European Commission

Directorate General Economic and Financial Affairs

Bridge Models for Now- and Short-term Forecasting Euro-area GDP Growth and Evaluation of Forecasts

> Andreas Reuter Business and consumer surveys and short-term forecast (DG ECFIN A4.2)

International Workshop on Short-term Statistics, 18-20 May 2015, Beijing

Why do we need (short-term) forecasting models?

...to overcome <u>time-lag</u> imposed by delayed release of official statistics

publication dates of real activity series: GDP growth: ref. quarter: Q1 Q2 April May June ... 28 May 28 May

Main types of (short-term) forecasting models

"factor-based" BMs

creating artificial

series (=factors),

summarising common

When to conduct nowcasts?

consumer surveys:

Nowcast:

"Nowcasts should be conjucted with energy of the important, nowcast 1; nowcast 3: nowcast 5: nowcast 5: nowcast-relevant data is released!"5th 15th

depends on predictor variables used: financial series: Business &

- stock market indices
- commodity prices
- interest rates
- etc.
- daily "release"
- convertible to monthly frequency (averaging)
- average on basis of first 15 days of a month is quite reliable

Nowcast:

series:

real activ

- monthly release
- available at end of reference month

real activity series:

- industrial production index
- retail sales

etc.

- mostly: monthly frequency
- available <u>after</u> reference month
 - e.g. industrial production (IP) 42 days

The EU's nowcasting models

a) the linear model

history:

- Iaunched in early 2009
- should be easy to administer >>"<u>classical</u>" bridge model
- should rely on survey data since:
 - real activity data published quite late
 - financial data lowly correlated with GDP
- testing predictive power of survey variables with broadest scope (i.e. sectoral confidence indicators, ESI)

only industry and services confidence significant

industry "classically" contributing services being largest sector of most to GDP variation economy

equation:

 $GDPqoq_{t} = c + \beta_{1}INDU_{t} + \beta_{2}INDU_{t-1} + \beta_{3}SERV_{t-1} + u_{t}$ *in-sample period:* period: 1996q1 to q_{t-1} predictors considered in terms of quarterly averages out-of-sample period: examples: period: q_t nowcast of q1, while predictors considered in terms of being at end of January: $INDU_{a1} = INDU_{January}$ quarterly averages of available nowcast of q1, while observations in q_t being at end of February: INDU_{q1} = avg. (INDU_{January}, INDU_{February}) 9 European etc.

Historical nowcasts:

b) the non-linear model

history:

- launched in 2010
- should remedy deficiencies of linear model in grasping sharpness of 2009-downturn

equation:

 assumption: relationship between survey data and GDP usually linear, but getting <u>non-linear</u> in case of extremely positive / negative GDP growth rates

fictitious example:

- increase in confidence indicator from +30 to +35 associated with 0.5% growth
- increase in confidence indicator from
 +35 to +40 associated with 1.0% growth

 $GDPqoq_{t} = c + \beta_{1}INDU_{t} + \beta_{2}INDU_{t-1}^{2}$ + β_3 SERV_{t 1} + u_t problem: confidence indicators can take on negative values quadratics would render all readings positive $GDPqoq_t = c + \beta_1 INDU_t * \beta_4 INDU_t$ + $\beta_2 INDU_{t-1} * \beta_5 | INDU_{t-1} |$ + $\beta_3 SERV_{t-1} * \beta_6 |SERV_{t-1}| + u_t$

solution: rendering linear model quadratic

nowcasting dates in-/ out-of-sample period:

identical to linear model

historical nowcasts:

Nowcasts for period 2007q2 to 2009q3, based on pseudo real-time estimation.

13

c) factor-based bridge model

history:

- Iaunched in 2015
- advantages:

nowcasting dates:

end of month 1, mid of month 2, end of month 2, etc. factor-based bridge modelling explained:

assumption:

- hidden (latent) structure in the vast data-set
- main variation patterns observed in a large data-set of potentially relevant variables can be summarised in a few artificially created variables (=factors)

constructing "factors":

- new variable (=factor 1) is built as linear combination of all series.
- constructed such that it extracts maximum variance from the variables in the data-set.
- fitted values (= "factorscores") are saved; they are the actual "factor"
- new factor 2 is built.
 - i) must be uncorrelated to factor 1
 - ii) extracts maximum remaining variance of the series
- ... procedure repeated several times

generating nowcasting equation:

- plugging all factors of chosen factor-set into regression explaining GDP
- applying general-to-specific procedure, deleting factors insignificant at 5% level

in the case of our model:

- procedure repeated 6 times, instructing programme to extract:
 - max.6 factors (factor-set 1)
 - max.5 factors (factor-set 2)
 - etc.
- regressing GDP (separately) on factor-set 1, factor-set 2, etc.
- identify equation having lowest AIC value and continue working with the corresponding factor-set

equation:

$GDPqoq_t = c + \beta_1 FACTOR 1_t + \beta_2 FACTOR 2_{t-1} + ... + u_t$

in-sample period:

- period: 1996q1 to q_{t-1}
 - predictors considered in terms of quarterly averages

out-of-sample period:

- period: q_t
- factors have quarterly frequency (i.e. no necessity of averaging monthly observations across quarter)

the data-set used:

comprises 29 variables*

financial variables:

- Dow Jones 65 composite average (US)
- Dow Jones 30 composite average (US)
- HWWI commodity price index (worldwide)

proxy of global environment

survey variables: ESI + experimental ESI unemployment rate sectoral confidence indicators industry survey questions: (total) past production production expectations (manufacturing) past orders (quarterly) services survey questions: past business situation (basic metals) past demand demand expectations retail trade survey questions: Expected business activity past demand (capital goods) demand expectations construction survey questions: past building activity employment expectations rationale: consumer survey questions: future financial position **GDP** volatility expected econ. situation Ifo world economic survey

(quarterly)

 \star Initial data-set comprised ca. 100 variables, but resulted in worse nowcasting performance.

real activity variables:

- industrial production index
- industrial production index
- industrial production index
- industrial production index (intermediate goods)
- industrial production index
- exports (intra-euro area)
- imports (intra-euro area)

- industry contributing most to
- early availability of IP (just 42 publication delay)

special "bridging" technique for out-of-sample period – the blocking approach:

- in linear / non-linear model: predictors considered in terms of quarterly averages of available observations in q_t e.g. forecasting Q1 at end of February:
- using average of variable's readings from January & February
 blocking approach: creates 3 quarterly series from a given monthly variable

	variable x	
Jan. 2014	0.10	
Feb. 2014	0.35	
Mar. 2014	0.70	
Apr. 2014	0.60	
May 2014	0.33	
Jun. 2014	0.27	
Jul. 2014	0.31	
Aug. 2014	0.87	
Sep. 2014	0.91	

	quarterly variable x 1		quarterly variable x <mark>2</mark>		quarterly variable x <mark>3</mark>
2014q1	0.10	2014q1	0.35	2014q1	0.70
2014q2	0.60	2014q2	0.33	2014q2	0.27
2014q3	0.31	2014q3	0.87	2014q3	0.91

variables featuring value for nowcast quarter, are included coincidentally other variables are included in terms of their lag

nowcast-evaluation: pseudo out-of-sample exercise

determining MAE/RMSE from pseudo out-of-sample

determining MAE/RMSE from pseudo out-of-sample

determining MAE/RMSE from pseudo out-of-sample

performance of EU nowcasting models:

- all models (except for non-linear model) are always better than AR benchmark
- linear model is best one at end of month 1
- factor-model is best one at end of months 2 and 3:
 - it can achieve this good performance even 15 days before the end of the month

23

- all models perform significantly worse in the crisis-period
- non-linear model is now the best-performing one in months 1 and 2
- in month 3, non-linear and factor model perform equally well
- in months 2 and 3, factor model performs particularly badly:
 - probably due to inclusion of lagged terms (helpful in smooth times, deterimental in volatile times)

European Commission

Thanks for your attention!

