expensive, infrequent

Result: hard to target development interventions, understand their effectiveness

Why might satellites help here?

1. Humans can distinguish income levels in imagery

Why might satellites help here?

- 1. Humans can distinguish income levels in imagery
- 2. Computers are getting really good at image recognition tasks

Why might satellites help here?

- 1. Humans can distinguish income levels in imagery
- 2. Computers are getting really good at image recognition tasks
- 3. There is a lot of new imagery to play with

New sources of satellite data

Sensor	Wavelengths	Spatial Resolution	Revisit frequency	Launch year
Sentinel-1	C-band radar	20m	6 day	2014, 2016
Sentinel-2	Optical	10m	5 day	2015, 2017
Skysat	Optical	1m	~weekly	2013- present
Planet	Optical	3-5m	~daily	2014- present

Can satellites help fill in temporal + spatial gaps between surveys?

Can satellites help fill in temporal + spatial gaps between surveys?

Satellites do a good job in predicting well-being in cross-section

Wealth predictions on held-out countries

Yeh, Perez et al in review

Satellites do a good job in predicting well-being in cross-section

Wealth predictions on held-out countries

At least 2 challenges for applied work:

- 1. Diagnosis: where are errors coming from?
- 2. Interpretability: what is the model doing?

Diagnosis: compare both predictions and ground truth against a third independent variable

Diagnosis: compare both predictions and ground truth against a third independent variable

We assemble independent wealth measures from censuses in 9 countries (district level)

Diagnosis: at least some of error due to noise in ground data i.e. ground truth is not absolute truth

Interpretability: can visualize features that model is using

Interpretability: an alternate approach uses detected objects as features

MethodRGB-CNNNL-CNN[5]Ours r^2 0.040.390.410.54Table 4: Comparison with baseline and state-of-the-art methods.

Figure 2: Sample detection results from Uganda. Zoom-in is recommended to visualize the bounding box classes. See **appendix** for more examples.

Ayush, Uzkent et al in review

Estimates can be scaled

Satellite imagery + deep learning can amplify the power of existing surveys, helping to fill in the gaps

> <u>mburke@stanford.edu</u> <u>marshall@atlasai.co</u>