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Abstract 
 

 In the present chapter, we consider the effects of complex sample design used in practice 
in most sample surveys on the analysis of the survey data. The cases in which the design may or 
may not influence analysis are specified and the basic concepts involved are defined. Once a 
model for analysis has been set up, we consider the possible relationships between the model and 
the sample design. When the design may have an effect on the analysis and additional 
explanatory variable related to the design cannot be added to the analytical model, two basic 
methodologies may be used: classical analysis, which could be modified to take the design into 
account; or a new analytical tool, which could be developed for each design. Different 
approaches are illustrated with real-data applications to linear regression, linear models, and 
categorical data analysis.  
  
Key terms:  complex sample design, analysis of survey data, linear regression, linear models, 
categorical data analysis, model-based analysis. 
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A.  Introduction 
 

1.  Sample design and data analysis 
 

1. The primary purpose of the vast majority of sample surveys, both in developed and in 
developing countries, is a descriptive one, namely, to provide point and interval estimates of 
descriptive measures of a finite population, such as means, medians, frequency distributions and 
cross-tabulations of qualitative variables. Nevertheless, as demonstrated in chapters XV-XIX and 
as will be demonstrated in chapter XXI, there is increasing interest in making inferences about 
the relationships among the variables investigated, as opposed to simply describing phenomena.  
 
2. In the present chapter, we shall try to assess the effects of commonly used complex 
sample designs on the analysis of survey data. We shall attempt to identify cases where the 
design can influence the analysis. Usually, the sample design has no effect on the analysis when 
the variables on which the sample design is based are included in the analytical model.  
Frequently, however, some design variables are not included in the model, either owing to mis-
specification or to a lack of interest in those design variables as explanatory factors. This can 
result in serious biases. 
 
3. There are two basic methodologies we shall discuss for handling data from a complex 
sample when additional design-related variables are not added to the analysis. The first modifies 
a classical analytical tool developed for handling data from a simple random sample. The second 
develops a new analytical tool for the specific complex design. 
 
 4. In what follows, we present some examples of the possible effects of sample design on 
analysis, define a few basic concepts, and discuss the role of design effects in the analysis of 
complex sample data. Section B describes the two basic approaches to the analysis of complex 
sample data.  In sections C and D, we discuss examples relating to the analysis of continuous and 
categorical data, respectively. The final section contains a summary and some conclusions. 
Formal definitions and technical results are given in the annex. 
 

2.  Examples of effects (and of non-effect) of sample design on analysis 
 
5. In order to demonstrate the potential effects of sample design on the analysis, we 
consider the following simple, but illuminating, example (for details, see Nathan and Smith, 
1989).  Let Y be the variable of interest and X be an auxiliary variable. Assume that the linear 
regression model iii XY εβα ++= , with ( )2,0N~| iindii X σε , holds for the population. The model 

holds as well for any simple random sample selected from the population. Sometimes the 
assumption of independence across the ii X|ε  is better suited for the simple random sample than 
the population from which it was drawn. In a human population, for example, iε  values may be 
correlated for different members of the same household, while in a simple random sample of 
individuals, with a very small probability that more than a single individual is selected per 
household, the correlation would be negligible.  
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6. Under simple random sampling the standard estimate of the regression coefficient is 
unbiased. The display in figure XX.1 plots Y against X for the total population; the display would 
look the same for a simple random sample. In the five displays of figures XX.2-XX.6, samples 
are selected from the population using methods very different from simple random sampling. 
Consider sample selection based entirely on the value of X, for instance, by truncating data 
points with X values beyond (or within) fixed limits as in figures XX.2 and XX.3. It is clear from 
these figures that the selection has no effect on the estimation of the intercept (α ) and slope ( β ) 
parameters of the regression (although it may effect the variance of the estimators). 
 
7. Now consider sample selection based on the values of the target variable, Y, for 
instance, by truncating those data points with Y values beyond (or within) fixed limits as in 
figures XX.4-XX.6. 

 

Figure XX.2
Selection on X: XL<X<XU
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Figure XX.1
No selection
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Figure XX.3
Selection on X: X<XL; X>XU
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Figure XX.4
Selection on Y: YL<Y<YU
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Figure XX.5
Selection on Y: Y<YL;Y>YU
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Figure XX.6
Selection on Y: Y>YU
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In these cases, it is clear that the estimates of the slopes of the regression become biased.  In the 
last case (figure XX.6), truncation is not symmetric, and the estimate of the intercept is also 
biased. These examples are extreme, since selection based on the truncation of the dependent 
variable is rare in sample surveys. It is quite common, however, in experimental or observational 
studies, such as case control studies in epidemiology or choice-based studies in economics [see, 
for example, Scott and Wild (1986) and Manski and Lerman (1977)]. Nevertheless, in many 
cases, samples are selected on the basis of design variables that may be closely related to the 
dependent variable. Thus, a common sampling procedure, widely used in surveys of 
establishments and of farms, is to select units with probability proportional to size. The size 
measure, say, the previous year�s production, will obviously be related to the variable of interest 
when that variable is the current year�s production. Standard estimates of model parameters, such 
as regression coefficients, can be biased when the sample design is ignored.  
 
8. The examples above illustrate the dangers of carrying out an analysis based on complex 
sample data as if they came from simple random sampling. The examples reveal a need for 
identifying when it is likely that the design affects the analysis and for taking the design into 
account when it does. 
 

3.  Basic concepts 
 
9. Most sample surveys are designed primarily for descriptive (or enumerative) purposes. 
They aim at estimating the values of finite population parameters, such as the median household 
income or the proportion of all adults with AIDS. These are statistics that, in principle, can be 
measured exactly if the whole population were included in the survey, that is to say, if a census 
of the population was enumerated rather than a random sample of the population. The standard 
theory of survey sampling ensures that data from a random sample can be used to provide 
unbiased estimates of the finite population parameters and of their sampling errors no matter how 
complex the sample design. This assumes that the sample design is a probability sample design, 
that is to say, each unit in the population has a known positive probability of being sampled. 
These classical methods of estimation of finite population parameters are known as design-based 
(or randomization-based) methods, since all inference is based on the properties of the sample 
design, via the sample probability distribution. It should be noted, however, that the efficiency of 
different estimation strategies (a sample design coupled with an estimation formula) can usually 
be evaluated only when extensive information about the population is available. This is usually 
not the case in practice. Thus, even classical sampling texts (for example, Cochran, 1977) often 
rely on models to justify specific methods of sampling or estimation. If the population values 
follow a simple regression model, for example, then the ratio estimator will be more efficient 
than the simple expansion estimator, under certain assumptions. Design-based methods are thus 
often model-assisted, but they are not model-based (or model-dependent): with model-assisted 
methods of sample design and estimation of descriptive statistics, model assumptions are not 
required for the nearly unbiased estimation of finite population parameters. 
 
10. The model-based (or prediction theory) approach to sample design and estimation 
assumes that the finite population values are, in fact, realizations of a super-population 
distribution based on a hypothetical model with super-population (model) parameters. For further 
detail and discussion, see Brewer and Mellor (1973), Hansen, Madow and Tepping (1983), 
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Särndal, Swensson and Wretman (1992) and Valliant, Dorfman and Royall (2000).  In contrast 
with model-assisted estimation methods, the increased efficiency attained by model-based 
estimation methods relies on the validity of the assumed model. Thus, if there is any doubt about 
the validity of the model assumptions, the apparent reduction in mean square may not justify the 
use of purely model-based analysis. A good example of this is demonstrated in Hansen, Madow 
and Tepping (1983), where assuming no intercept in a regression model, even when the intercept 
is in fact very close to zero, results in invalid model-based inference. 
 
11. Increasingly, surveys are being used for analytical purposes as well as descriptive ones. 
Often surveys are designed with their analytical uses in mind.  This is because decision makers 
and researchers are interested in the processes underlying the raw data, in modelling the 
relationships among the variables investigated. Such analyses obviously require assumptions 
about models. The aim of an analysis is to confirm the validity of an assumed model and to 
estimate the model�s parameters rather than the parameters of the finite population. Thus analysis 
is inherently model-based. Inference about model parameters must, practically by definition, be 
based on the models of interest. 
 
12. It should be pointed out, however, that when the population is very large and the 
hypothesized model indeed holds, there is in practice very little difference between the model 
parameters and their finite population counterparts.  For instance, if the standard linear 
regression model iii XY εβα ++= , with ( )2,0N~| iindii X σε  holds, and the population size is very 

large, then the value of the standard population regression coefficient, B (see annex), will be very 
close to the value of the model parameter, β, because of to the Central Limit Theorem. Thus, 
although we shall focus on the estimation of model parameters in what follows, these parameters 
will sometimes be replaced by their finite-population counterparts.  For the sake of simplicity in 
presentation, most of the examples in what follows will be formulated in terms of univariate 
distributions (that is to say, a single dependent variable and a single explanatory variable).  The 
extension of the results to the multivariate case is usually straightforward. 
 
13. To summarize, hypothetical models are an integral part of statistical analysis. In order to 
analyse data from sample surveys, the choice of a good model to fit the data is a critical part of 
the analysis. Researchers and analysts must have a good understanding of the models underlying 
the processes they wish to study before applying analytical methods. As we shall see in the 
following sections, the application to data from complex sample designs requires both an 
understanding of the underlying model and of the way in which the analysis can be affected by 
the complex design. 

 
4.  Design effects and their role in the analysis of complex sample data 

 
14. The topics of design effects and their estimation have been treated extensively in chapters 
VI and VII, primarily in relation to their role in the design and estimation for enumerative 
surveys.  We shall see in this chapter that they also play an important role in the analysis of data 
from complex sample surveys. The underlying idea is based on the fact that, assuming that the 
model assumptions hold, unbiased estimates of the model parameters and estimates of the 
variances of these estimates are readily available under simple random sampling. These 
estimates and variance estimates form the basis for testing hypotheses relating to the model 
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parameters. For example, under simple random sampling and assuming the simple regression 
model iii XY εβα ++= , with ( )2,0N~| iindii X σε , the ordinary least squares sample estimator, b, 

is an unbiased estimator of β, and an unbiased estimator of its variance, v(b), is available (see 
annex). The standard test of the null hypothesis that β=0 is then based on the test statistic 

)(/ bvb , by invoking the Central Limit Theorem. When the sample design is a complex one, 
for example, a stratified cluster sample, the estimator b remains model-unbiased, if the regression 
model holds and the sample design does not depend on the values of Yi (for example, in constrast 
to the situation in figures XX.4-XX.6).  By this we mean that under the specified regression 
model, the expected value of b is β, where the expectation is with respect to the super-population 
distribution of the values of Yi.  As we shall see in section C.1, this may no longer be true if the 
model does not hold.  However, even if the model assumptions hold, v(b) is no longer a valid 
estimator of the model variance of  b and must be modified. Often, a direct estimator of the 
correct model variance can be computed, for example, by using one of the software packages 
described in chapter XXI, and can be used to replace v(b).  If a direct estimator is not available, 
often a good estimator of the design effect, denoted by d2(b), can be obtained. This can be used 
for the modification of the test statistic to replace v(b) by d2(b) x v(b).  We shall present further 
specific uses of the design effects to modify standard test statistics for other applications below.  
 
 

B.  Basic approaches to the analysis of complex sample data 
 

1.  Model specification as the basis of analysis 
 
15. Correct specification of the underlying model is a fundamental step in any analysis. The 
consequences of model mis-specification - both of exclusion of relevant explanatory variables 
(or the inclusion of superfluous ones) and of using a wrong functional form (for example, linear 
instead of quadratic) - are well known and documented in standard texts. They can take the form 
of biases in the estimation of the model parameters (primarily the exclusion of relevant 
variables), losses of efficiency (mostly connected with erroneous inclusion of explanatory 
variables) and altered sizes and power in tests of hypotheses. These effects may be exacerbated 
when the mis-specification relates directly to sample design variables or to variables correlated 
with design variables. Nevertheless, it is important to realize that the survey design variables 
may not be relevant to the research objectives. Moreover, there may be no subject-matter 
justification for their inclusion in the analytical model.  
 
16. There are two basic approaches to incorporating survey design variables in the model. 
The aggregated approach considers the model of interest to be at the population level and 
conceptually independent of the sample design employed to obtain the data. Under this approach, 
design variables would be included in the model only when they are relevant to the subject-
matter analysis. For instance, say we wish to explain the binary variable employed/unemployed 
by the explanatory variable years of education, irrespective of geographical location. The sample 
is stratified, say, by geographical regions, for which different models may be relevant. This 
would be the case even had simple random sampling been used. As a result, the stratification can 
be included in the model (see the disaggregated approach discussed below) to reflect regional 
variations in the relationships among the model variables. If, by contrast, the stratification and 
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the sample allocation to strata were carried out simply for operational reasons (convenience or 
cost), the sample weights would likely not be relevant to the population model. The 
incorporation of sampling weights into an analysis otherwise free of stratum effects will lead to 
some loss of efficiency.  Nevertheless, it is susceptible to the easy interpretation of a model free 
from stratum effects, while being robust to model failure if some of the ignored stratum effects 
really exist. 
 
17. The disaggregated approach extends the analyst�s model to include not only the survey 
variables of interest but also variables used in the survey design and those relating to the 
structure of the population reflected in the design. Design variables relating to the stratification 
and clustering are included in the model to reflect the complex structure of the population. For 
instance, in the previous example, the model would contain a different set of coefficients (both 
an intercept and a slope) for each geographical stratum. Inference under the disaggregated 
approach takes the sample design fully into account, assuming that all design variables are 
correctly included in the model.  The large number of parameters that need to be estimated under 
this approach may cause difficulties and lead to less accurate estimates when compared with 
those of more parsimonious aggregated models.  The disaggregated approach is appropriate only 
when the analyst believes that the hypothesized model is relevant for his purposes. 
 
18. The appropriate approach to be used - the aggregated or disaggregated approach - will 
depend on the analyst�s aims. The aggregated approach is more suitable for studying factors 
affecting the population as a whole and, as such, may be more useful for evaluating national-
policy actions. The disaggregated approach is more suitable for studying micro-effects and the 
effects of local and sector-specific decision-making. For further examples and discussion, see 
Skinner, Holt and Smith (1989) and Chambers and Skinner (2003). 
 

2.  Possible relationships between the model and sample design: 
 informative and uninformative designs 

 
19. It is important to draw a distinction between informative and non-informative sample 
designs when analysing complex survey data. Once a model has been hypothesized, the analyst 
must consider whether, after conditioning on the model covariates, the sample selection 
probabilities are related to the values of the response variable.  A sampling process is informative 
if the joint conditional model distribution of the observations for the sample, given the values of 
the covariates in the model, differs from their conditional distribution in the population. Only 
when these distributions are identical is the sample design non-informative (or ignorable), in 
which case standard analytical methods can be employed as if the observations came from a 
simple random sample.  When the sample design is informative, the model holding for the 
sample data is different from the population model.  Ignoring the sampling process in such a case 
may yield biased point estimators and distort the analysis just as when variables are excluded 
from the model in a conventional analysis.  Note that the correct inclusion of design-related 
variables in the model will ensure that the design is non-informative.  
 
20. There are two major problems with including all design-related variables in a model. 
First, exactly which variables were used in the design may not be known or, if known, their 
values may not be available. Even when the design variables are identified and measured, the 
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analyst may not know the exact form of the relationship (for example, linear or exponential) 
between them and the variable of interest.  For instance, if the design is a stratified one, then the 
possibility that a regression relationship has different slopes and intercepts for the different strata 
will need to be checked.  
 
21. Second, when design variables are correctly included in the model, resulting estimates 
may be of little value to the analyst, since the variables added are not of intrinsic subject-matter 
interest (recall the discussion on aggregated and disaggregated analysis).  This implies that the 
effect of a complex sample design on analysis cannot always be dealt with solely by modifying 
the underlying model.  In what follows, we shall consider both how to modify standard analytical 
methods to take a complex design into account and how to construct special design-specific 
methods of estimation and analysis. 
 

3.  Problems in the use of standard software analysis packages for  
analysis of complex samples 

 
22. The nearly universal use of standard software for statistical analysis has led to 
widespread abuse of sound statistical practice. This abuse is frequently exacerbated when 
analysing complex sample survey data.  
 
23. The advantages of statistical software in facilitating analysis unfortunately come with the 
possibilities for performing analysis without any basic understanding of the underlying principles 
involved. This has become a serious problem in quantitative work, especially in the social 
sciences. This problem is compounded by the fact that most commonly available software treats 
data as if they resulted from simple random sampling. As pointed out previously, this can lead to 
seriously biased inference when the design is informative. Nevertheless, with due care, 
standardized software can often be adapted to approximately capture or account for the effect of 
a complex design. In particular the SURVEYREG procedure in the latest versions of SAS 
(versions 8 and 9) features regression analysis that takes the sample design into account in ways 
similar to those described below [see An and Watts (2001)]. 
 
24. For instance, consider the linear (heteroscedastic) regression model defined by: 

iii XY εβα ++= , with ( )2,0N~| iindii X σε .  Standard computer programmes ordinarily compute 

b, the ordinary least squares (OLS) estimator of β, or the generalized least squares (GLS) 
estimator, bG, where sums and products are weighted by the reciprocals of 2

iσ , whose values (or 
relative values) are assumed  to be known (see annex).  Both of these are unbiased estimators for 
the parameter β, if the model holds, although bG is a more efficient estimator in the 
heteroscedastic case. The standard programmes also provide estimators of the variances of the 
OLS estimator, v(b), and of the GLS estimator, v(bG), which are each model-unbiased under the 
appropriate model (the homoscedastic model in the case of v(b)).  
 
25. In many cases, there may be doubt about the validity of the model, so that instead of 
estimating β, it may be more appropriate to estimate the finite population counterpart of β, which 
we denote as B (see annex).  Although b (the OLS estimator) is a model-unbiased estimator for β 
≈ B, it is not in general design-unbiased. The sample-weighted (Horvitz-Thompson) estimator, 
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bW, with cross-products and squares weighted by the reciprocals of the inclusion probabilities, is 
both design-consistent and model-unbiased, under appropriate conditions.  Furthermore bW can 
be obtained from the weighted regression options of many standard programmes by using the 
values of wi as the weights.  Alternatively bW can be obtained by unweighted regression of the 
transformed variables iiY π , iiX π  with the intercept replaced by iπ1 .  It must be 
emphasized, however, that under both these alternatives, the estimates of the variance-covariance 
matrix reported by most standard programmes are incorrect -- both as estimators for design mean 
squared error and as estimators for model variance -- except in unusual circumstances.  
 
26. In summary, the use of standard software programmes that do not take into account 
complex survey design should be avoided unless it can be determined that the complex design 
does not have a serious effect on estimation.  This can often be achieved through the suitable use 
of standard software.  See the example in section C.2.  The use of software packages specifically 
dealing with complex sample designs is recommended (see chap. XXI). 
 

 
C.  Regression analysis and linear models 

 
1.  Effect of design variables not in the model and weighted regression estimators 

 
27. Regression analysis and linear modelling are very common applications where standard 
models developed for simple random samples are routinely applied to data from complex sample 
surveys. As already pointed out, this can often lead to erroneous analyses and conclusions.  A 
key source of protection against error is the identification of variables determining or influencing 
the sample design, so that they can be included in the model.  As we have seen, however, even 
when these variables are identified, their inclusion in the model may not be warranted from the 
subject-matter point of view.  In the present subsection, we will study the effects on traditional 
estimators of not including design variables in the model and investigate the possibilities for 
modifying these estimators so as to take the complex design into account.  For ease of 
exposition, we consider the case of a single dependent variable, Y (denoted in this section for 
technical reasons by X1), where the model of interest has a single explanatory variable (X2), and 
there is a single design variable (X3). The model of interest is therefore 

( ) ( )221211E µβµ −+= XX , where 12β  is the parameter of interest, rather than the full model, 
which includes the design variable, X3.  See the annex for the formulae used in this subsection. 
 
28. Under fairly general conditions specified in Nathan and Holt (1980), the standard OLS 
estimator for β12, 2

21212 ssb = , can be both (model-) biased conditional on X3 and on the sample, 
S, and biased unconditionally.  Expressions for the conditional model expectation and its 
unconditional (joint model and design) expectation show that, in general, b12 is asymptotically 
biased, unless ρ23,  the correlation between X2 and X3,  is zero or if the simple sample variance of 
X3 is an unbiased estimator for its true variance.  It can be shown that this second condition does 
hold asymptotically for a large number of equal probability (epsem) sample designs, but rarely 
for unequal probability designs (for example, non-proportional stratified sample designs). 
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29. A corrected, asymptotically unbiased estimator based on the maximum likelihood 
estimator under normality, 12

�β , can be used instead of the OLS estimator.  Expressions for the 
variances of b12 and of 12

�β  are given in Nathan and Holt (1980).  It should be noted that the 
usual estimator for the variance of b12, ( )12v b , may not be nearly unbiased, even when b12 is a 
consistent estimator for β12.   This can happen when the iε �s are not independent and identically 
distributed among the observations in the sample. 
 
30. Neither the estimator b12 nor 12

�β depends on the sample design, though their properties do. 
Information on the sample design may be useful for improving these estimators, either when 
information on values of the design variable X3 is not available for the whole population (so that 

2
3S  cannot be used for estimation) or when the analysts wishes to ensure robustness to departures 

from the model. This can be done by using sample-weighted estimators based on Horvitz-
Thompson estimation for each of the components of the unweighted estimators.  One can replace 
the unweighted sample moments by their weighted versions in the expressions for b12 and for 

12
�β  to obtain the weighed estimators, *

12b  and *
12

�β . 
 
31. Note that *

12b  can be used when the population variance of X3, 
2
3S , is unknown, but that 

*
12

�β  cannot be used in that situation. It is easily seen that, under fairly general conditions, both of 
these estimators are design-consistent estimators of the finite population parameter, 12B . 
 
32. Empirical comparisons of the performance of these four estimators were made by Nathan and 
Holt (1980) for a population of N = 3,850 farms, about which data on crop land (X1), total acreage 
(X2), and total value of produce in previous year (X3), were available.  Farms were stratified on the 
basis of the X3 values resulting in six strata of sizes 563, 584, 854, 998, 696 and 155.  The following 
six sample designs were used to select samples of size n = 400 (see table XX.1): 
 

(A) Simple random sampling; 
 

(B) Proportional stratified simple random sampling;  
 

(C) Fixed size stratified simple random sampling; 
 

(D) Stratified simple random sampling with higher-than- proportional 
allocation to strata with high X3 values (25, 30, 60, 80, 130, 75); 
 

(E) Stratified simple random sampling with U-shaped allocation (100, 
80, 20, 20, 80, 100).  

      . 
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Table XX.1.  Bias and Mean square of ordinary least squares estimator and variances of 
unbiased estimators for population of 3,850 farms using various survey designs 

 
Survey 
design E(b12)- β12 MSE(b12) V( 12

�β ) V( *
12b ) V( *

12
�β ) 

A 0-000 0-000214 0-000197 0-000226 0-000197 
B 0-000 0-000200 0-000198 0-000222 0-000196 
C 0-031 0-001102 0-000160 0-000222 0-000196 
D 0-027 0-000879 0-000163 0-000220 0-000195 
E 0-042 0-001877 0-000152 0-000225 0-000196 

Source:  Nathan and Holt (1980); table 1. 
 
33. The results demonstrate the bias of b12 for the non-epsem designs (C,D,E), whereas the 
other estimators are either design-consistent or model-consistent (or both). They also 
demonstrate the advantage of 12

�β over the weighted estimators for all the designs considered. 
This holds even though the full model assumptions appear not to hold for the population.  When 

2
3S  is unknown, however, the less efficient, but still consistent, b12

*, is a reasonable estimator.  
 
34. To summarize, when data are based on unequal probability designs, it is worthwhile to 
consider both weighted and unweighted maximum likelihood estimators, rather than the simple 
OLS estimators. The unweighted estimator seems to be more efficient.  In many applications, 
however, the analyst will not have the information needed to compute maximum likelihood 
estimators; and less efficient, but consistent, sample-weighted estimators are appropriate and, 
indeed, are routinely used [see Korn and Graubard (1999)]. 
 

2.  Testing for the effect of the design on regression analysis 
 

35. Many analysts prefer to use simple weighted or unweighted estimators of regression 
coefficients, which can be obtained from standard packages, rather than the modified estimators 
proposed in section C.1.  We have seen that the simple OLS estimator is consistent when the 
design is non-informative or the effect of the design is negligible, but that its weighted 
counterpart is preferable when that is not the case.  DuMouchel and Duncan (1983) proposed a 
simple test, based on standard software packages, for deciding whether weights should be used 
when based on data from a non-clustered sample.  Consider the univariate case with a single 
explanatory variable. The extension to the multivariate case is straightforward. Letting 

bbW −=∆� , the goal is to test the hypothesis: 0∆E∆
^

=





= .  DuMouchel and Duncan showed 

that the test for 0=∆  is the same as the test for γ = 0, under the model iiii εZβXY +++= γα , 
where Zi = wiXi and ( )2,0N~| σε

indii X .  The authors gave a numerical example for the multivariate 

case involving a subset of data from the University of Michigan Survey Research Center�s Panel 
Study of Income Dynamics. The sample of 658 individuals was selected with varying 
probabilities, resulting in weights ranging from 1 to 83.  The final model used to explain 
educational attainment included a constant and 17 explanatory variables, such as parents� 
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education, income, age, race employment and interactions.  The following analysis of variance 
(ANOVA) table is obtained: 
 

Table XX.2.  ANOVA table comparing weighted and unweighted regressions 
 

Source df Sum of squares Mean square F Significance 
Regression 17 730.6 43.0 17.35 <.0001 
Weights 18 43.3 2.5 .97 .494 
Error 622 1542.2 2.5   
Total 657 2315.9    

 
 
36. Taken together, the 18 variables corresponding to Zi (the 17 explanatory variable and the 
constant, each multiplied by wi) have an F value of .97 and a significance level of only .494.   
Thus an unweighted regression is justified, even though it may entail some loss of power. 
 
37. In general, analysts may be equally concerned about accepting the null hypothesis that 

( ) 0∆�E∆ == , when it is false, as about rejecting it when it is true.  As a result, they may decide 
to conduct a weighted analysis (with the appropriate software) or develop a less parsimonious 
model when the significance level is considerable larger that the standard .05. In the example 
above, the significance level is very close to 0.5, which suggests that the weights can be ignored. 
In an earlier version of the model, however, the significance level for the Zi was .056, at which 
point, DuMouchel and Duncan added some interaction terms.  The final results are those 
displayed in the table.   
 
38. The DuMouchel-Duncan test described above assumes that the iε �s are independent and 
identically distributed. Often survey data come from multistage sample designs.  When the 

iε values of observations from the same sample cluster are correlated or when the observations 
have an unknown heteroscedasticity regardless of the design, this test in inappropriate. 
Nevertheless, an analyst may feel that using sample weights adds unneeded variance to the 
resulting estimates.  A Wald test along the lines proposed by Fuller (1984) can be employed. In 
practice this involves using software like SAS/SURVEYREG and entering each data point twice, 
once with the sample weight set to 1 and once with the sample weight set to the actual weight.  
 
39. Pfeffermann and Sverchkov (1999) proposed an alternative set of weights for use when 
the linear model is correct and the errors are independent and identically distributed but the 
sample design is informative. The test described above can be used to assess their weights 
relative to the sample weights. For further discussion of the role of sampling weights when 
modelling survey data, see Pfeffermann (1993) and Korn and Graubard (1999). 
 

3.   Multilevel models under informative sample design 
 

40. Recently, there has been increased use of multilevel models for the analysis of data from 
populations with complex hierarchic structures.  For instance, in most household surveys, 
individuals nested within households are the units of investigation, and there is interest in both 
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relationships among the individuals and among the households.  Similar hierarchic structures 
exist for surveys of pupils within schools and employees within establishments.  
 
41. The usual single-level linear models can easily be extended to take a hierarchy into 
account by using mixed (random and fixed effects) models with an error structure that reflects 
the hierarchic configuration.  For example, what is known as the random intercept model can be 
formulated (for a single explanatory variable) as follows: 
 

( ) ( )iijijijijoiij MjNixβxy ,,1;,,1;,0N~|; 2 KK ==++= εσεεβ  
 
where yij is the outcome variable for first-level unit j (say, individual) within second-level unit i 
(say, household), ijx  is a known explanatory variable and β an unknown parameter. The 
intercept, oiβ , is here a random variable, which is further modelled as 
 

( ) ( )Nizuuγz uiiiioi ,,1;,0N~|; 2 K=++= σαβ  
 
where iz  is a known second-level unit explanatory variable and α and γ are unknown 
parameters.  
 
42. Under simple random sampling, models of this type can be analysed using 
straightforward extensions of single-level linear model theory.  Unfortunately, closed forms for 
the estimates of the model parameters (α, 22 ,,, uσσγβ ε , for the model above) are not available. 
Instead, an iterative procedure, Iterated Generalized Least Squares (IGLS), is used. It produces 
estimates that converge to maximum-likelihood solutions. Thus, the closed-form methods of 
adapting weighted least squares to take sample design into account cannot be employed in this 
case. A sample-weighted version of IGLS (PWIGLS), which weights the first- and second-level 
estimating equations by appropriate weights based on the selection probabilities, has been 
developed to obtain consistent estimators of the parameters [see Pfeffermann and others (1998) 
for the details].  
 
43. More recently, Pfeffermann, Moura and Silva (2001) have proposed a model-dependent 
(purely model-based) approach for multilevel analysis that accounts for informative sampling. 
The idea behind the proposed approach is to extract the hierarchic model holding for the sample 
data as a function of the population model and the first-order sample inclusion probabilities, and 
then fit the sample model using classical estimation techniques. The selection probabilities 
become additional outcome variables to be modelled and to thereby strengthen the performance 
of the estimators. Further detail is beyond the scope of this chapter but can be found in 
Pfeffermann, Moura and Silva (2001).  A simulation experiment that follows closely the design 
of the Rio de Janeiro Basic Education Evaluation study of 1996 indicates that the results of 
applying the proposed method are promising. 
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D.  Categorical data analysis 
 

1.  Modifications to chi-square tests for tests of goodness of fit and of independence 
 
44. Initial attempts to assess the effects of complex sample design on the analysis of 
categorical data (data such that each point falls into one of a finite number of categories or cells) 
concerned modifications to the chi-squared tests that are commonly employed either to assess the 
goodness of fit between the distribution of a single categorical variable and a hypothesized 
distribution or to test for independence between two categorical variables. Although several 
modified chi-squared tests have been proposed in the literature for data from proportionate 
stratified simple random sampling, the effect of that design is usually very small in practice.  
Thus, in a study of modified chi-square statistics in eight data sets from proportionate stratified 
samples in Israel, presented in table XX.3 [from Kish and Frankel (1974)], none of the final 
iteration statistics differed by more than 4 per cent from those that would have been obtained 
under simple random sampling (SRS) assumptions, and most differed by less than 1 per cent. 
 
 

Table XX.3.  Ratios of three iterated chi-squared tests to SRS tests a/ 

 
                                                                       Nathan’s three tests 

Data 
set 

No. of 
strata 

Row x 
columns 

Sample 
size  First 

iteration   Last 
iteration  

    X2 2
1χ  G X2 2

1χ  G 
1 4 3x3    845 1·028 0·992 1·017 1·004 1·004 1·005 
2 4 3x3    821 1·088 0·963 1·043 0·999 1·003 1·001 
3 4 3x3    491 1·740 0·707 1·406 1·011 1·001 1·009 
4 4 3x3 2 528 1·095 0·959 1·049 1·003 1·005 1·003 
5 6 2x4    500 1·079 0·967 1·040 1·004 1·003 1·003 
6 3 2x2    120 1·013 0·967 1·009 1·008 0·969 1·007 
7 5 2x2    269 1·076 0·989 1·043 1·011 1·015 1·011 
8 2 2x4     81 1·368 0·889 1·186 1·029 1·037 1·029 

Source:  Adapted from data in Nathan (1972). 
a/  Eight contingency tables based on proportionate stratified samples from Israel:  Nos. 1-4 of 
savings, No. 5 of attitudes, No. 6 of hospital data, No. 7 of poultry medicament and No. 8 of 
perception experiments.   

 
 
45. Although the impact of the design on categorical data analysis under proportionate 
stratified simple random sampling is usually small, this is often not the case under clustered 
sampling, as was demonstrated in a seminal paper by Rao and Scott (1981).  When testing for 
goodness of fit, they showed that, under the null hypothesis, the usual chi-square statistic, X2

,
 is 

distributed asymptotically as a weighted sum of k-1 independent 2
1χ  (that is to say, squared 

normal) random variables.  The weights are the eigenvalues of a matrix D (see annex).  The 
matrix can be viewed as a natural multivariate extension of the design effect for univariate 
statistics (see chaps. VI and VII).  Its eigenvalues, 2

0iλ , are termed generalized design effects and 
can be shown to be the design effects for certain linear combinations of the design effects, 2

id , of 

ip�  (= the estimated proportion of the population in category i).  A modified chi-square statistic, 
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2
CX , can be obtained by dividing the standard X2 statistics by the average of estimates of these 

generalized design effects, denoted by 2�λ .  This modification requires knowledge only about the 
design effects of the cell estimates.  Although 2

CX  does not have an asymptotic 2
1−kχ  distribution 

under the null hypothesis, it has the same asymptotic expected value as 2
1−kχ  (that is to say, k-1), 

but with a larger variance.  It turns out that 2
CX  can be used empirically to test goodness-of-fit by 

comparing the value of this statistic to the critical value of 2
1−kχ .  This can be seen in table XX.4 

[from Rao and Scott (1981)], which displays the true sizes of tests based on X2 and on 2
CX , 

respectively, for six items of data from the 1971 General Household Survey of the United 
Kingdom of Great Britain and Northern Ireland.  The survey had a stratified three-stage design. 

 
Table XX.4.  Estimated asymptotic sizes of tests based on X2 and on 2

CX  for selected items 
from the 1971 General Household Survey of the United Kingdom of Great Britain and 

Northern Ireland; nominal size is .05 
 

Variable k m 2�
⋅λ  Size  

(X2) 
Size 

( 2
CX ) 

G1: Age of building 3 33.1 3.42 .41 .05 
G2: Ownership type 3 33.4 2.54 .37 .06 
G3: Type of accommodation 4 27.7 2.17 .30 .06 
G4: Number of rooms 10 34.6 1.19 .14 .06 
G5: Household gross weekly income 6 26.6 1.14 .10 .06 
G6: Age of head of household 3 34.6 1.26 .10 .05 

 
The results show that the use of the standard chi-square statistic, X2, can be very misleading, 
whereas the modified statistic, 2

CX , performs very well.  
 
46. Similar results hold when testing for independence in a two-way contingency table. For a 
contingency table with r columns and c rows, the null hypothesis of interest is 

( )cjrippphH jiijij ,,1;,,10:0 KK ===−= ++ , where pij is the population proportion in the 
(i,j)th cell and ji pp ++ ,  are the marginal totals.  The usual chi-square statistic for data from a 

simple random sample, 2
IX , is asymptotically distributed as chi-square with b=(r-1)(c-1) degrees 

of freedom under the null hypothesis.  This need not be true when the sample design is complex. 
In fact, the asymptotic distribution of 2

IX  is a weighted sum of b independent 2
1χ  random 

variables, similar to the case when testing for goodness-of-fit.  
 
47. A generalized Wald statistic can be constructed based on estimating the complete 
variance-covariance matrix of the estimates, jiijij ppph ++−= ����  [see details in Rao and Scott 
(1981)].  Fortunately, a first-order correction, which requires only estimates of the variances of 

ijh� , ( )ijh�v� , seems to be an adequate approximation.  The modified statistic is defined as 

⋅= 222 �
)(

δIXX
CI

, where 2�
⋅δ  is a weighted average of the estimated design effects of ijh� .  When 
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estimates of these design effects are unavailable, as often happens with secondary analysis of 
published data, an alternative modification can be obtained by replacing 2�

⋅δ  by 2�λ , a weighted 
average of the estimated design effects of the cell proportions, 2�

ijd .  The adequacy of these 
approximations depends to a large extent on the relative variance of the design effects.  A 
second-order correction is available for use when the relative variance is large. 
 
48. Empirical results for 15 two-way contingency tables based on data from the General 
Household Survey of the United Kingdom of Great Britain and Northern Ireland are given in 
table XX.5 [from Rao and Scott (1981)].  They indicate again that: (a) the uncorrected chi-square 
statistic, 2

IX , performs very poorly in many cases; (b) the corrected statistic, 2
)(CI

X , based on 2�
⋅δ  

attains the nominal size almost exactly; and (3) the corrected statistic based on 2�λ  errs on the 
conservative side. 
 
Table XX.5.  Estimated asymptotic sizes of tests based on 2

IX , ⋅
22 �δIX , and on ⋅

22 �λIX  for 
cross-classification of selected variables from the 1971 General Household Survey of the 

United Kingdom of Great Britain and Northern Ireland; nominal size is .05 
 

Cross Classification r + c 2�
⋅δ  2�λ  

Size 
( 2

IX ) 
Size 

( ⋅
22 �δIX ) 

Size 
( ⋅

22 �λIX ) 
G1 X G2 2 X 2 1.99 3.18 .16 .05 .01 
G1 X G3 2 X 3 1.97 2.36 .22 .05 .03 
G1 X G4 2 X 3 1.24 1.98 .09 .05 .01 
G1 X G5 2 X 6 .91 1.23 .04 .05 .02 
G1 X G6 2 X 3 .97 1.75 .05 .05 .01 

 
G2 X G3 2 X 3 1.94 2.49 .21 .05 .03 
G2 X G4 2 X 3 1.41 1.86 .12 .05 .02 
G2 X G5 2 X 6 1.02 1.18 .06 .05 .03 
G2 X G6 2 X 3 1.13 1.61 .08 .05 .02 

 
G3 X G4 3 X 3 1.26 1.72 .11 .05 .01 
G3 X G5 3 X 6 .93 1.14 .03 .05 .02 
G3 X G6 3 X 3 .96 1.51 .05 .05 .01 

 
G4 X G5 3 X 6 .94 1.05 .05 .05 .03 
G4 X G6 3 X 3 .93 1.21 .04 .05 .02 

 
G5 X G6 6 X 3 .85 .94 .03 .05 .04 

 
 

2.  Generalizations for log-linear models 
 

49. The results above for two-way tables have been generalized by Rao and Scott (1984) to 
the log-linear model used in analysing multi-way tables.  Denote by π  the T-vector of 
population cell proportions, iπ , in the multi-way table with 1

1
=∑T

tπ  (for example, T = 4 for a 
2 x 2 table).  Denote the saturated log-linear model (that which includes all possible interactions) 
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as M1.  We consider testing of the hypothesis that a reduced nested sub-model, M2, is sufficient. 
Let π�  be the pseudo maximum likelihood estimator of π  under M1.  This is defined as the 
solution of the sample estimate of the census likelihood equations (those that would have been 
obtained on the basis of the population data) and is based on a design-consistent estimator of π  
under the survey design (see annex).  Similarly, let π��  be the pseudo maximum likelihood 
estimator of π  under M2.  The standard Pearson chi-square statistic for testing H0, based on π� , 
and on π�� , does not usually have an asymptotic chi-square distribution under the null hypothesis.  
This case is similar to that of the two-way table, inasmuch as the standard Pearson chi-square 
statistic�s asymptotic distribution is a weighted sum of u independent 2

1χ  random variables with 
weights 2

iδ , which are the eigenvalues of a generalized design effect matrix (see annex for 
details).  
 
50. In order to take the complex design into account, modified chi-square statistics, 2

.
2 �δX , 

2
.

2 �λX  and 2
.

2 �dX are proposed.  Here 2
.

�δ  is the average of the estimated eigenvalues, 2
.λ  is 

the average of the estimated design effects of pX �′ , and 2�
⋅d , is the average of the estimated cell 

design effects (see annex for details).  It should be noted that 2
.λ  and 2�

⋅d  do not depend on the 

null hypothesis, H0, whereas 2
.

�δ  does.  Furthermore, 2�
⋅d  requires knowledge only of the cell 

design effects as does 2
.λ  when M1 is the saturated model.  

 
51. In the important case of models admitting explicit solutions for π�  and for π�� , Rao and 
Scott (1984) show that 2

.
�δ  can be computed knowing only the cell design effects and those of 

their marginals.  For instance, for the hypothesis of complete independence in a three-way I×J×K 
table, kjiijkH ++++++= ππππ:0 , where kji ++++++ πππ ,,  are the three-way marginals, the value of 

2
.

�δ  can be calculated explicitly as a function of the estimates of the design effects of the three-
way marginals and of the estimates of the cell design effects.  
 
52. The relative performances of these modified statistics and of the unmodified one are 
given in table XX.6 [from Rao and Scott (1984)] based on a 2×5×4 table from the Canada Health 
Survey 1978-1979.  The variables are gender (I=2), drug use (J=5) and age group (K=4).  The 
hypotheses tested were: (a) complete independence (denoted by 321 ⊗⊗ ); (b) partial 
independence (for example, 321 ⊗⇔= +++ jkiijk πππ ) and, similarly, ( )312 ⊗  and ( )213 ⊗ ; 

(c) conditional independence (for example, 321 ⊗⇔= ++++ kjkkiijk ππππ ) and, similarly, 

( )312 ⊗ and ( )213 ⊗ . The design was complex, involving stratification and multistage 
sampling.  Moreover, post-stratification was used to improve the estimates. 
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Table XX.6.  Estimated asymptotic significance levels (SL) of X2 and the corrected statistics 
2

.
2 �δX , 2

.
2 �λX , 2

.
2 �dX . : 2 x 5 x 4 table and nominal significance level α = 0.05 

   Hypothesis     
(a)  (b)   (c)  

 
321 ⊗⊗  321 ⊗  312 ⊗  213 ⊗  321 ⊗  231⊗  132 ⊗  

SL (X2) 0.72 0.33 0.76 0.72 0.43 0.30 0.78 
SL ( 2

.
2 �δX ) 0.16 0.11 0.14 0.13 0.095 0.11 0.12 

SL ( 2
.

2 �λX ) 0.34 0.056 0.39 0.32 0.098 0.06 0.39 

SL ( 2
.

2 �dX ) 0.34 0.054 0.39 0.32 0.097 0.06 0.39 

⋅δ�  2.09 1.40 2.25 2.09 1.63 1.39 2.31 

C.V. ( iδ� ) 1.54 1.02 1.37 1.27 0.86 1.05 1.11 

 
 

53. The comparisons relate the actual significance levels (SL) to the desired nominal level, 
α = 0.05. The results again show unacceptably high values of SL for the uncorrected statistic.  
The modified statistics 2

.
2 �λX  and 2

.
2 �dX , which do not depend on the hypothesis, perform 

very similarly with values of SL ranging from 0.06 to 0.39, which are too high.  The 
modification based on marginal and cell design effects, 2

.
2 �δX , has a more stable performance, 

with SL values ranging from 0.095 to 0.16, all above the nominal level, probably owing to the 
large coefficient of variation (CV) of the s'� 2

iδ . 
 
54. To summarize, correction methods are available for standard chi-squared test statistics in 
categorical data analysis. These corrections are often necessary for valid analysis, given a 
clustered sample, and can be applied with relative ease using estimated marginal and cell design 
effects. Details on available software to deal with the effects of complex sample design on chi-
squared tests and logistic regression can be found in chapter XXI.  

 
E.  Summary and conclusions 

 
55. In this chapter, we have illustrated methods for assessing the effects of commonly used 
complex sample designs on the analysis of survey data. The material is intended primarily as an 
introductory exposition of the issues rather than a prescriptive one. The assessment and treatment 
of the effects of sample design on analysis can be difficult and are not amenable to the 
formulation of easily applicable �how-to-do� rules.  As we have shown, different problems can 
have different (or several different) possible methods of resolution.  These are highly dependent 
on the hypothesized model and the validity of its underlying assumptions, on various aspects of 
the sample design (for example, unequal selection probabilities, clustering, etc.) and on the type 
of analysis contemplated. Knowledge about the relationship between the model and the sample 
design variables is imperative. Unfortunately, this information is not always readily available, 
which means that assumptions and approximations may have to be used instead. 
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56. A first and fundamental step in any analysis is the correct specification of the underlying 
model. This is the responsibility of the subject-matter analyst, although the final identification of 
the model can and should be based on appropriate statistical techniques.  The initial exploratory 
analysis needed to identify the appropriate model can be conducted using standard graphical and 
descriptive methods without taking into account the effects of the sample design.  
 
57. Once an initial working model has been hypothesized, it is necessary to determine 
whether the design has a confounding influence on the analysis.  This can be done, for example, 
with a test comparing the weighted and the unweighted estimates of linear regression coefficients 
(see sect. C.2).  If the complex design needs to be incorporated into the analysis, then one must 
choose the appropriate method for doing that. The disaggregated approach simply adds variables 
to the model related to the sample design.  
 
58. In many situations, however, the model cannot be modified to fully reflect the effects of 
sample design in a meaningful way. When this is the case and the aggregated approach is to be 
used, two basic methodologies have been proposed to deal with the potential impact of the 
sample design.  One entails the modification of classical analytical tools to take the design into 
account.  This is the method best suited for dealing with categorical data analysis, where 
standard chi-square statistics can be modified on the basis of generalized design effects. The 
second approach is the development of appropriately defined analytical tools especially for the 
design.  Sample-weighted estimators and a large-sample Wald statistic have been proposed. A 
reliable estimator of the covariance matrix is needed before using the Wald statistic. This is not 
always available in practice.  
 
59. Considerable research into the problems of handling the effects of complex sample 
design on analysis has produced practical methods, some of which have been described in this 
chapter. Further research is under way, and many of the existing methods have already been 
incorporated in new and existing software.  Unfortunately, owing to the complexity of the 
problem, it is unlikely that any overall uniform method will be developed in the future.  The 
available methods and software must be applied with extreme caution. Their application requires 
both basic knowledge of the underlying theory and thorough understanding and experience in 
practical model construction.  
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Annex 
Formal definitions and technical results 

 
 
 
Regression models (sects.  B.2 and B.3) 
 
  
• Standard linear regression model:  iii XY εβα ++= , with ( )2,0N~| σε

indii X  

 

• Standard population regression coefficient:  
( )

( )∑ −

∑ −
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• Ordinary least squares (OLS) estimator of β:   
( )
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• Unbiased estimator of variance of b:   ( )
( )∑ −

=

=

n

i
i xx

sb

1

2

2

v ,  

where s2
 is the unbiased estimator of σ2, 

based on the variance of the estimated 
regression residuals. 

 
 
• General linear (heteroscedastic) regression model:  iii XY εβα ++= ,  
                                                                                                   with ( )2,0N~| iindii X σε  

 

• Weighted population regression coefficient:             
( )
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• Generalized least squares (GLS) estimator of β:       
( )
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• Variance of the GLS estimator:   ( )
( )∑
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−
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• Design-weighted (Horvitz-Thompson) estimator: 
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                                                                                πi is the inclusion probability,  and ∑
=

=
n

i
ii xwx

1

*  

 
 

Effect of exclusion of design variables (sect. C.1) 
 
 
• Model of interest:     ( ) ( )221211E µβµ −+= XX , where 12β  is the 

                                                                           parameter of interest. 
 
 
 
• Full model with design variable, X3: ( ) ( ) ( )332132231211E µβµβµ −+−+= ⋅⋅ XXX  

 
• Notation:  
 

o    Usual notation for multivariate analysis, for example, 312⋅β  
denotes the conditional regression coefficient of X1 on X2, given X3 
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o    First and second population moments of Xi: ∑=
=

N

j
iji X

N
X

1

1 ; 
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=
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j
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N
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j
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o   Sample moments: ∑=
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j
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n
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−
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j
kkjiijik xxxx

n
s

11
1 ; iii ss =2 , where we assume a sample, S, of 

fixed size n,  selected by any design, possibly dependent on X3.  
 

• Standard OLS estimator of β12:    2
2

12
12 s

sb =  

 
• Asymptotic model conditional expectation of b12:  
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• Unconditional (joint model and design) expectation: 
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• OLS estimator, b12, is asymptotically biased, even unconditionally, unless ρ23 = 0 or 

( ) 2
3

2
3sE σ= , that is to say, Q=1 

 
• Corrected asymptotically unbiased estimator (maximum likelihood estimator (MLE) under 
normality): 
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• Weighted estimators:  2*
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β , where 
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∑=
=

n

j j

ij
i N

x
x

1

*

π
; **

1

*
ki

n

j j

kjij
ik xx

N
xx

s −= ∑
= π

; *2*
iii ss = , and 

( )jj Xj 3p S∈=π  are the sample inclusion probabilities.  Note that ∑
=

=
n

j jN1

11
π

 under 

stratified simple random sampling, which is the design we are assuming here.  For more 
general designs, Nπj can be replaced by 1/wj, where 

 

∑
=

=
n

k
k

j
jw

1

1

/1

π

π
 

• Result: ( ) ( ) ( )1
12

*
12

*
12 O�EE −+== nBb PP β , where EP denotes design expectation (that is to 

say, the expectation over repeated sample selection). 
 
 
Categorical data analysis (sect. D) 
 
 
• Testing goodness-of-fit: 
 

o   Assume known multinomial distribution with probabilities 
( )1,01,0 ,, −= kpp K0p , where k is the number of categories and 1

1 ,0 =∑k
ip .  

 

o Under H0, chi-square statistic 
( )

∑
−

=
=

k

i i

ii

p
pp

nX
1 0

2
02 �

 (where ip�  are sample 

estimates of ip0 ) is distributed asymptotically as: ( )1,0N~;
ind.

2
1

1

2
0

2
ii

k

i
i ZZX ∑

−

=

= λ , 

where 2
0iλ  are the eigenvalues of 0VPD 1

0
−= , P0 is the variance matrix of the 

sample estimates, under the null hypothesis for SRS, and V0 is their true 
variance matrix under H0. 

 

o Modified chi-square statistic: )1/(�)�1(�  ;�/ 2
1

1

2222 −−== ∑
−

=

kdpXX i

k

i
iC λλ , where 

2�
id  are estimates of the design effects, 2

id , of ip� . 
 
• Test of independence in two-way contingency tables: 

 
o Hypothesis of interest: ( )cjrippphH jiijij ,,1;,,10:0 KK ===−= ++ , 

where pij is the population proportion in the (i,j)th cell and 

∑∑ == ++
r

ijj
c

iji pppp
11

,  are the marginal totals.  
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o Usual chi-square statistic: 
( )

∑ ∑
−

=
= = ++

++c

j

r

i ji

jiij
I pp

ppp
nX

1 1

2
2 �

 

 
                                                     where ijp�  denotes the sample estimator of pij. 
 

o 2
IX  is asymptotically distributed as weighted sum of b independent 2

1χ  random 
variables. 

o First order correction: 2
.

22 �
)(

δIXX
CI

= , where: 

∑∑
=

+
=

+ −−=
r

i
jij

c

j
i bpp

1

2

1

2
. /�)�1)(�1(� δδ , and 

( )
)�1)(�1(��

�v�� 2

jijii

ij
ij pppp

h
n

++++ −−
=δ , is the 

estimated design effects of ijh� .  
 

o Alternative modification obtained by replacing 2
.

�δ  

by ( )∑∑
= =

−
−

=
r

i

c

j
ijij dp

rc 1 1

2
.

��1
1

1�λ  

 
• Generalisations for log-linear models  
 

o Log-linear model: ( ) Xθ1θµ += u~ , where π  is the T-vector of population cell 
proportions, iπ , µ  is the T-vector of log probabilities tt πµ ln= , X is a 
known T×r matrix of full rank and 01X =′ , θ is an r-vector of parameters and 

( ) ( )[ ]{ }Xθ1θ exp1ln~ ′=u  is a normalizing factor. 
 

o Hypothesis of interest: H0: θ2=0, where ( )21 , XXX =  and ( ),21 θ,θθ =  X1 is 
T×s and X2 is T×u, θ1 is s×1 and θ2 is u×1. 

 
o Let π�  be the pseudo maximum likelihood estimator of π , under M1, that is 

the solution of the pseudo-likelihood equations: pXπX �� ′=′ , where p� is a 

(design-) consistent estimator of π , under the survey design. Similarly let π��  
be the pseudo maximum likelihood estimator of π , under M2.  

 
o Standard Pearson chi-square statistic for testing H0:

 
( )

∑
−

= t

t

ttnX
π

ππ
��

���
2

2 . 

o Asymptotic distribution of X2: ( )1,0N~;
ind.

2

1

22
ii

u

i
i ZZX ∑

=

= δ , where 2
iδ  are 

the eigenvalues of a generalised design effect matrix.  
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o Modified chi-square statistics: 2
.

2 �δX , 2
.

2 �λX  and 2
.

2 �dX  
where: 

 
 

!  2
.

�δ is the estimate of the average of the eigenvalues, 

∑=
i iu

22
.

1 δδ  

 
! 2

.
�λ  is the estimate of the average of the design effects of pX �′  

 

! ∑=
t td

T
d 22

.
�1� , where 

( )
( )tt

t
t

p
nd

ππ �1�
�v�� 2

−
=  is the estimated design 

effect of cell t. 
o Example: for the hypothesis of complete independence in a three-way I×J×K 

table, kjiijkH ++++++= ππππ:0 , where kji ++++++ πππ ,,  are the three-way marginals, 

the value of 2
.

�δ  is given by: 

2

)(�)�1()(�)�1()(�)�1(�)���1(
�

2222

2
. +−−−

−−−−−−−
=

∑ ∑ ∑ ∑ ∑∑ ++++++++++++

KJIIJK

ldcdrdd
i j k i k kkj jjiiijkkji ππππππ

δ

 
where ( ),� 2 rdi ( ),� 2 cd j  and ( ),� 2 ldk  are estimates of the design effects of the three-way 

marginals and 2�
ijkd  is the estimate of the cell design effect. 
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