### The Impact of Processing Administrative Sources on the Quality of Statistical Outputs

Martin Beaulieu,

Chief - Quality and Data Ethics Secretariat, Statistics Canada Global Seminar on Administrative and Other Data Sources November 14, 2023



Delivering insight through data for a better Canada



## Outline

- Context
  - Quality of inputs Canadian context
  - Quality of process
- Statistics Canada use-case: Canadian Housing Statistics Program (CHSP)
  - Administrative sources in Canada
  - $\circ$  Processing required to integrate sources and derive estimates for CHSP
  - $\circ$  Quality Indicators



## **Administrative Sources in Canada**

- Three levels of government:
  - Federal (national)
  - 10 provinces and 3 territories
  - Over 5000 municipalities (local, established under provincial/territorial authority
- Level of jurisdiction changes on the subject:
  - For example, education is a provincial jurisdiction, defense is federal, transportation is shared





Statistics Statistique Canada

# **Quality of Process**

- Quality of input is essential for any statistical program
- Administrative sources are usually of good quality
- Integrating multiple sources from different jurisdictions can be complex:
  - Concepts definitions may vary
  - Different code sets may be applied for a same variable
  - Processing to standardize to federal definitions
    - For example, Geography has to be standardized to the Census definitions.
- Each step of the process to produce final estimates can potentially introduce errors



## **Concrete Example**

- Canadian Housing Statistics Program (CHSP)
  - Administrative census of residential properties and their owners.
- Disseminates statistical information about the residential housing sector at the municipal level
  - Number and type of properties
  - Assessment value
  - Total living area
  - Property use (owner-occupied or not)
  - Residency ownership (resident or non-resident)
- Integration of multiple sources of administrative data
  - Provincial and territorial land registries
  - Tax data of property owners (city-level)
  - Business Register
  - Census of Population
  - Longitudinal Immigration Database





#### **Processing required**

| Geography/domains,        | Individual Quality indicator               |
|---------------------------|--------------------------------------------|
| estimates                 |                                            |
| Geography                 | Geocoding rate, Geocoding confidence score |
| Property Type             | Coding Rate                                |
| Property Use              | Linkage Error Rate                         |
| Residency Ownership       | Linkage Error Rate                         |
| Period of Construction    | Coding Rate                                |
| Total Living Area         | Reporting Rate, Inclusion Rate             |
| Residency Participation   | Linkage Error Rate                         |
| Property Assessment Value | Reporting Rate                             |





#### **Quality Indicators**

- Frameworks such as the Total Survey Error Framework and its extensions (Zhang, 2012) and (Reid et al., 2017) as well as the UN-NQAF Manual for official statistics and Statistics Canada's Quality Guidelines provide guidance on quality indicators to derive at different steps of the data processing
- How can these indicators be used to communicate quality in a way that is clear for the users?
  - The CHSP had to objective to have one single indicator with each estimate to inform users on the quality of this estimate
  - With multiple indicators, it becomes a multi-dimensional problem to solve



#### **Quality Indicators**

- Clustering techniques were used to address this challenge
- Domains for which estimates have a similar overall level of quality are grouped together
  - The steps to develop the Composite Quality Indicators (CQI) are as follow:
    - 1. Standardization of quality indicators
    - 2. Weighting of quality indicators (using ANOVA results)
      - Under the principle that a classification error in a domain variable has more impact on the quality of an estimate if the domain variable is strongly associated with the estimated parameter
    - 3. K-means clustering
- Once clustering has been completed, a global score for each cluster is calculated to draw a profile of each cluster to better understand how they differ from each other in terms of the quality indicator values.
- The cluster with the highest global score is assigned the value A, the cluster with the second highest global score is assigned the value B, etc.
- Data Visualization can help interpret the results



#### **Quality Indicators**

- CQI conclusion and limitations:
  - Clustering is simple and fast way to summarize a large number of quality indicators in a categorical quality rating.
  - The purpose of the CQI is to provide indication of the overall quality of an estimate to enable its use, but will not enable inference
  - Ability to interpret the results is key. Since the CQI does not provide an absolute value of quality, is important to explain that the CQI assigns a level of quality to a group of domains relative to the other groups.
  - Despite the relative complexity of interpretation of the CQI compared to indicators based on CVs, this method provides a good indication of the overall quality of an estimate and gives a better view of the global picture of the quality of data processing steps.
- For more details on the CQI method: <u>Development of a composite</u> <u>quality indicator for statistical products derived from administrative</u> <u>sources (statcan.gc.ca)</u>



#### Thank you/ Merci

Pour de plus amples renseignements, veuillez contacter:

For more information, please contact:

martin-j.beaulieu@statcan.gc.ca

