FISIM and Risk
(and Liquidity transformation)

Kim Zieschang

International Monetary Fund
FISIM and Risk
(and Liquidity transformation)

Kim Zieschang
ISWGNA FISIM Task Force
July 5, 2011
What is the 2008 SNA’s ‘FISIM’?

• FISIM = Financial Intermediation Services Indirectly Measured
 – A large part of the output at current prices of important types of financial corporations
• Depends on a reference rate of interest, rr
• For deposits $s_D = (rr - r_D) D$
• For loans $s_L = (r_L - rr) L$
• Problem: how to determine rr?
Three main camps on the reference rate

• 1993 SNA: riskless and short, i.e., the interbank rate

• Basu, Colangelo, Fernald, Inklaar, and Wang: safe and short for deposits and risk-loaded and long for loans
 – A reference rate for every financial asset, every loan account
 – Essentially eliminates FISIM on loans and maintains a low FISIM on deposits: significant reductions in US and EU FISIM

• Split the difference, the reference rate is the average of the deposit and loan interest rates
Considerations on the reference rate

• Receipts = expenditures
• Output = input cost
• There are individual reference rates for all asset and liability instruments
• The reference rate calculation covers all assets and all liabilities including owners’ capital
• The return on owners’ capital is residually determined
Notation

<table>
<thead>
<tr>
<th>Concept</th>
<th>Flow</th>
<th>Liability</th>
<th>Asset</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output (total, in current prices)</td>
<td>$P1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Directly priced output prices (m vector)</td>
<td>p</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Directly priced output quantities (m vector)</td>
<td>y</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediate consumption</td>
<td>$P2$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compensation of employees</td>
<td>$D1$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other taxes on production</td>
<td>$D29$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Consumption of fixed capital</td>
<td>$P51c$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonfinancial assets</td>
<td></td>
<td></td>
<td>AN</td>
</tr>
<tr>
<td>Financial instruments (k vector)</td>
<td></td>
<td>AFL</td>
<td>AFA</td>
</tr>
<tr>
<td>Deposits</td>
<td></td>
<td>$AF2DL$</td>
<td>$AF2DA$</td>
</tr>
<tr>
<td>Debt securities</td>
<td></td>
<td>$AF3L$</td>
<td>$AF3A$</td>
</tr>
<tr>
<td>Loans</td>
<td></td>
<td>$AF4L$</td>
<td>$AF4A$</td>
</tr>
<tr>
<td>Equity capital</td>
<td></td>
<td>$AF5CL$</td>
<td>$AF51A$</td>
</tr>
</tbody>
</table>
Derivation

- Receipts = expenditures (including financial income and expenditure, whole balance sheet)

\[p' y + r'_{AFA} AFA \equiv P2 + D1 + D29 - P51c + r'_{AFL} AFL \]

- To transform to output = input cost
 - subtract product of financial asset instrument reference rates times asset instruments from both sides
 - add product of liability instrument reference rates times liability instruments to both sides
 - Collect margin terms and direct service charges on the LHS
Derivation of rr from multiple reference rates, $r \hat{h}at$

- Output = input cost

\[p' y + (\hat{r}_{AFL} - r_{AFL})' AFL + (\hat{r}_{AFA} - \hat{r}_{AFA})' AFA = P2 + D1 + D29 - P51c \]

or

\[P1 = P2 + D1 + D29 - P51c + (\hat{r}'_{AFL} AFL - \hat{r}'_{AFA} AFA) \]

\[= P2 + D1 + D29 - P51c + rr (i' AFL - i' AFA) \]

\[= P2 + D1 + D29 - P51c + rr \cdot AN \]

where

\[rr \equiv \frac{\hat{r}'_{AFL} AFL - \hat{r}'_{AFA} AFA}{i' AFL - i' AFA} = \frac{\hat{r}'_{AFL} AFL - \hat{r}'_{AFA} AFA}{AN} \]

\[AN \equiv i' AFL - i' AFA \]
Reasonableness test of multiple reference rates $r\hat{\text{a}}t$

- Liability reference rates cannot be so low, nor asset reference rates so high, that the numerator of

$$rr \equiv \frac{\hat{r}'_{AFL} AFL - \hat{r}'_{AFA} AFA}{i'_{AFL} - i'_{AFA}} = \frac{\hat{r}'_{AFL} AFL - \hat{r}'_{AFA} AFA}{AN}$$

becomes too small (or even negative), and vice versa

- rr is a weighted average of specific reference rates, reminiscent of 2008 SNA para 6.166, but not quite the same thing
 - However, it is very close, as explained below, when many of the observed rates equal the reference rates
Equivalence of single and multiple reference rate approaches

- Three equivalent ways of writing output = input cost

\[p'y + (\hat{r}_{AFL} - r_{AFL})'AFL + (r_{AFA} - \hat{r}_{AFA})'AFA = P2 + D1 + D29 - P51c \]
\[+ (\hat{r}'_{AFL}AFL - \hat{r}'_{AFA}AFA) \]

\[p'y + (r'_{AFA}AFA - r'_{AFL}AFL) + (\hat{r}'_{AFL}AFL - \hat{r}'_{AFA}AFA) = P2 + D1 + D29 - P51c \]
\[+ (\hat{r}'_{AFL}AFL - \hat{r}'_{AFA}AFA) \]

\[p'y + r'_{AFA}AFA - r_{AFL}AFL + rr(\hat{r}'_{AFL} - \hat{r}'_{AFA}) = P2 + D1 + D29 - P51c \]
\[+ rr(\hat{r}'_{AFL} - \hat{r}'_{AFA}) \]
Equivalence of single and multiple reference rate approaches

• The last way of writing output = input cost reduces to

\[p'y + r'_{AFA}AFA - r_{AFL}AFL + rr\left(i'_{AFL} - i'_{AFA}\right) = P2 + D1 + D29 - P51c \]

\[+rr\left(i'_{AFL} - i'_{AFA}\right) \]

\[p'y + r'_{AFA}AFA - r_{AFL}AFL + rr \cdot AN = P2 + D1 + D29 - P51c \]

\[+rr \cdot AN \]

• Subtracting the financing cost of nonfinancial capital from both sides, the return on equity is implicitly (residually) determined by

\[p'y + r'_{AFA}AFA - r_{AFL}AFL = P2 + D1 + D29 - P51c \]
Determining the r hats [1]

- Return on equity is independent of the reference rate, so is predetermined (2008 SNA compliant)
- Reference rate on securities equals observed rate on securities (no FISIM, asset or liability), so is predetermined (2008 SNA compliant)
- Reference rate on deposits is greater than observed rate (2008 SNA deposit FISIM)
 - May be safely determined using liability side on-balance-sheet security rates
Determining the $r \ hats$ [2]

- Reference rate on loans is less than observed rate (2008 SNA loan FISIM, asset and liability)
 - May be understated using asset side *market* security rates
 - Cost of funds (average of liability reference rates, *including return on equity*) a reasonable approach instead:
 \[
 rr_{AFA} \equiv \frac{\hat{r}_{AFA}^{\prime} AFA}{\hat{r}_{AFA}^{\prime} AFA} = \frac{\hat{r}_{AFL}^{\prime} AFL}{\hat{r}_{AFL}^{\prime} AFL}
 \]

However, the cost of funds will be overstated by the impact of loan FISIM on the liability side unless this is removed from loan liability costs.
Determining rr directly

- Operating lease rates less depreciation should equal finance charge on nonfinancial capital and thus could determine rr
 - Produced nonfinancial assets
 - Structures by type
 - Equipment by type
 - Nonproduced nonfinancial assets
 - Land (depreciation = 0)
 - No need for determining financial instrument by financial instrument margins, but would be about as bad—lease rates by nonfinancial asset type
Concluding remarks

• To compute aggregate FISIM, you need only one reference rate per sector
 – Equals financing cost of nonfinancial capital
• To compute and allocate deposit FISIM, you need the deposit reference rate
 – On-balance sheet security equivalent
 – Other approaches?
• To compute and allocate loan FISIM, you need the loan reference rate
 – Cost of funds: average of liability reference rates
 – Other approaches?