Meeting of the Task Force on Financial Intermediation Services Indirectly Measured (FISIM) New York, 5-6 July 2011 DC2 Building – 16th Floor Conference Room (DC2-1684)

FISIM and Risk (and Liquidity transformation)

Kim Zieschang

International Monetary Fund

FISIM and Risk (and Liquidity transformation)

Kim Zieschang ISWGNA FISIM Task Force July 5, 2011

What is the 2008 SNA's 'FISIM'?

- FISIM = Financial Intermediation Services Indirectly Measured
 - A large part of the *output at current prices* of important types of financial corporations
- Depends on a *reference rate of interest, rr*
- For deposits $s_D = (rr r_D)D$
- For loans $s_L = (r_L rr)L$
- Problem: how to determine *rr*?

Three main camps on the reference rate

- 1993 SNA: riskless and short, i.e., the interbank rate
- Basu, Colangelo, Fernald, Inklaar, and Wang: safe and short for deposits and risk-loaded and long for loans
 - A reference rate for every financial asset, every loan account
 - Essentially eliminates FISIM on loans and maintains a low FISIM on deposits: significant reductions in US and EU FISIM
- Split the difference, the reference rate is the average of the deposit and loan interest rates

Considerations on the reference rate

- Receipts = expenditures
- Output = input cost
- There are individual reference rates for all asset and liability instruments
- The reference rate calculation covers all assets and all liabilities including owners' capital
- The return on owners' capital is residually determined

Notation

Table 1. Notation

Concept	Flow	Liability	Asset
Output (total, in current prices)	P1		
Directly priced output prices (<i>m</i> vector)	p		
Directly priced output quantities (<i>m</i> vector)	У		
Intermediate consumption	P2		
Compensation of employees	D1		
Other taxes on production	D29		
Consumption of fixed capital	P51c		
Nonfinancial assets			AN
Financial instruments (k vector)		AFL	AFA
Deposits		AF2DL	AF2DA
Debt securities		AF3L	AF3A
Loans		AF4L	AF4A
Equity capital		AF5CL	AF51A

Derivation

 Receipts = expenditures (including financial income and expenditure, whole balance sheet)

 $p'y + r'_{AFA}AFA \equiv P2 + D1 + D29 - P51c + r'_{AFL}AFL$

- To transform to output = input cost
 - subtract product of financial asset instrument reference rates times asset instruments from both sides
 - add product of liability instrument reference rates times liability instruments to both sides
 - Collect margin terms and direct service charges on the LHS

Derivation of *rr* from multiple reference rates, *r hat*

• Output = input cost

 $p'y + (\hat{r}_{AFL} - r_{AFL})' AFL + (r_{AFA} - \hat{r}_{AFA})' AFA = P2 + D1 + D29 - P51c + (\hat{r}_{AFL}' AFL - \hat{r}_{AFA}' AFA)$

$$P1 = P2 + D1 + D29 - P51c + (\hat{r}'_{AFL}AFL - \hat{r}'_{AFA}AFA)$$

= P2 + D1 + D29 - P51c + rr(t'AFL - t'AFA)
= P2 + D1 + D29 - P51c + rr \cdot AN

where

$$rr \equiv \frac{\hat{r}_{AFL}'AFL - \hat{r}_{AFA}'AFA}{\iota'AFL - \iota'AFA} = \frac{\hat{r}_{AFL}'AFL - \hat{r}_{AFA}'AFA}{AN}$$
$$AN \equiv \iota'AFL - \iota'AFA$$

Reasonableness test of multiple reference rates *r hat*

 Liability reference rates cannot be so low, nor asset reference rates so high, that the numerator of

$$rr \equiv \frac{\hat{r}_{AFL}'AFL - \hat{r}_{AFA}'AFA}{\iota'AFL - \iota'AFA} = \frac{\hat{r}_{AFL}'AFL - \hat{r}_{AFA}'AFA}{AN}$$

becomes too small (or even negative), and vice versa

- *rr* is a weighted average of specific *reference* rates, reminiscent of 2008 SNA para 6.166, but not quite the same thing
 - However, it is very close, as explained below, when many of the observed rates equal the reference rates

Equivalence of single and multiple reference rate approaches

 Three equivalent ways of writing output = input cost

$$p'y + (\hat{r}_{AFL} - r_{AFL})' AFL + (r_{AFA} - \hat{r}_{AFA})' AFA = P2 + D1 + D29 - P51c + (\hat{r}_{AFL}' AFL - \hat{r}_{AFA}' AFA)$$

$$p'y + (r'_{AFA}AFA - r'_{AFL}AFL) + (\hat{r}'_{AFL}AFL - \hat{r}'_{AFA}AFA) = P2 + D1 + D29 - P51c + (\hat{r}'_{AFL}AFL - \hat{r}'_{AFA}AFA)$$

$$p'y + r'_{AFA}AFA - r_{AFL}AFL + rr(t'AFL - t'AFA) = P2 + D1 + D29 - P51c + rr(t'AFL - t'AFA)$$

Equivalence of single and multiple reference rate approaches

 The last way of writing output = input cost reduces to

 $p'y + r'_{AFA}AFA - r_{AFL}AFL + rr(t'AFL - t'AFA) = P2 + D1 + D29 - P51c$ + rr(t'AFL - t'AFA)

$$p'y + r'_{AFA}AFA - r_{AFL}AFL + rr \cdot AN = P2 + D1 + D29 - P51c + rr \cdot AN$$

 Subtracting the financing cost of nonfinancial capital from both sides, the return on equity is implicitly (residually) determined by

 $p'y + r'_{AFA}AFA - r_{AFL}AFL = P2 + D1 + D29 - P51c$

Determining the *r hats* [1]

- Return on equity is independent of the reference rate, so is predetermined (2008 SNA compliant)
- Reference rate on securities equals observed rate on securities (no FISIM, asset or liability), so is predetermined (2008 SNA compliant)
- Reference rate on deposits is greater than observed rate (2008 SNA deposit FISIM)
 - May be safely determined using liability side onbalance-sheet security rates

Determining the *r* hats [2]

- Reference rate on loans is less than observed rate (2008 SNA loan FISIM, asset and liability)
 - May be understated using asset side *market* security rates
 - Cost of funds (average of liability reference rates, including return on equity) a reasonable approach instead: $\hat{\gamma}' = AEA = \hat{\gamma}' = AEI$

$$rr_{AFA} \equiv \frac{\hat{r}_{AFA}^{\prime}AFA}{\iota^{\prime}AFA} = \frac{\hat{r}_{AFL}^{\prime}AFL}{\iota^{\prime}AFL}$$

However, the cost of funds will be overstated by the impact of loan FISIM on the liability side unless this is removed from loan liability costs

Determining *rr* directly

- Operating lease rates less depreciation should equal finance charge on nonfinancial capital and thus could determine *rr*
 - Produced nonfinancial assets
 - Structures by type
 - Equipment by type
 - Nonproduced nonfinancial assets
 - Land (depreciation = 0)
 - No need for determining financial instrument by financial instrument margins, but would be about as bad—lease rates by nonfinancial asset type

Concluding remarks

- To compute aggregate FISIM, you need only one reference rate per sector
 - Equals financing cost of nonfinancial capital
- To compute and allocate deposit FISIM, you need the deposit reference rate
 - On-balance sheet security equivalent
 - Other approaches?
- To compute and allocate loan FISIM, you need the loan reference rate
 - Cost of funds: average of liability reference rates
 - Other approaches?