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@ Built from more than 20 data sources in the LEHD (Longitudinal
Employer-Household Dynamics) system. For example:

@ American Community Survey: Surveys 3.5M households
covering about 2.7% of 128M households.

@ Administrative Records and Census: Combined job frame using
both Unemployment Insurance administrative records and the
BLS-specified Quarterly Census of Employment and Wages,
covering more than 98% of the US workforce.

» Unemployment Insurance record was never intended for statistical
inference purposes.
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@ We know that a 5% random sample is better than a 5%
non-random sample in measurable ways (e.g. bias, uncertainty
assessment).

e But is an 80% non-random sample “better” than a 5%
random sample in measurable terms? 90%7? 95%?7? 99%7?
(Jeremy Wu 2012)

@ “Which one should we trust more: a 1% survey with 60%
response rate or a non-probabilistic dataset covering 80% of
the population?” (Keiding and Louis, 2016, Journal of Royal
Statistical Society, Series B)
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Surveys: Infer a Population of N by a Sample of n << N

o Graunt (1662); Laplace (1882) @ Landmark paper: Neyman

@ The “intellectually violent (1934)
revolution” in 1895 by Anders Kizer, ¢ First implementation in 1940
Statistics Norway US Census led by Morris

Hansen
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Why and when can we ignore the population size N7?

@ Think about tasting soup

@ Stir it well, then a few bits
are sufficient regardless of
the size of the container!

o But what happens when we fail to stir (well)?
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A Fundamental Identity for Statistical Estimation

Population {X1, ..., X, }; Estimand: Population Average Xy
Record Indicator: R; = 1 if X is recorded, and R; = 0 otherwise.

"]
]
@ Sample size n=R; 4+ --- 4+ Ry.
o Estimator: Sample Average X,

Three and only three ways to control the estimation error:

X, — X, = Corr(R,X) x \/? X St.Dev(X)
—_—— —_——— —_———

Estimation Error Data Quality Data Quantity Problem Difficulty
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Assessing p, = Corr(R, X) via Cooperative Congressional
Election Study (50 states + Washington DC)
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@ Many (major) election survey results were published daily for
several months before Nov 8, 2016;

@ Roughly amounts to having opinions from (up to) f = 5 = 1% of
US voting eligible population: n = 2,300, 000;

@ Equivalent to about 2,300 surveys of 1,000 respondents each.

Effective Sample Size (ESS)

The size of a simple random sample with the same accuracy

When 5, = —0.005 = —1/200, and hence

f1 = 1 x 40000 ~ 404!

ESS= —— -
1-fp2 99

e A 99.98% reduction in n, caused by p, = —0.005.
o Butterfly Effect due to Law of Large Populations (LLP)

Relative Error = vVN — 15,
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LLP

: The more voters, the higher the bias in our prediction
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The Big Data Paradox:

If we do not pay attention to data quality, then

The bigger the data,

the surer we fool ourselves.
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Lessons Learned ...
e Data quality is far more important than data quantity.
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More Lessons From ...
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As an open access platform of the Harvard Data Science Initiative, the Harvard Data Science Review (HDSR) features foundational thinking,

research milestones, educational innovations, and major applications. It aims to publish contents that help to define and shape data science as
a scientifically rigorous and globally impactful multidisciplinary field based on the principled and purposed production, processing, parsing and

analysis of data. .

@ Open Access: https://hdsr.mitpress.mit.edu/
@ Global Correspondents: One correspondent from each

country/region (Contact: datasciencereview@harvard.edu)
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