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Composite Indicators

Composite Indicators

p Leading indicators

p Coincident indicators (but publication lead)



Composite Indicators: Uses

Composite Indicators: Uses

p Nowcasting

p Short term forecasting (e.g. next quarter)

p (Backcasting, revision prediction)



GDP Vintages

GDP Vintages

GDP Nowcast [2015.03.03]

The nowcast of GDP has been produced by the dynamic factor model suggested in Giannone et al. (2008).

The model has been estimated using 555 indicators related to the Swiss economy that are sub-divided into

the following 9 blocks: Purchasing Managers Index in manufacturing supplied by Credit Suisse (9 time

series, “PMGR”), consumer price indices (28, “CPI”), labor market indicators (6, “LABOUR”), producer

price indices (11, “PPI”), business tendency surveys in manufacturing collected at the KOF Swiss Economic

Institute (150, “CHINOGA”), exports and imports (249, “TRADE”), stock market indices (79, “STMKT”),

interest rates (20, “INT.RATE”), and exchange rates (3, “EXCH.RATE”). The forecasting performance

of the model was investigated in Siliverstovs and Kholodilin (2012) in a pseudo real-time simulation setup.

Siliverstovs (2012) investigates the forecasting performance of the model in real time.

Table 1 reports several most recent vintages of real GDP growth [quarterly, seasonally adjusted]. Table 2

reports the most recent nowcast for the current quarter and tracks record of past nowcasts and first releases

of GDP growth by SECO. Figures 1, 2 and 3 display real-time nowcasts for the years 2010-2011, 2012-2013

and for 2014 together with the first quarter of 2015, respectively. SECO estimates of GDP growth are shown

by straight lines (a bold line corresponds to the first release for a particular quarter).

Table 1: Vintages: Quarterly real GDP growth (seasonally adjusted, non-annualised)

BIP 2012Q2 2012Q3 2012Q4 2013Q1 2013Q2 2013Q3 2013Q4 2014Q1 2014Q2 2014Q3 2014Q4

2010Q1 0.99 0.99 0.99 0.99 1.07 1.06 1.04 1.04 0.91 0.92 0.92
2010Q2 0.90 0.90 0.89 0.88 0.83 0.83 0.82 0.82 0.89 0.90 0.90
2010Q3 0.70 0.70 0.69 0.69 0.63 0.62 0.59 0.60 0.36 0.34 0.34
2010Q4 0.97 0.96 1.00 1.01 0.94 0.96 1.02 1.02 0.86 0.87 0.86
2011Q1 0.25 0.29 0.28 0.26 0.28 0.28 0.27 0.26 0.38 0.38 0.39
2011Q2 0.50 0.50 0.50 0.52 0.41 0.40 0.38 0.38 0.56 0.57 0.57
2011Q3 -0.20 -0.25 -0.25 -0.24 -0.18 -0.19 -0.22 -0.21 -0.11 -0.14 -0.14
2011Q4 0.37 0.34 0.31 0.30 0.24 0.25 0.32 0.32 0.39 0.41 0.40
2012Q1 0.53 0.47 0.48 0.40 0.47 0.46 0.43 0.42 0.10 0.10 0.10
2012Q2 -0.06 -0.12 -0.11 -0.06 -0.04 -0.06 -0.08 -0.08 0.27 0.28 0.28
2012Q3 . 0.57 0.57 0.61 0.68 0.74 0.71 0.72 0.66 0.62 0.62
2012Q4 . . 0.24 0.26 0.30 0.28 0.39 0.39 0.38 0.41 0.40
2013Q1 . . . 0.56 0.58 0.55 0.60 0.60 0.15 0.16 0.16
2013Q2 . . . . 0.52 0.55 0.57 0.54 1.04 1.05 1.05
2013Q3 . . . . . 0.52 0.51 0.54 0.37 0.34 0.34
2013Q4 . . . . . . 0.16 0.18 0.50 0.52 0.52
2014Q1 . . . . . . . 0.46 0.44 0.45 0.46
2014Q2 . . . . . . . . 0.19 0.29 0.29
2014Q3 . . . . . . . . . 0.63 0.66
2014Q4 . . . . . . . . . . 0.60
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Target of forecasts

Target of forecasts

p Which frequency (quarterly growth, annual growth, quarterly
growth as an instrument for annual growth where quarterly
figures are only partly published)

p Which vintage/publication (first publication, last publication)



GDP Nowcasting at KOF

GDP Nowcasting at KOF

Table 2: Quarterly real GDP growth (seasonally adjusted, non-annualised)

Target Nowcast Actual (SECO)a Target Nowcast Actual (SECO)

2009Q1 2010Q1 0.57 [-0.16, 1.30] 0.41

Released on Released on 02.03.2010 01.06.2010

2009Q2 2010Q2 0.80 [ 0.07, 1.53] 0.85

Released on Released on 02.06.2010 02.09.2010

2009Q3 0.22 [-0.50, 0.94] 0.30 2010Q3 0.63 [-0.16, 1.42] 0.69

Released on 20.11.2009 01.12.2009 Released on 02.09.2010 02.12.2010

2009Q4 0.34 [-0.40, 1.07] 0.73 2010Q4 0.66 [-0.12, 1.44] 0.87

Released on 01.12.2009 02.03.2010 Released on 02.12.2010 01.03.2011

2011Q1 0.80 [0.02, 1.57] 0.25 2012Q1 0.36 [-0.45, 1.17] 0.68

Released on 03.03.2011 31.05.2011 Released on 02.03.2012 31.05.2012

2011Q2 0.61 [-0.17, 1.39] 0.36 2012Q2 0.24 [-0.57, 1.05] -0.06

Released on 05.06.2011 01.09.2011 Released on 01.06.2012 04.09.2012

2011Q3 0.00 [-0.77, 0.77] 0.22 2012Q3 0.14 [-0.59, 0.87] 0.57

Released on 06.09.2011 01.12.2011 Released on 04.09.2012 29.11.2012

2011Q4 -0.15 [-0.96, 0.66] 0.09 2012Q4 0.25 [-0.47, 0.97] 0.24

Released on 01.12.2011 01.03.2012 Released on 29.11.2012 28.02.2013

2013Q1 0.55 [-0.18, 1.28] 0.56 2014Q1 0.69 [-0.03, 1.41] 0.46

Released on 01.03.2013 30.05.2013 Released on 04.03.2014 28.05.2014

2013Q2 0.50 [-0.21, 1.21] 0.52 2014Q2 0.56 [-0.15, 1.27] -0.04 (0.19)b

Released on 03.06.2013 03.09.2013 Released on 29.05.2014 02(30).09.2014

2013Q3 0.44 [-0.27, 1.15] 0.52 2014Q3 0.39 [-0.33, 1.11] 0.63

Released on 03.09.2013 28.11.2013 Released on 02.09.2014 03.12.2014

2013Q4 0.55 [-0.18, 1.28] 0.16 2014Q4 0.28 [-0.41, 0.97] 0.60

Released on 28.11.2013 27.02.2014 Released on 03.12.2014 03.03.2015

continued . . .
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Forecatsing system of KOF

Forecatsing system of KOF

p Macroeconomic model consisting of Error Correction Models
and equations to ensure consistency. This model is used for
quarterly forecasts of various variables up to two years.
Consistency of the model forecasts is crucial.

p Nowcasting and short term forecasting with indicator model.
These forecasts are used to adjust the model forecasts in the
short term.



Composite Indicators

Composite Indicators

Some specific topics in quantification of composite indicators

p Target/reference series?

p Which series (e.g. GDP)
p Which transformation (e.g. annual growth, quarter-on-quarter

growth)
p Which release (first release, release after some revisions)

p Statistical methods (e.g. time series regressions)

p Frequency of indicators and target the same or different?
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Autoregressive Distributed Lag Model

Autoregressive Distributed Lag Model

With Yt the target variable at time t and INt an (composite)
indicator at time t one can try to estimate the model

Yt = α +
m∑

i=1

βiYt−i +
n∑

j=0

γj INt−j + εt ,

with error term ε.
This approach can be used to test whether the coefficients γ
are significant different from zero. In addition this model can be
used to calculate indicator based forecasts.



Error Correction Model

Error Correction Model

With Yt the target variable at time t and Xt an independent
variable. An Error Correction Model is

∆1Yt = α + ζZt−1 +
m∑

i=1

βi∆1Yt−i +
n∑

j=0

γj∆1Xt−j + εt ,

with error term ε and

Zt = Yt − bXt .

∆1Y will respond negatively to Z since Z is the deviation from
the long run equilibrium state (Z = 0). ζ gives the speed of
adjustment to the equilibrium.



Error Correction Model

Error Correction Model

p Estimates short term and long term effects

p Applications to stationary and nonstationary data

p Estimation with OLS



Error Correction Model

Error Correction Model

p Motivating ECM with cointegrated data

p Handles nonstationary cointegrated variables
p Two step estimation procedure
p Models with only differenced variables may ignore long term efects

p Motivating ECM with stationary data

p Long and short term effects
p ECM and ADL are equivalent



Mixed Frequencies

Mixed Frequencies

Often time series with different frequency are used for
forecasting. So one may want forecast quarterly GDP with a
monthly composite indicator. The objective is to forecast a

lower-frequency variable, Y , sampled at periods denoted by
time index t . Past realizations of the lower-frequency variable
are denoted by the lag operator, L. For example, if Yt is the
quarterly GDP, then the GDP one quarter prior would be the
first lag of Yt , LYt = Yt−1, two months prior would be
L2Yt = Yt−2, and so on.



Mixed Frequencies

Mixed Frequencies

In addition to lags of Y , we are interested in the information
content of a higher-frequency variable, X , sampled m times
between samples of Y (e.g., between t − 1 and t). LHF denotes
the lag operator for the higher-frequency variable. If Xt is the
monthly indicator, then LHF Xt denotes the indicator value of the
last month of the previous quarter.



Time Aggregation

Time Aggregation
One solution to the problem of mixed sampling frequencies is to
convert higher-frequency data to match the sampling rate of the
lower-frequency data. One can for example calculate averages
of X between samples of the low frequency variable:

X̄t =
1
m

m∑
k=1

Lk
LHXt .

With the two variables in the same time domain on can use a
regression model for forecasting:

Yt = α +

p∑
i=1

βiLiYt +
n∑

j=1

γjLj X̄t + εt



Time Aggregation

Time Aggregation

The standard aggregation methods depend on the stock/flow
nature of the variables and, typically, it is the average of the
high-frequency variables over one low-frequency period for
stocks, and the sum for flows.

Taking the latest available value of the higher frequency
variable is another option for both stock and flow variables. The
underlying assumption is that the information of the previous
high-frequency periods is reflected in the latest value,
representative of the whole low-frequency period.



Bridge Models

Bridge Models

With time aggregation often the problem occurs, that at a
specific time point not all of the high-frequency data is already
available. The Bridge Model Approach consist of two steps:

1. Forecasting the high-frequency series with time series methods
(e.g. ARMA) for all time points which are needed for time
aggregation.

2. An ADL model is used at the low frequency to obtain forecasts
for Y .



Step Functions

Step Functions

The time aggregation method assumes the slope coefficients
on each of the individual observations of X are equal.
Alternatively, one could assume that each of the slope
coefficients for each k sampling of X are unique. This model,
including one lag of the predictor X (n = 1), is

Yt = α +

p∑
i=1

βiLiYt +
m∑

k=1

γkLk
HF Xt + εt .

The model can be estimated with OLS.



Step Functions

Step Functions

Once the model is extended to multiple lags, the number of
parameters could become quite large (especially, when the
high frequency data is of higher frequency than monthly). A
more general model is

Yt = α +

p∑
i=1

βiLiYt +
m·n∑
k=1

γkLk
HF Xt + εt

which allows for up to n lower-frequency lags.So the problem
with this type of models is, that the number of coefficient can
get huge.



MIDAS (Mixed Data Sampling)

MIDAS (Mixed Data Sampling)

The time-averaging model is parsimonious but discards any
information about the timing of innovations to higher-frequency
data. The step-weighting model preserves the timing
information but requires the user to estimate a potentially large
number of parameters.



MIDAS (Mixed Data Sampling)

MIDAS (Mixed Data Sampling)

To solve the problem of parameter proliferation while preserving
some timing information MIDAS models can be used:

Yt = α +

p∑
i=1

βiLiYt +
m∑

k=1

Φ(k ; θ)Lk
HF Xt + εt .

where the function Φ(k ; θ) is a polynomial that determines the
weights for temporal aggregation. The weighting function,
Φ(k ; θ) , can have any number of functional forms; the desire
here is to achieve flexibility while maintaining parsimony.



MIDAS (Mixed Data Sampling)

MIDAS (Mixed Data Sampling)

Suggestions for Φ(k ; θ) are often a beta function formulation or
an exponential Almond specification. The later is

Φ(k ; θ1, θ2) =
exp(θ1k + θ2k2)∑m
j=1 exp(θ1j + θ2j2)

In this case, simple time averaging is obtained when
θ1 = θ2 = 0.
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Turning Points in the Business Cycle

Turning Points in the Business Cycle

Generally, practitioners in business cycle analysis sometimes
assume that economic cycles are constituted by an alternation
of two conjonctural phases, namely a phase of high economic
activity (or expansion) and a phase of low economic activity (or
contraction). These phases can be defined in classical, growth
or growth rate cycles. Sometimes also or than two phases are
considered.

The objective of parametric models is to provide, at each date t ,
an estimated probability of being in a specific phase.



Binary response models

Binary response models

If there is a reference series and a if the phases (dating) of the
reference series are available a binary variable can defined that
takes the value 1 when the economy belongs to one phase and
0 when it belongs to the other phase. This 0− 1 variable can be
used for logit or probit regressions.



Logistic Regression

Logistic Regression

Let Y be a binary variable with values 0 and 1 and X a
predictor (e.g. a composite indicator), the the logistic
regression model (logit) is

Log
[

prob(Yt = 1)

1− prob(Yt = 1)

]
= a + bxt . (1)

The model can be extended to contain lags of X and lags of Y .



Markov Switching

Markov Switching

Markov switching models consist to the class of nonlinear time
series models. They base on the idea of probability switching
between various states (e.g. upswing and downswing). In the
following Markov switching autoregressive models are
discussed. Markov switching regression models use also
explanatory variables.



Markov Switching

Markov Switching

Hamilton (1989) considers the Markov switching autoregressive
(MSA) model. Here the transition is driven by a two-state
Markov chain. A time series xt follows an MSA model if it
satisfies:

xt =

{
c1 +

∑p
i=1 φ1,ixt−i + a1,t if st = 1,

c2 +
∑p

i=1 φ2,ixt−i + a2,t if st = 2,
(2)

where st assumes values in {1,2} and is a first-order Markov
chain with transition probabilities

P(st = 2|st−1 = 1) = w1, P(st = 1|st−1 = 2) = w2. (3)



Markov Switching

Markov Switching

The innovational series {a1,t} and {a2,t} are sequences of iid
random variables with mean zero and finite variance and are
independent of each other. A small wi means that to model
tends to stay longer in state i . In fact, 1/wi is the expected
duration of the process to stay in state i .



Ifo Business Cycle Traffic Lights

Ifo Business Cycle Traffic Lights

Source: Calculations of the Ifo Institute.
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Notation

Notation

Let {yt}Tt=1 a time series being forecasted and {ŷit}Tt=1 and
{ŷjt}Tt=1 two forecasts. Let the associated forecast errors be
{eit}Tt=1 and {ejt}Tt=1.



Measures of prediction error

Measures of prediction error
Mean prediction error:

MPE(ŷi) =
1
T

T∑
t=1

eit

Mean absolute prediction error:

MAPE(ŷi) =
1
T

T∑
t=1

|eit |

Mean squared prediction error:

MSPE(ŷi) =
1
T

T∑
t=1

(eit )
2



GDP Forecasts fro Germany

GDP Forecasts fro Germany
Year IMF GD EU SVR OECD JWB Realized

1991 3.3 3.0 3.1 3.0 3.0 3.0 3.4
1992 2.4 2.0 2.2 2.0 1.8 2.0 1.5
1993 2.6 0.5 -0.5 0.0 0.7 0.0 -1.9
1994 1.1 1.0 0.0 0.0 0.4 1.0 2.3
1995 2.7 2.5 3.0 3.0 2.8 3.0 1.9
1996 2.9 2.5 2.4 2.0 3.2 2.3 1.9
1997 2.3 2.5 2.2 2.5 2.2 2.5 2.2
1998 3.0 2.8 3.2 3.0 3.0 3.0 2.8
1999 2.6 2.3 2.2 2.0 2.2 2.8 1.5
2000 2.5 2.7 2.6 2.7 2.3 2.6 3.0
2001 3.2 2.7 2.8 2.8 2.7 2.8 0.6
2002 0.8 1.3 0.7 0.7 1.0 0.8 0.2
2003 2.0 1.4 1.4 1.0 1.5 1.1 -0.1
2004 2.0 1.7 1.6 1.5 1.4 1.8 1.5
2005 1.6 1.5 1.5 1.4 1.4 1.3 0.9
2006 1.0 1.2 1.2 1.0 1.6 1.6 2.7
2007 1.2 1.4 1.2 1.8 1.7 1.9 2.5
2008 2.3 2.2 2.1 1.9 2.1 1.7 1.3
2009 -0.1 0.2 0.0 0.0 -0.9 -2.0 -5.0
2010 0.4 1.2 1.2 1.6 1.6 1.4 3.6
2011 1.9 2.0 2.2 2.2 2.5 2.3 3.0
2012 1.2 0.8 0.8 0.9 0.4 0.7 0.7
2013 0.8 1.0 0.8 0.8 0.5 0.4 0.4
Average 
forecast 
horizon 
(days)

478 439 422 417 403 353

Source: Döhrn (2015)



GDP Forecasts fro Germany

GDP Forecasts fro Germany

IMF GD EU SVR OECD JWB
MPE 0.56 0.41 0.30 0.30 0.36 0.31
MAPE 1.37 1.13 1.11 1.03 1.06 0.91
MSPE 3.51 2.48 2.38 2.24 2.05 1.42

Source: Döhrn (2015)
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Measures of prediction error

Measures of prediction error

Signal to noise ratio:

SNR(ŷi) =
MSPE(ŷi)

σ2
y



GDP Forecasts fro Germany

GDP Forecasts fro Germany

Mean Squared Error Noise-to-Signal-Ratio

Private Consumption 1.16 1.73

Public Consumption 0.91 0.84

Equipment Investments 47.70 0.77

Construction Investments 8.94 0.75

Imports 22.22 0.66

Exports 18.87 0.79

GDP 2.48 0.73

Source: Döhrn (2015)



Comparision of forecast errors

Comparision of forecast errors

Theil Coefficient

Theilij =
MSPE(ŷi)

MSPE(ŷj)

Denote the loss associated with forecast error et be L(et );
hence the time-t quadratic loss would be L(et ) = e2

t . The time-t
loss differential between forecast i and j is then

dijt = L(eit )− L(ejt )

and means of the loss differential can be calculated. Typical
loss function are squared or absolute loss. But for example also
asymmetric loss can be calculated.



Diebold Mariano Test

Diebold Mariano Test

The Diebold Mariano test is an asymptotic test of the
hypothesis that the mean of the loss differential is zero. In
practice the test can be calculated by regression of the
observed loss differential on an intercept, using
heteroscedasticity and autocorrelation robust (HAC) standard
errors for testing significance of the intercept.

One can potentially extend the regression to condition on
additional variables that may explain the loss differential,
thereby moving from an unconditional to a conditional expected
loss perspective. For example, comparative predictive
performance may differ by stage of the business cycle, in which
case one might include a 0-1 business cycle chronology
variable in the HAC regression.



Diebold Mariano Test

Diebold Mariano Test
The common test takes the estimated the estimated intercept α
and divide it by the HAC estimated standard deviation sα. The
test statistic is then

DM =
α

sα
This statistic is asymptotically standard normal distributed.
In small small samples (few forecasts) the Null hypothesis is
rejected to often, so an small sample correction can be used.
With T the number of forecasts an h the forecast horizon the
correction is

MDM = DM ·

√
N + 1− 2h + h(h−1)

N
N

In addition it is proposed to use the t-distribution with T − 1
degrees of freedom to calculate critical values.



Measures of prediction error for a binary variable

Measures of prediction error for a binary variable
When the target variable, rt , is a binary indicator while the
forecast is a probability of a state, pt , similar techniques can be
used as in the case of continuous variables.
The quadratic probability score is:

QPS(p) =
1
T

T∑
t=1

2(pt − rt )
2

QPS ranges between [0,2] with 0 perfect accuracy. A similar
loss function that assigns more weight to larger forecast errors
is the log probability score:

LPS(p) =
1
T

T∑
t=1

((1− rt ) log(1− pt ) + rt log pt )

The range of LPS is [0,∞] with 0 perfect accuracy.



Measures of prediction error for a binary variable

Measures of prediction error for a binary variable

Contingency tables can also be used for a descriptive
evaluation of the methodology in the case of binary forecasts
and outcomes. They provide a summary of the percentage of
correct predictions, missed signals (e.g. no prediction of
slowdown when it takes place), and false alarms.
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