UNITED NATIONS

ECONOMIC AND SOCIAL COUNCIL

Seventeenth United Nations Regional Cartographic Conference for Asia and the Pacific Bangkok, 18-22 September 2006 Item 7 of the provisional agenda*

INVITED PAPERS

TOPOGRAPHIC – CADASTRAL DATA INTEGRATION ISSUE: THE MALAYSIAN CASE

Submitted by the Department of Survey and Mapping, Malaysia **

* E/CONF.97/1

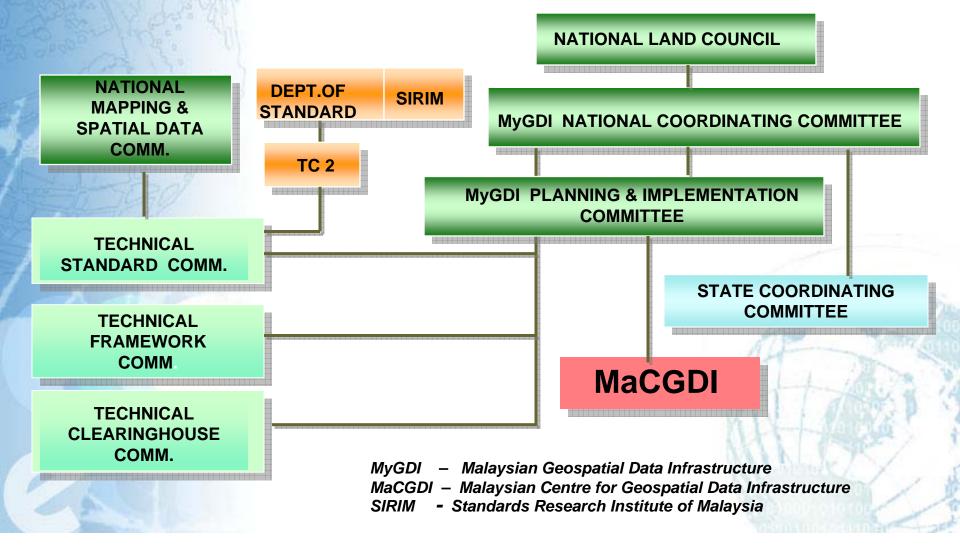
^{**} Prepared by Mr. Ahmad Fauzi bin Nordin, Director of Survey, Mapping Division, Department of Survey and Mapping, Malaysia

Topographic - Cadastral Data Integration Issue : The Malaysian Case

Ahmad Fauzi Nordin Department of Survey and Mapping Malaysia (JUPEM)

International Workshop on Integration of Built and Natural Environmental Datasets within a National SDI 20.9.2006 Bangkok, Thailand

Malaysian SDI


Formed in 1997, then known as NaLIS (National Infrastructure for Land Information System)

Purpose :

- To promote and facilitate sharing, exchange, dissemination and use of geospatial information among Land Related Agencies (LRAs)
- To avoid duplication of effort in collection and management of geospatial information
- To ensure accuracy, timeliness, correctness and consistency of geospatial information

Undergone restructuring in 2002; subsequently named MyGDI

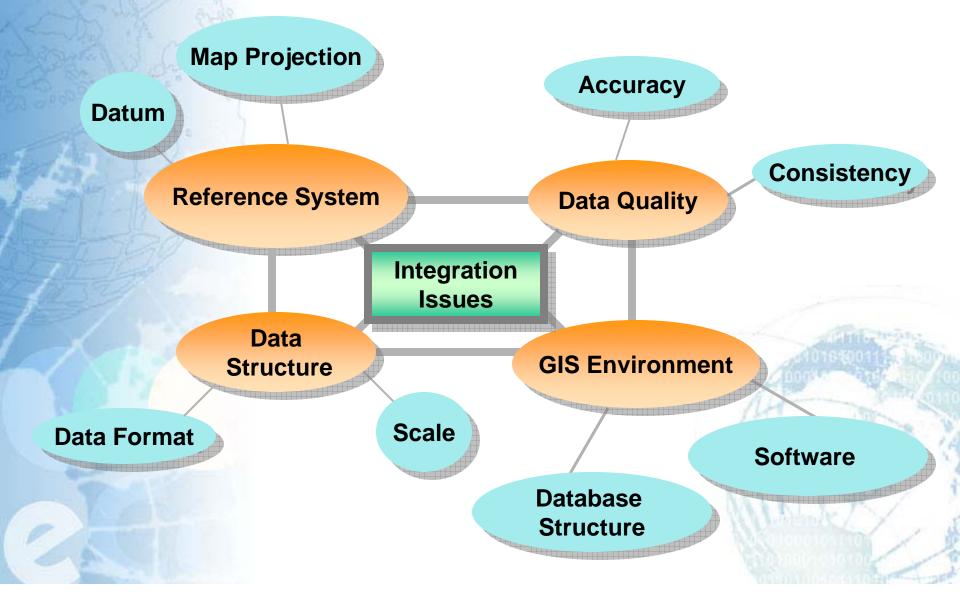
MyGDI Management Structure

Issues of MyGDI Implementation

- Organisational Capacity
- Training and Education
- Data Availability and Accessibility

.....

- Conflicting Interests
 - **Data integration**


Need for Integration

- Currently, data integration is generally possible but a number of operations need to be performed.
 Outcome – at times are unsatisfactory, particularly in terms of accuracy
- Certain, especially micro/detailed level applications need integration results of higher accuracies. Eg.:
 - Determining alignments of new roads & ensuing land acquisition compensations
 - ✓ Designing of inter-state gas pipelines location & alignment
- Increased efficiency in data use
- Wider applicability increased number of uses & users
- Better decision making
- Better economic returns & justification for data provider

UTM – JUPEM Research Collaboration

- Initiative taken by Department of Survey & Mapping, Malaysia (JUPEM) to address topographic - cadastral data integration
- Research project undertaken in collaboration with Universiti Teknologi Malaysia (UTM)
- Successful outcome would help provide solution to the primary issue of data integration since many other datasets are based on topographic datasets (produced by JUPEM)
- The main objective is to develop techniques for effective integration of data from DTDB & DCDB

Integration Issues

Data Format & DB Structure

Topographic Dataset

- Data acquisition through aerial photography & photogrammetric processes
- ☑ Data Format
 - Originally uses CAD / DXF
 - Good for graphic display
 - No topology; not GIS ready
- Data Structure
 - Arranged according to features, in 10 main layers (sub layers also developed)
 - Migration to OODB using LASERSCAN's LAMPS GOTHIC database

Scale

1: 3000 - 1: 12 500, 1: 25 000, 1: 50 000

Cadastral Dataset

- ☑ Ground land survey
- Data Format
 - Uses ARCINFO's Shapefile
 - Lacks topology (connectivity & adjacency)
 - Not fully GIS ready
- Data Structure
 - Makes use of 3 layers, LOT (polygon), BOUNDARY (line), & BDY STONES (point)
 - High level spatial analyses could not be performed.
- Scale
 - Survey accurate (keyed-in survey data)
 - Scale free

Data Quality

Accuracy of data from NDTDB :

Map Scale	Accuracy		
A top of the	X (m)	Y (m)	Z (m)
1: 3 000	± 1.5	± 1.5	± 2.5
1: 25 000	± 5.0	± 5.0	± 10.0
1: 50 000	± 12.5	± 12.5	± 20.0

- Cadastral dataset from DCDB result from ground surveys according to survey classes, i.e: 1st class @1: 8000 & 2nd class @ 1: 4000
- For DCDB high consistency, due to regimented methods of data collection, processing & quality control to fulfill legal requirements.
 For NDTDB data - inconsistent due to photogrammetric & cartographic processes
- Differences in dates of data collection & updating will also affect data integration results

Research Outcome

Techniques for effective data integration
 Recommendations :

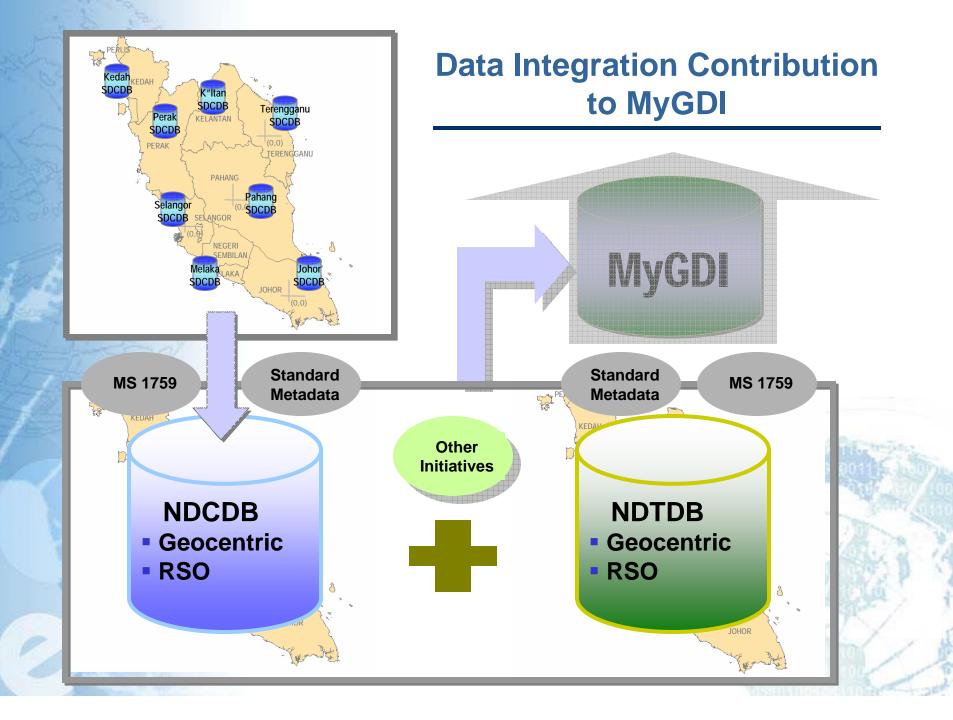
- Adopt geocentric datum for topographic mapping & cadastral survey systems
- Adopt RSO projection system as well for cadastral survey systems
- Implement Coordinated Cadastral System (CCS)
- Etc.

Initiatives Impacting Data Integration

- **Development of Standard Metadata**
 - Effort made by the Standards Technical Committee
 - Template developed by MaCGDI
 - Consistent metadata management tool based on ISO/TC 211 standard
 - Can be used for all data categories
 - Documented and provided to all data providers
 - Free metadata publishing and searching through MyGDI
- Development of Malaysian Standard (MS1759) Feature & Attribute Codes
 - Took into consideration the need to use a standard code for common features in both topographic and cadastral databases.
 - Documented and published in 2004

Initiatives Impacting Data Integration

Adoption of Geocentric Datum for Mapping


Move to geocentric datum with launching of GDM 2000 (Geocentric Datum of Malaysia) in 2004
Based on ITRF 2000 & GRS 1980 reference ellipsoid
Will simplify & aid integration of geospatial datasets
Migration of topographic datasets still underway

Change from CAD-based to GIS-based NDTDB

- Currently moving to object-oriented database (GINIS to LAMPS-GOTHIC)
- Data GIS ready
- Migration still ongoing
- Data structure changed to comply with MS 1759 (Malaysian Standard)

Future Plan

- Implementation of Coordinated Cadastral System (CCS)
 - Cadastral survey system in all States will adopt geocentric datum
 - Adoption of RSO projection system coordinates (to supplement Cassini-Soldner)
 - State DCDB (SDCDB) will be referenced to a single origin & simultaneous formation of a National DCDB (NDCDB)
 - NDCDB fully GIS ready
 - Implementation will begin in 2007 under the 9th Malaysian Development Plan (2006 – 2010)

CONCLUSION

- Topographic cadastral data integration is one of the major issues in MyGDI implementation
- Some initiatives have been undertaken & some underway, in order to address associated problems, especially technical ones
- Overcoming topographic cadastral data integration problem will bring significant benefits, in particular to geospatial data users