Spatial referencing

An overview

Richard Knippers

UNIVERSITY OF TWENTE.

Learning instructions

Learning activities:

- Literature: ITC Core textbook, Chapter 3.1 on Spatial Referencing.
- Website: http://kartoweb.itc.nl/geometrics
- Exercise: Spatial referencing (ArcMap10)

Questions: Blackboard Discussion Board

Main objectives

- Understand the relevance and actual use of reference surfaces, coordinate systems, and coordinate transformations in mapping.
- Describe and differentiate between coordinate systems and map projections.
- Grasp the logic of map projection equations and the principles of transforming maps from one projection system to another.

Contents

- Spatial reference surfaces and datums
- The Geoid - vertical (height) datum
- The Ellipsoid - horizontal (geodetic) datum
- Local and global datums
- Map projections
- Classification of map projections
- Map projection selection
- Map coordinate systems (e.g. UTM)
- Coordinate transformations

Earth to Map

Ellipsoid (best fitting)

Independent handling of horizontal and vertical

The Earth: a complex shape

Geodetic (or horizontal) datum

Mapping surface

Reference surfaces for mapping

UNIVERSITY OF TWENTE.

Spatial reference surface

The Geoid

UNIVERSITY OF TWENTE.

The Geoid - Vertical (height) datum

Geodetic levelling

Starting from Mean Sea Level (MSL) points, the heights (H) of points on the Earth can be measured using a technique known as geodetic leveling.

Vertical datums

Every country (or group of countries) has it's own Mean Sea Level - its own vertical (height) datum.

MSL of Belgium is 2.34 m lower than MSL of The Netherlands

At what height do we live?

http://www.ahn.nl/postcodetool

Elevation data are related to Amsterdam Zero (N.A.P.)

GPS height versus N.A.P. height

GPS Reference Stations

Enschede

```
Station ID
0550
```


Station ID

```
0550
```

Position and Height
52 13'25" N
653 '10" E
$107,51 \mathrm{~m} \longrightarrow h_{\text {WGS84 }}=107.5 \mathrm{~m}$
Location
This station is located on the roof of the International Institute for Geo-Information Science and Earth Observation (ITC) in the centre of Enschede,

This station is sending RTCM 18/19 RTK data and storing static data 24 hours a day. This stations is also a part of the GlobalNET and receives the GLONASS signal.

$H_{\text {NAP }}=h_{\text {WGS84 }}-44 m(N)-27 m$ (ITC building) $=37 m$

Ellipsoidal height versus Orthometric height

Ellipsoidal height

Orthometric height (height above the Geoid)

UNIVERSITY OF TWENTE.

Relation between Geoid and Ellipsoid

The earth's surface, and the geoid and a reference ellipsoid used to approximate it. The geoidal undulation (N) is the separation between the geoid and an ellipsoid. It varies globally between $\pm 110 \mathrm{~m}$.

$\mathrm{H}=$ Orthometric height
$\mathrm{h}=$ Ellipsoidal height
$\mathrm{N}=$ Geoidal separation (undulation)

UNIVERSITY OF TWENTE.

Trends in mapping: global vertical datums

Satellite gravity missions (e.g. GOCE) make it possible to determine a global vertical datum with centimetres accuracy.

Spatial reference surface

The Ellipsoid

UNIVERSITY OF TWENTE.

The Ellipsoid

Typical values of the parameters for an ellipsoid:

$$
\begin{array}{ll}
a=6378137.0 \mathrm{~m} & b=6356752.31 \mathrm{~m} \\
f=1 / 298.26 & e=0.0818187
\end{array}
$$

Flattening:
Eccentricity:
$f=(a-b) / a$
$e^{2}=\left(a^{2}-b^{2}\right) / a^{2}$

Geographic coordinates (φ, λ)

λ (lambda) $=$ longitude angle

Local and global ellipsoids/datums

The ellipsoid is chosen in such way that it best fits the surface of the area of interest (the country)

Local datum system of the Netherlands

National triangulation network

Geodetic datum

Amersfoort datum

$$
\begin{aligned}
& \phi_{A}=52^{\circ} 9^{\prime} 22.2^{\prime \prime} \\
& \lambda_{A}=5^{\circ} 23^{\prime} 15.5^{\prime \prime} \\
& X_{R D}=155000 \mathrm{~m} \\
& Y_{R D}=463000 \mathrm{~m}
\end{aligned}
$$

$\phi_{\mathrm{A}}=52^{\circ} 13^{\prime} 26.2^{\prime \prime} \mathrm{N}$
$\lambda_{A}=06^{\circ} 53^{\prime} 32.1^{\prime \prime} \mathrm{E}$
$X_{R D}=257776.47 \mathrm{~m}$
$Y_{R D}=471588.14 \mathrm{~m}$

UNIVERSITY OF TWENTE.

Local datum systems

Datum	Ellipsoid	Datum shift (m)		
		(Dx,	Dy,	Dz)
Alaska (NAD-27)	Clarke 1866	-5	135	172
Bahamas (NAD-27)	Clarke 1866	-4	154	178
Bermuda 1957 Clarke 1866 -73 213 Central America (NAD-27) Clarke 1866 0 125 194 Bellevue (IGN) Hayford -127 -769 Campolnchauspe Hayford -148 136 Hong Kong 1963 Hayford -156 -271 Iran Hayford -117 -132		-169		

* positions compared to WGS84

Countries (or regions) use there own datum system to make accurate maps.

UNIVERSITY OF TWENTE.

Local and global ellipsoids/datums

The ellipsoid is chosen in such way that it best fits the surface of the area of interest (the country)

International Terrestrial Reference System (ITRS)

Global reference system for global surveying and mapping.
The system uses the GRS80 (or WGS84) ellipsoid

Trends in mapping: global horizontal datums

Global ellipsoids and datums

to approximate the earth-as-a-whole - with the aid of satellites- are becoming more in use
(e.g. WGS84, ITRF, ETRS89).

Changing or re-adjustment of local ellipsoids and datums is taking place in many countries.

Map projections

UNIVERSITY OF TWENTE.

Map projection principle

Map projection equations

A map projection is a mathematical function by which 2D Geographic coordinates (ϕ, λ) are transformed into 2D Cartesian map coordinates (x, y)

$$
\begin{aligned}
&(x, y)=f(\phi, \lambda) . \\
&(\phi, \lambda)=f^{-1}(x, y) . \\
& \text { Forward equation } \\
& \text { Inverse equation }
\end{aligned}
$$

Map projection equations (example)

Map projection equations for the Mercator projection (spherical assumption)

Forward mapping equation: $\quad \begin{aligned} & x=R\left(\lambda-\lambda_{0}\right) \\ & y=R\left(\ln \left(\tan \left(\frac{\pi}{4}+\frac{\phi}{2}\right)\right)\right)\end{aligned}$

$$
\phi=\frac{\pi}{2}-2 \arctan \left(e^{\frac{-y}{R}}\right)
$$

Inverse mapping equation:

$$
\lambda=\frac{x}{R}+\lambda_{0}
$$

Mercator projection

Conformal cylindrical projection

Scale distortions on the Mercator projection

Area distortions are significant towards the polar regions. Greenland appears to be larger but is only one-eighth the size of South America.

Scale distortions on a map

Distortions after flatening a part of the curved surface

Areas smaller than $25 \times 25 \mathrm{~km}$: NO DISTORTIONS

Areas larger than $25 \times 25 \mathrm{~km}$: ALWAYS DISTORTIONS
Any map projection is associated with scale distortions. The amount and kind of distortions depend on the type of map projection.

Map projection properties

Conformal

Angles and shapes are correctly represented (locally)

Equivalent (or equal-area)

Areas are correctly represented

Equidistant

Distances from 1 or 2 points or along certain lines are correctly represented

Cylindrical equal-area projection

Areas are correctly represented

Equidistant cylindrical projection

 (also called Plate Carrée)

Robinson projection

Pseudo-Cylindrical

Neither conformal nor equal-area (both shape and area are reasonably well preserved)

Map projection class

Cylindrical Projection

Mercator

Map Projection surface

Azimuthal projection

Stereographic projection

UNIVERSITY OF TWENTE.

Classification of map projections

- Class
- Cylindrical
- Conical
- Azimuthal
- Secant or tangent projection plane

Cylindrical

Conical

Azimuthal

Secant projection planes

- Property
- Equivalent (or equal-area)
- Equidistant
- Conformal
- Aspect (orientation)
- Normal
- Oblique
- Transverse

Transverse cylindrical

Oblique conical UNIVERSITY OF TWENTE.

Classification of map projections

Conformal cylindrical projection with a transverse cylinder and secant projection plane (e.g. Universal Transverse Mercator)

Classification of map projections

Conformal conical projection with a normal cone and tangent projection plane (e.g. Lambert conformal conic)

Classification of map projections

Conformal azimuthal projection with a tangent polar projection Plane (e.g. Universal Polar Stereographic)

Selection of a Map projection (I)

Normal cylindrical projections are typically used to map the World in its entirety. Conical projections are often used to map the different continents, while the normal azimuthal projection may be used to map the polar areas.

Also consider the shape of the area to be mapped:

Selection of a Map projection (II)

Conformal

Maps which require measuring angles (e.g. aeronautical charts, topographic maps)

Equivalent (or equal-area)
Maps which require measuring areas
(e.g distribution maps)

Equidistant

Maps which require reasonable area and angle distortions (e.g. several thematic maps)

Selection of a Map projection (III)

The position (and orientation) of the projection plane is optimal when the projection plane is located along the main axis of the area to be mapped, or when the projection centre coincides with centre of the area.

Dutch map coordinate system

Projection: Stereographic Geodetic datum: Amersfoort (Bessel ellipsoid)

Universal Transverse Mercator

International Standard

UNIVERSITY OF TWENTE.

Universal Transverse Mercator projection

Conformal Cylindrical (transverse secant) projection

UNIVERSITY OF TWENTE.

UTM Mapping zones

UTM Mapping zones

Two adjacent UTM zones

UTM grid on maps

Topographic map of the Netherlands (scale 1:25,000)

Coordinate transformations

UNIVERSITY OF TWENTE.

Position City hall of Enschede

Position in Geographic coordinates:

- $\phi_{\text {Amersfoort }}=52^{0} 13^{\prime} 26.2^{\prime \prime} \mathrm{N} \quad \lambda_{\text {Amersfoort }}=6^{0} 53^{\prime} 32.1^{\prime \prime} \mathrm{E}$

$$
\left(\phi_{\text {Bessel }}=52.223944^{\circ} \mathrm{N} \quad \lambda_{\text {Bessel }}=6.8922489^{\circ} \mathrm{E}\right)
$$

- $\phi_{\text {ETRS } 89}=52^{\circ} 13^{\prime} 22.6^{\prime N} \mathrm{~N} \quad \lambda_{\text {ETRS } 89}=6053^{\prime} 29.7^{\prime \prime} \mathrm{E}$
- $\phi_{\text {WGS84 }}=52^{0} 13^{\prime} 22.6^{\prime N} \mathrm{~N} \quad \lambda_{\text {WGS84 }}=6^{0} 53^{\prime} 29.7^{\prime \prime} \mathrm{E}$

Position in Map (plane rectangular) coordinates:

- $\quad X_{\text {Dutch RD }}=257790.12 \mathrm{~m} \quad Y_{\text {Dutch RD }}=471607.17 \mathrm{~m}($ Old RD1918)
- $X_{\text {Dutch RD }}=257776.47 \mathrm{~m} \quad Y_{\text {Dutch RD }}=471588.14 \mathrm{~m}$ (New RD)
- $\quad X_{\text {UтМ31 }}=765872.57 \mathrm{~m} \quad Y_{\text {UTМ31 }}=5793185.04 \mathrm{~m}$
- $X_{\text {UTM } 32}=356065.01 \mathrm{~m} \quad Y_{\text {UTM } 32}=5788133.6 \mathrm{~m}$

Map projection change
 Using projection equations

Map projection change

Including a datum transformation

Datum shifts

UNIVERSITY OF TWENTE.

Coordinate transformations (overview)

Forward mapping equations

UNIVERSITY OF TWENTE.

Projection change using a 2D Cartesian transformation

The unknown coordinate system is related to a known
coordinate system on the basis of a set of known points

Application: Image Rectification (I)

Application: Image Rectification (II)

Image Rectification (geocoding)

Application: Matching data layers

UNIVERSITY OF TWENTE.

Thank you!

INTERNATIONAL INSTITUTE FOR GEO-INFORMATION SCIENCE AND EARTH OBSERVATION

