UNITED NATIONS # Group of Experts on Geographical Names Eleventh Session Geneva, 15-23 October 1984 **WORKING PAPER** No. 42 Item No. 6(d) of the agenda THE COMPUTER PROCESSING OF ABBREVIATIONS, SPECIAL CHARACTERS, AND THE SORTING OF GEOGRAPHICAL NAMES (submitted by the United Kingdom) 1 ^{1/} Copyright © Controller HMSO, London, 1984 #### Introduction At the Fourth United Nations Conference on the Standardization of Geographical Names (Geneva 1982) it was apparent that the computer processing of geographical names was becoming increasingly important in many countries, and would continue to do so. The United Kingdom described how it had developed and introduced an automated production system for gazetteers, based on the use of micro-computers and printers, and other countries described similar systems. In the lasttwo years we have considerably developed this automated system, and have become increasingly aware of the many benefits resulting from this. We have also been made aware of the many problems associated with automation that were not apparent at the outset. ### The Benefits Resulting From The Automation of Geographical Names Data The detailed administrative and locational information associated with geographical names result in large amounts of textual information which is often required in a variety of standard formats. Gazetteers are the best examples of such formats, but atlas or map indexes, and lists of names sorted by administrative and/or geographical area are also commonly required. The application of computer processing to such data has greatly enhanced the ease with which such large amounts of detailed information can be manipulated. The following benefits resulting from automation are quickly achieved: - 1. Ease of Amendment/Update: Once data has been input to a names database it can be quickly and easily recalled for correction and amendment. New or additional information can similarly be added to the database. As this does not involve changes to printing processes it simplifies output procedures. - 2. Reduced Likelihood of Typographical Error: In a fully automated names processing system, once data has been input to the names database and verified, there is no requirement for it to be typed or input again. Simple transcription or typing errors should thus be eliminated. - 3. Variety of Output From a Single Database: An automated names database allows selection from the database of names that meet given criteria. Thus names can be selected by geographical area, by administrative area or by feature code. Once selection has been made the data can be sorted to meet user requirements. Thus names can be sorted by map sheet number, by ascending latitude and longitude, or in the lexical order of the country concerned. The use of computer type setting and changeable printer-heads allows a variety of type faces to be used without having to change the database. - 4. Output on Demand: Through the continuous update of a names database, output can genuinely reflect the latest state of information. This can be true of "hard copy" printed output as much as cf computer display output. The flexibility of printed output and ease of update facilitate regular output to meet user demands. - 5. Exchange of Information: The increasing use of automated databases in cartography, and the rising demand for data in digital form can both be met from computer processing of geographical names. This would further ensure consistency in the treatment of geographical names between users exchanging information, and by users in successive editions of their products. #### Problems Associated With The Computer Processing of Geographical Names Data The major problems we have found when processing geographical names by computer have fallen into three broad categories: The treatment of diacritical marks and special characters, the treatment of abbreviations, and the automated sorting of geographical names to the required lexical order. None of these problems is insoluble; they are to some extent inter-related, but they are important factors that should be considered in system design and hardware procurement. - 1. The Treatment of Special Characters/Diacritical Marks: Most computers offer the user a range of special characters over and above the local linguistic requirements of the region they are designed to be used in. Many of these additional characters can be input directly from the keyboard as normal letters, but often input is cumbersome, and sometimes impossible. It is not uncommon to find computer printers which can print characters that compatible keyboards cannot input, and visa versa. When characters can be input the resolution of the VDU screen and/or printhead is often such that similar characters become blurred or indistinguishable. - 2. The Treatment of Abbreviations: The major problem caused by abbreviations is not how to portray them, but how to ensure they are sorted into the correct lexical order on output. It is common practice to show the term Saint/Sainte as St./Ste. such that in the United Kingdom we always refer to St Albans and never to Saint Albans. It is also the agreed norm to position the abbreviated term in a gazetteer as if it had been spelt in full. Thus St. Albans will be found just before St. Andrews and before Sandwich, but not just before Stalham. This is not easily achieved using a computer generated sorting routine, and requires careful system design. The abbreviation Mac (also spelt Mc, Mck and McC) poses no problem however. It is the convention here to alphabetise as the term is spelt, so that Macarthur comes before McArthur and both before Mckinney. This is easily done by computer. 3. The Automated Sorting of Geographical Names: The simplest of computer generated alphabetical sort routines take the unique numerical code allocated to each character the computer recognises, and compares each character of a name with the equivalent position character of the next name. The smaller the code, the higher the priority given to the character in the lexical order. Unfortunately the need for a unique code for each character results in upper case letters being distinguished from lower case letters. The commonly used ASCII code gives all upper case letters priority over all lower case letters, and some punctuation marks priority over the capital letters. (This includes the space character). Thus in Annex A, Cha Yue Pai has been given priority over Chai Kek, while Annex B shows the correct lexical order. In many languages certain letter and diacritic combinations have a very different lexical order from the base letter. Thus in Scandinavian languages the lexical order is A,B,C,...,Y,Z,Æ,Ä,Ä etc. While in English we would not distinguish between A and A/A, the local requirement would be to make this distinction. Neither of these needs is met by ASCII codes which give the special characters a priority below lower case letters. Similar examples can be found in other languages. To achieve a suitable sorted output from an automated names database suitable for gazetteer production requires the user to be able to define his own lexical order that does not give priority to punctuation marks, that does not distinguish between upper and lower case variants of the same letter, and that allows discritical marks and special characters to be allocated their correct local order. | | not A. ASCII Computer Sorting Routine | • | | | | | |---|---|-----------------------------------|---|--|--|---------------------------| | | NAME : | DESG | LATITUDE | LDNGITUDE | GRID COORDS | SHEET | | | Boulder Point see: Pak Kok
Boulder Point | PT | 22'14'N | 114°06″E | KV 026 625 | 15 | | | see: Kau Lau Wan Tsui Boundary Street Bowring Camp Brick Hill see: Nam Long Shan | PT
RD
PPL
HLL | 22*27*N
22*19*N
22*24*N
22*14*N | 114*21'E
114*10'E
113*58'E
114*10'E | KV 281 864
KV 088 719
HQ 069 815
KV 083 625 | 8
11
6
15 | | | Bride's Pool
Bride's Pool Road | PND
RD | 22,30,N
55,53,H | 114°14°E
114°14°E | KV 166 913
KV 160 892 | 3
3 | | | Bridge Hill see: Liu Fa Tseng Shan Brothers, The Brothers Point see: Tai Lam Kok | HLL
ISLS
PT | 22*14*N
22*20*N
22*21*N | 114°13'E
113°58'E
114°01'E | KV 129 619
HQ 061 728
JV 927 756 | 15
10
6 | | | Buffalo Hill see: Shui Ngau Shan Buffalo Pass see: Tai Lo Au Burma Lines Butler, Mount see: Pat Na Shan Butterfly Beach see: Wu Tip Wan | HLL
PASS
CMPM
HLL
BAY | 22*22*N
22*22*N
22*30*N
22*16*N
22*22*N | 114*13'E
114*14'E
114*09'E
114*12'E
113*57'E | KV 149 771
KV 152 769
KV 073 915
KV 123 653
HQ 043 772 | 7
7
3
11
5 | | | Butterfly Estate
Butterfly Valley | PPL | 22.55.N | 113°57′E | HQ 050 775 | 5 | | ř | see: Wu Tip Kuk
Byewash Reservoir
Cafeteria Beach
Calfís Head see: Fu Yung Pit | VAL
RSV
BCH
HLL, | 22*20*N
22*21*N
22*22*N
22*22*N | 114°08'E
114°08'E
113°59'E
114°14'E | KV 055 737
KV 063 746
HQ 073 774
KV 154 769 | 11
11
6
7 | | | Cameron, Mount
Camp Cove | HLL | 22°15'N | 114°10'E | KV 086 648 | 11 | | | see: Pak Sha Tau Wan
Cape Collinson Training Centre
Cape D'Aguilar Road
Care Villages | BAY
BLDG
RD
PPLS | 22°32'N
22°15'N
22°13'N
22°12'N | 114*17'E
114*15'E
114*14'E
114*01'E | KV 218 946
KV 166 633
KV 157 591
KV 923 583 | 4
11
15
14 | | | Caroline Hill
Casam Beach
Cassino Lines
Castle Peak see: Tsing Shan | LCTY
BCH
CMPM
HLL | 22*16'N
22*22'N
22*29'N
22*23"N | 114°11'E
114°04'E
114°04'E
113°57'E | KV 099 663
JV 984 766
JV 993 898
HQ 038 789 | 11
6
2
5 | | | Castle Peak Bay
see: Tsing Shen Wan | BAY | 82.55.1 | 113*58 ' E | HQ 060 708 | 6 | | | Castle Peak Beach
Castle Peak Firing Range
Castle Peak Road | BCH
CMPM
RD | 22*22*N
22*24*N
22*25*N | 113 ⁵⁸ /E
113 ⁵⁶ /E
113 ⁵⁹ /E | HQ 066 780
HQ 030 810
HQ 075 833 | - 5 | | | Castle Rock
see: Lo Chau Pak Pai
Causeway Bay see: Tung Lo Wan | RKW
LCTY | 22°10″N
22°16″N | 114 14 E
114 10 E | KV 148 550
KV 096, 667 | 15
11 | | | Causeway Bay Typhoon Shelter
Cemetery Gap see: Po Leng Au
Central District | LCTY
LCTY | 22*17'N
22*29'N | 114'11'E
114'07'E | KV 098 673
KV 039 900 | 11
3 | | | see: Chung Wan
Centre Island see: A Chau
Cha Hang see: Tai Hang | LCTY
ISL
PPL | 22*17'N
22*26'N
22*28'N | 114°09'E
114°13'E
114°08'E | KV 070 670
KV 138 843
KV 064 877 | 11
7
3 | | | Cha Kwo Chau
Cha Kwo Leng see: Cha Kwo Ling
Cha Kwo Ling
Cha Liu Au
Cha Yue Pai | ISL
PPL
PPL
PASS
ISL | 22*12*N
22*18*N
22*18*N
22*20*N
22*22*N | 113*56*E
114*13*E
114*13*E
114*13*E
114*17*E | HQ 034 597
KV 142 689
KV 142 689
KV 140 726
KV 216 775 | 13
11
11
11
8 | | | Chai Kek
Chai Wan
Chai Wan
Chai Wan Estate
Chai Wan Kok | PPL
LCTY
BAY
PPLX
PPL | 22°26′N
22°16′N
22°16′N
22°15′N
22°22′N | 114'07'E
114'14'E
114'14'E
114'14'E
114'06'E | KV 042 847
KV 149 650
KV 155 655
KV 153 648
KV 018 775 | 7
11
11
11
6 | | | Chai Wan Road
Cham Keng Chau
Gham Pai
Chem Shan
Cham Shan | RD
1SL
RF
HLL
HLL | 22°16′N
22°33′N
22°29′N
22°23′N
22°31′N | 114'13'E
114'25'E
114'21'E
114'09'E
114'07'E | KV 146 652
KV 349 960
KV 286 896
KV 073 786
KV 048 934 | 11
4
4
7
3 | | | Chem Tau Chau
Chem Tin Shen | ISL
HLL | 22°22″N
22°21″N | 114*17'E
114*13'E | KV 205 775
KV 142 744 | 8
11 | | | | · | 2 | | | | | Annex
NAMI | - | Sorting Routine. | DESG | LATITUDE | LONGITUDĘ | GRID COORDS | SHEET | |----------------------|---|---|--|---|--|--|--------------------------| | Bou | lder Point | see: Pak Kok | PT | 22°14'N | 114.06.E | KV 026 625 | 15 | | Sout
Bowl
Bowl | lder Point
se: Kau Lau I
ndary Street
ring Camp
sk Hill | | PT
RD
PPL
HLL | 22.27'N
22.19'N
22.24'N
22.14'N | 114.21,E
114.10,E
113.58,E
114.10,E | KV 281 864
KV 088 719
HQ 069 815
KV 083 625 | 8
11
6
15 | | Bri | Bride's Pool Road | PND
RD | 22.30.N
55.55.N | 114'14'E
114'14'E | KV 166 913
KV 160 892 | 3
3 | | | Bro | dge Hill
ee: Liu Fa T
thers, The
thers Point | seng Shan
see: Tai Lam Kok | HLL
ISLS
PT | 22*14*N
22*20*N
22*21/N | 114°13'E
113°58'E
114°01'E | KV 129 619
HQ 061 728
JV 927 756 | 15
10
6 | | Buf
Bur
But | | u Shan
see: Tai Lo Au
see: Pat Na Shan
see: Wu Tip Wan | HLL
PASS
CMPM
HLL
BAY | 22*22'H
22*22'H
22*30'H
22*16'H
22*22'H | 114'13'E
114'14'E
114'09'E
114'12'E
113'57'E | KV 149 771
KV 152 769
KV 073 915
KV 123 653
HQ 043 772 | 7
7
3
11
5 | | | Butterfly Estate
Butterfly Valley | PPL | 22.55.N | 113°57'E | HQ 050 775 | 5 | | | Bye
Caf | ee: Wu Tip K
wash Reservoi
eteria Beach | uk | VAL
RSV
BCH
HLL | 22.50,N
25.51,N
55.55,N
55.55,N | 114'08'E
114'08'E
113'59'E
114'14'E | KV 055 737
KV 063 746
HQ 073 774
KV 154 769 | 11
11
6
7 | | | eron, Mount
p Cove | | HLL | 22°15'N | 114°10'E | KV 086 648 | 11 | | s
Cap
Cap | see: Pak Sha Tau Wan
Cape Collinson Training Centre
Cape D'Aguilar Road
Care Villages | BAY
BLDG
RD
PPLS | 22*32*N
22*15*N
22*13*N
22*12*N | 114°17'E
114°15'E
114°14'E
114°01'E | KV 218 946
KV 166 633
KV 157 591
KV 923 583 | 4
11
15
14 | | | Cas
Cas
Cas | oline Hill
am Beach
sino Lines
tle Peak
tle Peak Bay | see: Tsing Shan | LCTY
BCH
CMPM
HLL | 22*16*N
22*22*N
22*29*N
22*23*N | 114*11'E
114*04'E
114*04'E
113*57'E | KV 099 663
JV 984 766
JV 993 898
HQ 038 789 | 11
6
2
5 | | | see: Tsing Shan Wan | BAY | 22*22*N | 113*58'E | HQ 060 708 | 6 | | | cas
Cas | Castle Peak Beach
Castle Peak Firing Range
Castle Peak Road
Castle Rock
see: Lo Chau Pak Pai
Causeway Bay see: Tung Lo Wan | BCH
CMPM
RD | 22°22'N
22°24'N
22°25'N | 113*58*E
113*56*E
113*59*E | HQ 066 780
HQ 030 810
HQ 075 833 | 6
5
6 | | | 5 | | RKW
LCTY | 22*10'N
22*16'N | 114.14.E
114.10.E | KV 148 550
KV 096 667 | 15
11 | | | Cem | Causeway Bay Typhoon Shelter
Cemetery Gap see: Po Leng Au
Central District
see: Chung Wan
Centre Island see: A Chau
Cha Hang see: Tai Hang | HBR
LCTY | 22*17*N
22*29*N | 114*11*E
114*07*E | KV 098 673
KV 039 900 | 11
3 | | | . Cen | | LCTY
ISL
PPL | 22°17'N
22°26'N
22°28'N | 114'09'E
114'13'E
114'08'E | KV 070 670
KV 138 843
KV 064 877 | 11
7
3 | | | Cha
Cha
Cha | i Kek
i Wan
i Wan
i Wan Estate
i Wan Kok | | PPL
LCTY
BAY
PPLX
PPL | 22*26*N
22*16*N
22*16*N
22*15*N
22*22*N | 114.07'E
114.14'E
114.14'E
114.14'E
114.06'E | KV 042 847
KV 149 650
KV 155 655
KV 153 648
KV 018 775 | 7
11
11
11
6 | | Cha
Cha
Cha | i Wan Road
Kwo Chau
Kwo Leng
Kwo Ling
Liu Au | see: Cha Kwo Ling | RD
ISL
PPL
PPL
PASS | 22°16'N
22°12'N
22°18'N
22°18'N
22°20'N | 114*13'E
113*56'E
114*13'E
114*13'E
114*13'E | KV 146 652
HQ 034 597
KV 142 689
KV 142 689
KV 140 726 | 11
13
11
11 | | Cha
Cha
Cha | m Keng Chau
m Pai
m Shan
m Shan
m Tau Chau | | ISL
RF
HLL
HLL
ISL | 22'33'N
22'29'N
22'23'N
22'31'N
22'22'N | 114°25'E
114°21'E
114°09'E
114°07'E
114°17'E | KV 349 960
KV 286 896
KV 073 786
KV 048 934
KV 205 775 | 4
4
7
3.
8 | | | m Tin Shan
innel Rock | see: Cham Pai | HLL
RF | 22*21'N
22*29'N | 114°13'E
114°21'E | KV 142 744
KV 286 896 | 11
4 |