Xiao-Li Meng

Department of Statistics, Harvard University

Xiao-Li Meng

Department of Statistics, Harvard University

 Meng, X.-L. (2018) Statistical Paradises and Paradoxes in Big Data (I): Law of Large Populations, Big Data Paradox, and The 2016 US Election. Annals of Applied Statistics Vol 2: 685-726

Xiao-Li Meng

Department of Statistics, Harvard University

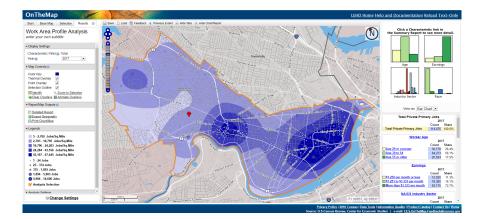
- Meng, X.-L. (2018) Statistical Paradises and Paradoxes in Big Data (I): Law of Large Populations, Big Data Paradox, and The 2016 US Election. Annals of Applied Statistics Vol 2: 685-726
- Many thanks to **Stephen Ansolabehere and Shiro Kuriwaki** for the CCES (**Cooperative Congressional Election Study**) data and analysis on 2016 US election.

Xiao-Li Meng

Department of Statistics, Harvard University

- Meng, X.-L. (2018) Statistical Paradises and Paradoxes in Big Data (I): Law of Large Populations, Big Data Paradox, and The 2016 US Election. *Annals of Applied Statistics* Vol 2: 685-726
- Many thanks to **Stephen Ansolabehere and Shiro Kuriwaki** for the CCES (**Cooperative Congressional Election Study**) data and analysis on 2016 US election.
- Thanks to many students and colleagues for augmenting my intelligence, and to on-line sources for enhancing my presentation.

OnTheMap Project of US Census Bureau



• Built from more than 20 data sources in the LEHD (Longitudinal Employer-Household Dynamics) system. For example:

- Built from more than 20 data sources in the LEHD (Longitudinal Employer-Household Dynamics) system. For example:
- American Community Survey: Surveys 3.5M households covering about 2.7% of 128M households.

- Built from more than 20 data sources in the LEHD (Longitudinal Employer-Household Dynamics) system. For example:
- American Community Survey: Surveys 3.5M households covering about 2.7% of 128M households.
- Administrative Records and Census: Combined job frame using both Unemployment Insurance administrative records and the BLS-specified Quarterly Census of Employment and Wages, covering more than 98% of the US workforce.

- Built from more than 20 data sources in the LEHD (Longitudinal Employer-Household Dynamics) system. For example:
- American Community Survey: Surveys 3.5M households covering about 2.7% of 128M households.
- Administrative Records and Census: Combined job frame using both Unemployment Insurance administrative records and the BLS-specified Quarterly Census of Employment and Wages, covering more than 98% of the US workforce.
 - Unemployment Insurance record was never intended for statistical inference purposes.

Which one should we trust more?

• We know that a 5% random sample is better than a 5% non-random sample in measurable ways (e.g. bias, uncertainty assessment).

Which one should we trust more?

- We know that a 5% random sample is better than a 5% non-random sample in measurable ways (e.g. bias, uncertainty assessment).
- But is an 80% non-random sample "better" than a 5% random sample in measurable terms? 90%? 95%? 99%? (Jeremy Wu 2012)

Which one should we trust more?

- We know that a 5% random sample is better than a 5% non-random sample in measurable ways (e.g. bias, uncertainty assessment).
- But is an 80% non-random sample "better" than a 5% random sample in measurable terms? 90%? 95%? 99%? (Jeremy Wu 2012)
- "Which one should we trust more: a 1% survey with 60% response rate or a non-probabilistic dataset covering 80% of the population?" (Keiding and Louis, 2016, Journal of Royal Statistical Society, Series B)

イロト イヨト イヨト イヨト 二日

• Graunt (1662); Laplace (1882)

<ロト < 部ト < 書ト < 書ト 差 の < (5 / 14

- Graunt (1662); Laplace (1882)
- The "intellectually violent revolution" in 1895 by Anders Kiær, Statistics Norway

- Graunt (1662); Laplace (1882)
- The "intellectually violent revolution" in 1895 by Anders Kiær, Statistics Norway

• Landmark paper: Neyman (1934)

5 / 14

- Graunt (1662); Laplace (1882)
- The "intellectually violent revolution" in 1895 by Anders Kiær, Statistics Norway

- Landmark paper: Neyman (1934)
- First implementation in 1940 US Census led by Morris Hansen

5 / 14

• Think about tasting soup

<ロ > < 部 > < 書 > < 書 > こ き く る へ の へ () 6 / 14

- Think about tasting soup
- Stir it well, then a few bits are sufficient regardless of the size of the container!

- Think about tasting soup
- Stir it well, then a few bits are sufficient regardless of the size of the container!

A B > 4
 B > 4
 B

6 / 14

- Think about tasting soup
- Stir it well, then a few bits are sufficient regardless of the size of the container!

- Think about tasting soup
- Stir it well, then a few bits are sufficient regardless of the size of the container!

- Think about tasting soup
- Stir it well, then a few bits are sufficient regardless of the size of the container!

• But what happens when we fail to stir (well)?

• Population $\{X_1, ..., X_N\}$; **Estimand**: Population Average \bar{X}_N

- Population $\{X_1, ..., X_N\}$; **Estimand**: Population Average \bar{X}_N
- Record Indicator: $R_j = 1$ if X_j is recorded, and $R_j = 0$ otherwise.

- Population $\{X_1, ..., X_N\}$; **Estimand**: Population Average \bar{X}_N
- Record Indicator: $R_j = 1$ if X_j is recorded, and $R_j = 0$ otherwise.
- Sample size $n = R_1 + \cdots + R_N$.

- Population $\{X_1, ..., X_N\}$; **Estimand**: Population Average \bar{X}_N
- Record Indicator: $R_j = 1$ if X_j is recorded, and $R_j = 0$ otherwise.

イロト イロト イヨト イヨト 三日

7 / 14

- Sample size $n = R_1 + \cdots + R_N$.
- Estimator: Sample Average \bar{X}_n

- Population $\{X_1, ..., X_N\}$; **Estimand**: Population Average \bar{X}_N
- Record Indicator: $R_j = 1$ if X_j is recorded, and $R_j = 0$ otherwise.

イロト イロト イヨト イヨト 三日

7 / 14

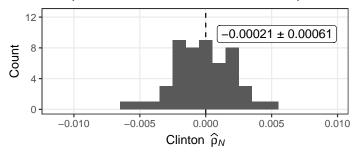
- Sample size $n = R_1 + \cdots + R_N$.
- Estimator: Sample Average \bar{X}_n

- Population $\{X_1, ..., X_N\}$; **Estimand**: Population Average \bar{X}_N
- Record Indicator: $R_j = 1$ if X_j is recorded, and $R_j = 0$ otherwise.
- Sample size $n = R_1 + \cdots + R_N$.
- Estimator: Sample Average \bar{X}_n

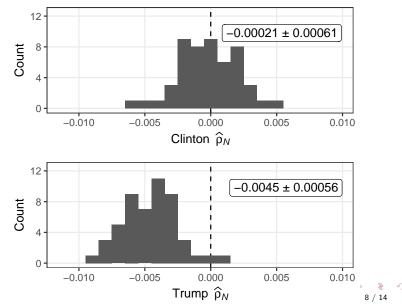
Three and only three ways to control the estimation error:

$$\underbrace{\bar{X}_n - \bar{X}_N}_{\text{Estimation Error}} = \underbrace{\operatorname{Corr}(R, X)}_{\text{Data Quality}} \times \underbrace{\sqrt{\frac{N-n}{n}}}_{\text{Data Quantity}} \times \underbrace{\operatorname{St.Dev}(X)}_{\text{Problem Difficulty}}.$$

Assessing $\hat{\rho}_{N} = \operatorname{Corr}(R, X)$ via Cooperative Congressional Election Study (50 states + Washington DC)



Assessing $\hat{\rho}_{N} = \operatorname{Corr}(R, X)$ via Cooperative Congressional Election Study (50 states + Washington DC)



• Many (major) election survey results were published daily for several months before Nov 8, 2016;

- Many (major) election survey results were published daily for several months before Nov 8, 2016;
- Roughly amounts to having opinions from (up to) $f = \frac{n}{N} = 1\%$ of US voting eligible population: $n \approx 2,300,000$;

- Many (major) election survey results were published daily for several months before Nov 8, 2016;
- Roughly amounts to having opinions from (up to) f = n/N = 1% of US voting eligible population: n ≈ 2, 300,000;
- Equivalent to about 2,300 surveys of 1,000 respondents each.

- Many (major) election survey results were published daily for several months before Nov 8, 2016;
- Roughly amounts to having opinions from (up to) f = n/N = 1% of US voting eligible population: n ≈ 2,300,000;
- Equivalent to about 2,300 surveys of 1,000 respondents each.

Effective Sample Size (ESS)

The size of a simple random sample with the same accuracy

- Many (major) election survey results were published daily for several months before Nov 8, 2016;
- Roughly amounts to having opinions from (up to) f = n/N = 1% of US voting eligible population: n ≈ 2, 300,000;

ヘロン ヘロン ヘビン ヘビン

• Equivalent to about 2,300 surveys of 1,000 respondents each.

Effective Sample Size (ESS)

The size of a simple random sample with the same accuracy

When
$$\hat{\rho}_{N} = -0.005 = -1/200$$
, and hence

$$ESS = \frac{f}{1-f} \frac{1}{\hat{\rho}_{N}^{2}} = \frac{1}{99} \times 40000 \approx 404!$$

- Many (major) election survey results were published daily for several months before Nov 8, 2016;
- Roughly amounts to having opinions from (up to) f = ⁿ/_N = 1% of US voting eligible population: n ≈ 2,300,000;
- Equivalent to about 2,300 surveys of 1,000 respondents each.

Effective Sample Size (ESS)

The size of a simple random sample with the same accuracy

When
$$\hat{\rho}_{N} = -0.005 = -1/200$$
, and hence

$$ESS = \frac{f}{1-f} \frac{1}{\hat{\rho}_{N}^{2}} = \frac{1}{99} \times 40000 \approx 404!$$

• A 99.98% reduction in *n*, caused by $\hat{\rho}_{N} = -0.005$.

What's the Implication of $\hat{\rho}_{N} = -0.005$?

- Many (major) election survey results were published daily for several months before Nov 8, 2016;
- Roughly amounts to having opinions from (up to) f = n/N = 1% of US voting eligible population: n ≈ 2, 300,000;
- Equivalent to about 2,300 surveys of 1,000 respondents each.

Effective Sample Size (ESS)

The size of a simple random sample with the same accuracy

When
$$\hat{\rho}_{N} = -0.005 = -1/200$$
, and hence

$$ESS = \frac{f}{1 - f} \frac{1}{\hat{\rho}_{N}^{2}} = \frac{1}{99} \times 40000 \approx 404!$$

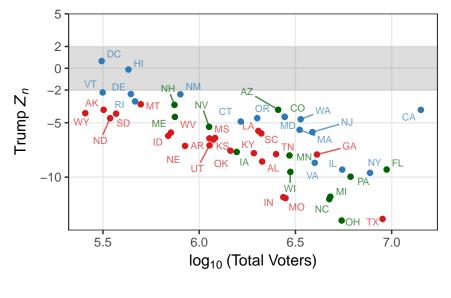
• A 99.98% reduction in *n*, caused by
$$\hat{\rho}_{\scriptscriptstyle M} = -0.005$$
.

• Butterfly Effect due to Law of Large Populations (LLP)

Relative Error = $\sqrt{N-1}\hat{\rho}_{N}$

イロト イロト イヨト イヨト 三日

LLP: The more voters, the higher the bias in our prediction



□ ▶ 《□ ▶ 《 E ▶ 《 E ▶ 《 E ▶ ② Q C 10 / 14

The Big Data Paradox:

If we do not pay attention to data quality, then

The bigger the data, the surer we fool ourselves.

• Data quality is far more important than data quantity.

- Data quality is far more important than data quantity.
- Compensating for quality with quantity is a doomed game.

- Data quality is far more important than data quantity.
- Compensating for quality with quantity is a doomed game.
- It is far more important to reduce sampling and non-response biases than non-response rates.

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲目 ● ● ●

12 / 14

- Data quality is far more important than data quantity.
- Compensating for quality with quantity is a doomed game.
- It is far more important to reduce sampling and non-response biases than non-response rates.

・ロマ・山マ・山田・山田・山

12 / 14

• Invest in small but very high quality surveys than large surveys with uncontrolled/unknown quality.

- Data quality is far more important than data quantity.
- Compensating for quality with quantity is a doomed game.
- It is far more important to reduce sampling and non-response biases than non-response rates.
- Invest in small but very high quality surveys than large surveys with uncontrolled/unknown quality.
- When combining datasets, relatively tiny but higher quality ones should be given far more weights than suggested by their sizes.

- Data quality is far more important than data quantity.
- Compensating for quality with quantity is a doomed game.
- It is far more important to reduce sampling and non-response biases than non-response rates.
- Invest in small but very high quality surveys than large surveys with uncontrolled/unknown quality.
- When combining datasets, relatively tiny but higher quality ones should be given far more weights than suggested by their sizes.
- For population inferences, "bigness" of "Big Data" should be measured by their relative size, not absolute size.

- Data quality is far more important than data quantity.
- Compensating for quality with quantity is a doomed game.
- It is far more important to reduce sampling and non-response biases than non-response rates.
- Invest in small but very high quality surveys than large surveys with uncontrolled/unknown quality.
- When combining datasets, relatively tiny but higher quality ones should be given far more weights than suggested by their sizes.
- For population inferences, "bigness" of "Big Data" should be measured by their relative size, not absolute size.
- Probability sampling is an extremely powerful tool for ensuring data quality, but it is not the only strategy.

- Data quality is far more important than data quantity.
- Compensating for quality with quantity is a doomed game.
- It is far more important to reduce sampling and non-response biases than non-response rates.
- Invest in small but very high quality surveys than large surveys with uncontrolled/unknown quality.
- When combining datasets, relatively tiny but higher quality ones should be given far more weights than suggested by their sizes.
- For population inferences, "bigness" of "Big Data" should be measured by their relative size, not absolute size.
- Probability sampling is an extremely powerful tool for ensuring data quality, but it is not the only strategy.

- Data quality is far more important than data quantity.
- Compensating for quality with quantity is a doomed game.
- It is far more important to reduce sampling and non-response biases than non-response rates.
- Invest in small but very high quality surveys than large surveys with uncontrolled/unknown quality.
- When combining datasets, relatively tiny but higher quality ones should be given far more weights than suggested by their sizes.
- For population inferences, "bigness" of "Big Data" should be measured by their relative size, not absolute size.
- Probability sampling is an extremely powerful tool for ensuring data quality, but it is not the only strategy.

Three Enemies of Surveys and Data Science in General

• Selection

- Data quality is far more important than data quantity.
- Compensating for quality with quantity is a doomed game.
- It is far more important to reduce sampling and non-response biases than non-response rates.
- Invest in small but very high quality surveys than large surveys with uncontrolled/unknown quality.
- When combining datasets, relatively tiny but higher quality ones should be given far more weights than suggested by their sizes.
- For population inferences, "bigness" of "Big Data" should be measured by their relative size, not absolute size.
- Probability sampling is an extremely powerful tool for ensuring data quality, but it is not the only strategy.

Three Enemies of Surveys and Data Science in General

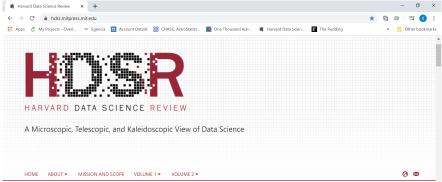
- Selection
- Selection

- Data quality is far more important than data quantity.
- Compensating for quality with quantity is a doomed game.
- It is far more important to reduce sampling and non-response biases than non-response rates.
- Invest in small but very high quality surveys than large surveys with uncontrolled/unknown quality.
- When combining datasets, relatively tiny but higher quality ones should be given far more weights than suggested by their sizes.
- For population inferences, "bigness" of "Big Data" should be measured by their relative size, not absolute size.
- Probability sampling is an extremely powerful tool for ensuring data quality, but it is not the only strategy.

Three Enemies of Surveys and Data Science in General

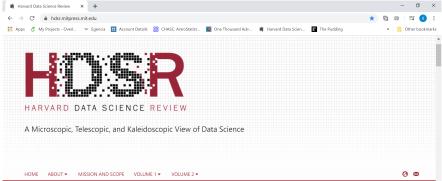
- Selection
- Selection
- Selection

More Lessons From ...



As an open access platform of the <u>Harvard Data Science Initiative</u>, the *Harvard Data Science Review* (HDSR) features **foundational thinking**, **research milestones**, **educational innovations**, **and major applications**. It aims to publish contents that help to define and shape data science as a scientifically rigorous and globally impactful multidisciplinary field based on the principled and purposed production, processing, parsing and analysis of data.

More Lessons From ...



As an open access platform of the <u>Harvard Data Science Initiative</u>, the <u>Harvard Data Science Review</u> (HDSR) features **foundational thinking**, research milestones, educational innovations, and major applications. It aims to publish contents that help to define and shape data science as a scientifically rigorous and globally impactful multidisciplinary field based on the principled and purposed production, processing, parsing and analysis of data.

- Open Access: https://hdsr.mitpress.mit.edu/
- Global Correspondents: One correspondent from each country/region (Contact: datasciencereview@harvard.edu)

Everything Data Science and Data Science for Everyone

PANORAMA

Overviews, Visions, and Debates

Teresa A. Sullivan

Coming To Our Census: How Social Statistics Underpin Our Democracy (And Republic)

Commentary by: Margo J. Anderson - Thomas R. Belin - Ray Chambers - Constance F. Citro - Reynolds Farley - Howard Hogan - Karen Kafadar - Dudley L. Poston, Jr. -Dennis Trewin

Rejoinder from: Teresa A. Sullivan

Daniel L. Oberski and Frauke Kreuter

Differential Privacy and Social Science: An Urgent Puzzle

<ロト < 部ト < 言ト < 言ト こ のの() 14 / 14

Everything Data Science and Data Science for Everyone

PANORAMA

Overviews, Visions, and Debates

Teresa A. Sullivan

Coming To Our Census: How Social Statistics Underpin Our Democracy (And Republic)

Commentary by: Margo J. Anderson - Thomas R. Belin - Ray Chambers - Constance F. Citro - Reynolds Farley - Howard Hogan - Karen Kafadar - Dudley L. Poston, Jr. -Dennis Trewin

Rejoinder from: Teresa A. Sullivan

Daniel L. Oberski and Frauke Kreuter

Differential Privacy and Social Science: An Urgent Puzzle

EFFECTIVE POLICY LEARNING

Data science for policy making and makers Column Co-Editors: Frauke Kreuter and Nancy Potok

Brian Moyer and Abe Dunn

Measuring the Gross Domestic Product (GDP): The Ultimate Data Science Project

RECREATIONS IN RANDOMNESS

Data science for leisure activities Column Editor: Mark Glickman

Ben Zauzmer Oscar Seasons: The Intersection of Data and the Academy Awards

190