Production of an UNGEGN Manual

Report on behalf of the editorial team, UNGEGN Working Group on training courses in toponymy
Task set to WG in 2013:

- Produce a toponymy manual that would enable those that have followed one of the basic toponymy webcourses, to receive more in-depth instruction in the collecting, processing and standardizing of geographical names, in their incorporation in databases, in their diffusion through web servers or other means, and in their practical applications.
Workplan:

- Contents were planned (40 chapters)
- Authors were sought and found
- Standard lay-out was devised and sent out
- Example of a chapter was circulated
- Deadlines were set: September 2015 first draft, comments back before 2016, final draft March 2016, presentation in Bangkok
Tasks of team of editors from WG

(Helen Kerfoot, Pier-Giorgio Zaccheddu, Ferjan Ormeling)

- Coordinate, make sure that all chapters are geared one to another, avoid gaps and overlaps
- See to common lay-out, numbering, style
- Check level
Sections:

- Section 1: General issues.
- Section 2 Examples of applications of the national names database
- Section 3 Management of a national names programme:
- Section 4 Thematic applications
- Section 5 Global initiatives
- Section 6 National coordination in the maintenance of toponymic names databases
- Section 7 Technical issues: database management
Sections (cont):

- Section 8 Technical issues, continued:
- Section 9: Websites: evaluation of current Internet services and applications.
- Section 10: Cultural aspects
- Section 11: Toponymic research and documentation
- Section 12: Cartographic aspects: paper and digital map series
- Session 13: Auditing existing place name records
- Section 14 Special training for contacts with the media and the public
Subjects/chapters still missing:

- National names database and emergency mapping
- Application of a national names database for hotel-finding apps
- Open street mapping and the collection of geographical names
- Criteria for selecting open source versus commercial options for web services
- Publishing names data bases in a Google Earth application
- Digital place name labelling, as enabled in programmes developed by soft- and hardware firms active in cartography.
scripts that can either be vocalised or non-vocalised: (see Figure 2-7). |  

Figure 2-6: Part of Southeast Asia, showing the different scripts in use. C-Meno-Bolder.

Unvocalised alphabets can be turned into vocalised one by adding signs indicating the vowels: 

أjin = al-Madinah = ریاض

Figure 2-7: Non-vocalised and vocalised names.

When producing toponymical databases, from which later gazetteers and/or name servers can be derived, one has to make sure that the necessary attribute information for both the name and the accompanying named object is stored in the database. Apart from ID numbers, these necessary attributes may consist of the feature-code, coordinates, extent of the named object, and the language, gender, number and pronunciation of the name.

When the object of our toponymical databases also is producing maps, we might add information on the map-sheets: the named object will occur on, and its relative importance, for incorporation on derived, smaller-scale maps.

- avoid crossing names with horizontal lines (e.g. map grid)

- where possible, avoid crossing of lines (especially black and high density)

- avoid erroneous (wrong) association

- do not cover important detail

Figure 2-8: Capture of an illustration from the module on names placement in the web course. C-Noordhoff Atlas Productions.

Kerning: (the adjustment of the space between two consecutive letters) is a concept from typography, as are serifs.

Finally, in the module on Names as cultural heritage, we deal with concepts such as (toponyms as) 'landscape identifiers', leading to mental or emotional associations, linked to the connotations of names discussed in the module on name functions.

2.4 Processes induced in the course

When doing the web course, students were asked to look up definitions, find literature, follow links to other relevant material on the website, and generally explore the wealth of toponymical material available on the UNGEGN website. Especially the following, downloadable publications should be mentioned:

Glossary of Terms for the Standardization of Geographical Names (UN-New York 2002). /pdf/

Manual for the national standardization of geographical names (UN-ECSOC-New York, 2005)* available in the 6 UN-languages. /pdf/


Resolutions adopted at the tenth UN Conferences on the standardization of geographical names (English: pdf) /French (pdf)

Apart from these educational publications, individual working papers handed in by delegates for UNGEGN sessions or UNGEGN conferences were referred to as well, and had to be accessed by course participants.

Moreover, participants had the opportunity of doing exercises in looking up data fields, georeferencing, in matching maps, identifying writing systems, in name-

Das Datenmodell ist einfach strukturiert; Pro Geometrietyp (Punkt, Linie, Fläche) gibt es eine Objektklasse, in der jeweils alle Namenobjekte der jeweiligen geometrischen Ausprägung zusammengefasst werden. Die Namen sind Attribute (Shapefile oder CSV) oder werden in einer separaten Tabelle geführt, die auf die Geometrietabellen referenziert (Geodatabase). Der Inhalt von...
publications may be confronted with different forms of spelling for one feature (local name and English exonym). Additionally confusion can exist through the use of different Romanization systems. A user with a non-English-speaking background may be faced with the Romanized spelling of a name having a different type face than is used in his own language.

A further complication is found where there is an exonym in common use in just one language and another language is using the endonym. For example: In the Russian town of Kaliningrad there is a tourist site called "Закхаймское ворота" [rus]. The German exonym is "Sachheimer Tor" and there is no common English exonym existing. Hence English is using the endonym in the English Romanized form "Zakhaimskie vorota" [eng] or the adapted form of "Zakhamyckie gate" with the generic term translated: if the endonym were to be used in German the Romanized form would read quite differently as "Sokhaimskie vorota" [ger]. The UN-approved form would be "Zakhamyskie vorota".

5. The function of toponyms in tourist maps

To promote conscious and intercultural travel that creates not a confrontation but an open encounter of the traveller with the local people and its culture, it is necessary to start this encounter during the preparation for a journey. The tourist has to be confronted with these cultural differences while he is at home planning his itinerary.

Tourist maps provide an excellent means to picture these cultural changes. By using the endonymic and exonymic name forms the cultural differences can be made very obvious on such maps. The use of the endonym initiates the original spelling, its Romanized form and the exonym of the feature is a helpful step in the direction of conveying diversity.

It is necessary to use exonyms in tourist publications to attract the potential customer at his home location. Tourism is oriented to the customer and this requires the publications to be as understandable as possible. In order to express the various cultural differences, they manifest themselves in language and writing, beside many other aspects.

It is the responsibility and duty for editors of travel-publications and tourist maps to provide both exonymic and local local name forms of a geographical name. The user must find the endonym (s) and the exonym. If the endonym is written in a different script the original spelling and a Romanized form must be given too.

Fig-3: Seoul Metropolitan Government is publishing a tourist map in English which is a good combination of local toponyms and English exonyms. All geographical features (streets, public buildings, parks, etc.) are labelled with their local Korean spelling and with the Romanized name form.
The street name sign in Figure 11 is from Prague. Here the rectangular red street name sign with a stylised white border bears the name in the same colour as the border. Below the street name in large characters, the name of the city quarter in which the street is situated is listed in smaller characters, also in capital letters.

Figure 11: Street name sign from Prague.

The example from the Czech Republic.

Example from Turkey:

Figure 12 shows a street name sign from Istanbul. The red part indicates the street name and the numbers of the buildings on this block; the white part contains the name of the neighbourhood or city quarter and the lower, blue part contains the name of the city district.

Example from the United States.

UNGEEN participants would be familiar with the street name signs in New York City, particularly those close to the United Nations Building where the UNGEEN meetings are being held.

Figures 13 and 14 show two types of street name signs used in New York City: one on a green background with the image of the statue of Liberty, and one on a blue background, with a white border. Both signs have their lettering in white.
searches using a map interface, bulk data in several formats via the LINZ Data Service. The diagram in figure 2 represents the linkages and relationships with how the system operates.

5.13.11-Contextual Model

The NZGB Secretariat interacts with the Gazetteer through a purpose-built interface. This interface provides access to the data contained in the Gazetteer database and enables it to be viewed spatially in conjunction with other contextual data. This enables the NZGB Secretariat to create new records of place/feature names, search for, query and update existing records, print/copy 'name' records and obtain reports from the database.

External users of the system interact with the Gazetteer through a purpose-built web interface. This interface provides 'read-only' access to some of the data contained in the Gazetteer database. This enables the external user to search for and query existing records, and request output (printed/electronic) from the system.

External users are also able to download pre-compiled extracts of data from the LINZ Data Service web service. The LINZ Data Service provides web services to enable machine-to-machine connections to the database (eg: WFS, KML).

The model in figure 3 is a high-level view of that shows users interaction with the Gazetteer application.

Figure 3 - Gazetteer application interaction model

5.13.12-Value for Money

- Open source software — the Gazetteer was built using open source software meaning no or very low-cost for application software. The applications used are:
  - PostgreSQL — database
  - Quantum-GIS — NZGB Secretariat administration
  - Drupal — web user interface leveraging off LINZ web Customer Management System (CMS)
  - LINZ Data Service — the LINZ Data Service offers minimal costs to providing Gazetteer data via web services eg: WFS. Also, other LINZ Data Service functionality is available to users of the Gazetteer including:
    - Mashing Gazetteer data with other datasets
    - Downloading subsets of Gazetteer data with the LINZ Data Service cropping feature
  - 'Internal' Development — the Gazetteer was built using "Internal" LINZ resources

Figure 2 - NZGB Gazetteer — proposed solution
Chapter 14—UNEGN World Geographical Names Database

Helen Kerfoot

14.1 Introduction

The UNEGNN World Geographical Names Database was initiated in 2004 and has continued with the support of resolution IX/6 of the Ninth UN Conference on the Standardization of Geographical Names in 2007.

It is a multilingual, multi-scriptual geo-referenced database containing names of UN member states, capitals, and cities/towns with a population over 100,000. All entries provide endonyms, as well as forms used by the United Nations in Arabic, Chinese, English, French, Russian and Spanish for the countries (UN Member States) and capitals. The data, now uploaded quarterly, is accessible on the UNEGNN website at http://unstats.un.org/unsd/geoinfo/geonames/ through a world map interface and tables (Figure 14-1).

Figure 14-1—World map: starting point for searching the UNEGNN World Geographical Names Database. UNEGNN experts are responsible for supplying (or updating) the city/town data from their countries, together with the recognized coordinates of latitude and longitude. In addition, experts are encouraged to supply audio files for the pronunciation of each city name, these are attached to the individual entries and are available to web-users.

The UNEGNN Secretariat is responsible for maintaining the database and development of the web interface.

14.2 History behind the development of the database

At its twenty-second session in 2004, UNEGNN recommended that the Secretariat take the lead in developing a world database to collect, manage and disseminate authoritative data on country and major city names. In particular, this would use the UNEGNN website to make available information that would help respond to toponymic questions received by the Secretariat and would provide a vehicle for countries to have their city names displayed in standardized form within a worldwide framework.

As a result, the Secretariat, with advice from UNEGNN, initiated the process of building a multilingual, multi-scriptual geo-referenced database, designed to represent the reality of geographical names in a variety of languages and scripts. The database had to be available to UNEGNN experts and the general public through a web interface. Names for places would be linked to a map, and standardized names, their spelling and pronunciation, would be displayed as tables.

At the time, the database was created in SQL Server 20005 which could store all the information necessary for populating the map and providing data in tabular format (including city and country names, ISO3-letter country codes, variants, coordinates, comments, and pronunciation audio files).

Following a special presentation to the Ninth UN Conference on the Standardization of Geographical Names in 2007 (Figure 14-2), the Conference passed resolution IX/8, recommending that the UN Statistics Division, in cooperation with the UN Cartographic Section, the UN Second Administrative Level Boundaries (SAIB), UNEGNN and member States “further develop, populate and maintain the geographical names database” of UNEGNN, “initially containing names of countries, capitals and major cities”.

Figure 14-2 Special presentation available in text and slides at http://unstats.un.org/unsd/geoinfo/UNEGNN/unganco9Add.html

14.3 Geographical names data included

So far the data include:

(1) Country names—formal and short forms
Likewise, the name by which the Romans referred to the settlement growing around their army camp where present the Dutch city of Nijmegen stands, Noviomagus, may in the database be defined as Classical Latin: because it was quoted by this name by sources written in Classical Latin language.

<table>
<thead>
<tr>
<th>Name-identifier</th>
<th>Object-identifier</th>
<th>Language</th>
<th>Script</th>
<th>Orthography</th>
<th>Name-(main-specific-element)</th>
</tr>
</thead>
<tbody>
<tr>
<td>206038</td>
<td>232601</td>
<td>Latin (Classical)</td>
<td>Roman</td>
<td>Noviomagus</td>
<td></td>
</tr>
</tbody>
</table>

Or it might, as historical linguists might advise, be defined as a Celtic name rendered in a Roman Latinised way. The latter can be specified in the field ‘Transliteration’.

<table>
<thead>
<tr>
<th>Name-identifier</th>
<th>Object-identifier</th>
<th>Language</th>
<th>Script</th>
<th>Orthography</th>
<th>Name-(main-specific-element)</th>
</tr>
</thead>
<tbody>
<tr>
<td>126038</td>
<td>132601</td>
<td>Celtic (Gallic-Transalpine Gaulish)</td>
<td>Roman</td>
<td>Roman Latinised</td>
<td>Noviomagus</td>
</tr>
</tbody>
</table>

Script

Unicode fonts are available to store and visualize names in all known writing systems. The description of the script should be stored in a separate table. Again, the instances maintained should accommodate for any name we encounter, also when specific knowledge as yet falls short. The table may consist of just a key field and a textual description. The purpose of including different script versions of names in the database, even when the atlas we produce won’t show them in print, is that it allows us to store the original writings of names that we transliterate: we might need these in case official of UNGEGN-promoted transliteration keys are replaced and we need to re-transliterate.

<table>
<thead>
<tr>
<th>Name-identifier</th>
<th>Object-identifier</th>
<th>Language</th>
<th>Script</th>
<th>Orthography</th>
<th>Name-(main-specific-element)</th>
</tr>
</thead>
<tbody>
<tr>
<td>14282</td>
<td>79150</td>
<td>English (Modern)</td>
<td>Roman</td>
<td>Los Angeles</td>
<td>Los</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Name-identifier</th>
<th>Object-identifier</th>
<th>Language</th>
<th>Script</th>
<th>Orthography</th>
<th>Name-(main-specific-element)</th>
<th>Non-specific-name-elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>14282</td>
<td>79150</td>
<td>Spanish (Castilian)</td>
<td>Roman</td>
<td>Ángelras</td>
<td>Los</td>
<td></td>
</tr>
</tbody>
</table>

The definition of Orthography in the context of the database may include both transliteration, transcription, orthographic standards and optional or unofficially-adapted variants like accentuated, vocalized or simplified spellings. Many instances may be unspecified and possibly unofficial/non-standardized transliterations and transcriptions matching the pronunciation-to-writing conventions of a certain language, but ISO-norms and transliterations recommended by the UNGEGN Working Group on Romanization should be included as well. An instance ‘unknown’ may be used temporarily.
This is where you will be able to setup the administrative divisions of the nation. Please note the following points while setting up administrative divisions:

1. The first node always need to be the name of the country.
2. To add a sub-division you have to select:
   - Importing data

   Importing data is a two-step operation. You need to prepare your data using the import template first and then use the import window shown above to import your data:
   - To GeoNyms.

3. Prepare your data for import for GeoNyms.
   - Download the import template from the GitHub (go to:
     https://github.com/YossiHi/GeoNyms)
   - And select point to importTemplate.xls.
   - Then right-click and select the "Save as" option to download the individual file into your computer. You may also find it in your downloaded files, if you have downloaded the entire repository.
4. Please do not change the order of the columns in the template.
5. Note that the first row is reserved for column title, thus data on this row will not be imported.
6. Copy and paste your data into the respective columns on the template.
7. Save the Excel file into 97-2003 or Win-95 format. This is important other Excel formats are not supported for now.
8. Make sure all the Admin Divisions and Feature types in your file are set up in the system before importing your file. Doing this prior to importing the data will help to keep better data quality and make data maintenance easy. You can still import your data without setting up your Admin Divisions/Feature Types.

9. Use the tools in GeoNyms to import your data.
   - Open the import window (tab) by clicking the Import button (second from last) in the Menu bar.
   - Click the "Load Excel file" and pick your prepared file.
   - If you had not set up all your Admin Divisions and/or Feature types in the last section of steps you will receive a warning message. You may choose to close the Import page and set up your Admin Divisions/Feature types and start from step 9.

the upper administrative division you want to create the sub-division to.
3. If you have already hooked up toponym records with administrative division, you will not be allowed to remove it until you...
names/find-place-name. The production of the Gazetteer, on which this website is based is described in another chapter in this manual, by Wendy Shaw of the New Zealand Geographic Board. This body, housed at Land Information New Zealand (LINZ) collects, adopts, approves (or assigns, alters and discontinues) and validates names. When adopted the names are listed in the New Zealand Gazetteer, with information on their status, feature class, coordinates, a short description of the feature, its extent, and — and this is not often found in these name servers — something on the history of the named object or origin and meaning of the name. File and archive references will be added if possible.

Names from the ‘Recorded names’ category have not officially been approved as yet. However, they have been cited in at least two publicly available authoritative sources. It may simply be the case that NZGB has not had the time as yet to validate them, or that they are beyond the jurisdiction of NZGB, as is the case for names for homesteads, roads, streets, tracks and lighthouses.

Special name categories are dual names, alternative names and recorded names. In dual names the community has expressed its recognition of the special historical and cultural significance of both original Māori and non-Māori names, as for instance Aoraki/Mount Cook. They would be inseparable on official documents. For names from the alternative name category this special historical and cultural significance for the community is also valid, but they may be separated, in the sense that only one of them may be selected.

Figure 6: Distribution of all promontories in County Kerry, Ireland, with one of them clicked.

Figure 7: Dual names from the New Zealand gazetteer.
A place-name not only points out a place, it also mediates a cluster of qualities and meanings attached to that place, partly valid for a single individual, partly shared by a given social group. Everybody over a certain age who has spent sufficient time in the village of Lofthus in western Norway will identify the hill of Børvehovden (see picture) when the name is mentioned.

Another example from this setting is the field-name Brattabrotet “the steep slope” on the small farm of Helland. This name is known only by the family living on the farm and is associated with the difficulty of mowing and harvesting this field due to its steepness.
and, to the eyes of the unknowing, for long disappeared. Also, the distribution of these hidden heirlooms still gives us a clue of the geographical range of the cultures leaving us their names: Etruscans in the central peninsula, Illyrians and Venetians in the east. Celts in the north, Greeks and Phoenicians in the south, Romans and other Italic peoples nationwide: they all contributed to what we call Italy and Italian today. What also may surprise us, is that exactly among the surviving ancient names in Italy originally Latin names seem to be a minority.

Staying in Italy, the persistence of geographical names may be demonstrated by some examples of toponyms surviving the demise of the objects for which they were designed. The Etruscan city of Caere, one of the biggest and most important places in Italy by the 6th century BCE, survived as a small provincial town into Roman times under the Latinised name Caere, but started to become abandoned as it fell victim to outbreaks of malaria and Saracen raids after the 6th century CE. By then its name had been transferred to the local bishopric, for which a new see was built 9 kilometres to the east. The new settlement was named Caere Nova (‘New Caere’), which now resonates in the name of the village of Ceri. By the 13th century the old city had become a ghost town known as Caere Vetus (‘Old Caere’), a name it retained when it became resettled in the 17th century: in modern Italian, this became Cerveteri.

Another notable example is the story of the city of Capua. This ancient place, its name also revealing an Etruscan past, was in the 3rd century BCE the second-largest population centre in Roman Italy. In 851 CE the city was burned to the ground by Saracen mercenaries sent by the Lombard usurper of the principality of Benevento to which it then belonged, after which a new city was built at the remains of the old Roman town of Casilinum, five kilometres down the Via Appia. The name Capua was consequently transferred to the new site, the
Cloughton in the City of Lancaster (aef) and Cloughton in the Borough of Wyre (ai), both in Lancashire, and Cloughton in neighbouring Merseyside (o). Languages to either use the same character for several different sounds, or apply letters, diacritical marks and combinations thereof in a language-specific way to accommodate at least the meaningful sounds the language discerns. The reason for this is, that the writing systems applied for languages were more often adapted than specially created for the language employing them. Writing systems typically spread in the same way most technological innovations do: borrowed at first from foreign creators, then gradually adapted to the specific requirements of the borrowers—in this case the borrowing languages. In the case of the writing systems called alphabets, officially applied now by 158 UN-member states, a complicating factor is that the ancient Phoenician script: all these systems ultimately trace back to was a so-called oblique rather than an alphabet itself: a script representing consonants only. This must have sufficed for the purposes this script was originally devised for, which may have included the administrative identification of a limited number of generally known objects and geographical names. The widely travelling Phoenician merchants undoubtedly needed to write down names that were foreign to them, and thus lacked the meaning allowing them to be written down in the logographic script of the time.

Nevertheless, the letters they devised represented the consonants of their own Canaanite language, to which foreign sounds were merely phonetically represented in accordance with what the Phonicians believed to hear.

At this point, it is instructive to realize that the numerous sound distinctions human beings are physically able to make, communities sharing a language typically use a limited number only to communicate. The sounds they set apart by such (to them) meaningful distinctions are called phonemes. They are defined by inheritance within the community of speakers of the same language. Every language thus possesses its own specific set of phonemes. The members of a language community develop sensitivity towards their own phonemic sound distinctions (the sound distinctions meaningful to them), and are simultaneously trained to ignore any other distinctions that might be heard. People speaking different languages don't just fail to understand each other's words: they neither recognize each other's phonemes, to a level that they may believe they don't hear the difference between all of each other's sounds. This mechanism is nicely demonstrated through the word by which ancient Greeks generalized all non-Greek speakers: these people, according to their judgement, didn't really speak a language but produced 'bar-bar-bar'-sound instead (i.e., sounds that to Greeks ears all sounded the same). This habit reduced them to 'barbarians', a brand of people occupying a lower step of civilization. Similar references were made by foreigners in later times to indigenous people of northern ('berbers') and southern ('hottentots') Africa. Ethically speaking, most of us will currently agree that such appellations expose an intolerable degree of ignorance and indifference on the side of the name-givers, but actually it is an important quality to be insensitive to the sounds of others in order to be able...
35.5 Abbreviations

As mentioned in section 35.3, an optimal names density is required in order to safeguard map-reading and interpretation possibilities.

Figure 8: List of abbreviations used

- Bhl. bohle
- Fh. Forshus
- Kls. kl. Kloster, Kloster
- Q. Quelle

Generic concepts that occur frequently, like railway station, foresters' residences, monasteries, wells, etc., can therefore be abbreviated and thus have a less strong impact on the map image.

In order to ease the use of abbreviations, as well as to standardize them, a list of abbreviations is often included in the map margin (see figure 8).

35.6 Geographical Names in Adjoining Foreign Countries

Settlements beyond the state border that used to have close relationships to the German-speaking population, and of which the German name versions still are well-known and used in Austria, would be rendered by both their official foreign name and by their German name (in parentheses) on official Austrian topographic maps. 1:50 000, 1:200 000, 1:250 000 and 1:500 000. This is shown in figure 9, where settlement names in adjoining Czechia are rendered bilingually.

Figure 9: Austrian-Czech border area as rendered on Austrian maps 1:50 000

Figure 10: Top: Austrian map 1:200 000 with the Slovenian settlement Jesenice (Assling). Below: Slovenian map 1:50 000 without German name variants

In the new civilian-military Austrian topographic maps, the cartographic contents of the neighboring states rendered on them are no longer processed, drawn and updated by Austria. Instead, the map content for these foreign areas is based on the updated, original databases of these adjoining states. As can be seen in figure 10, by comparing the two maps, these foreign cartographic databases do not contain German-language name variants for settlement names.
Chapter 36

Dealing with areal names on adjoining map sheets; multiple naming

Helmut Zierhut (BEV)

35.1 Introduction

Depending on the map scale, every topographic map only portrays a limited part of the Earth's surface. Although the objects rendered on the map have a limited extent as well, it will frequently be the case that they surpass the map margins and continue on the next map sheet. This will be the case especially for features with a larger extent such as administrative areas, mountain ranges or valleys, but larger lakes and rivers might require more map sheets as well for their portrayal. Consequently, they should be named on each of these sheets. The following sections will show how to go about map lettering close to the map margins.

35.2 Technical methods of map lettering

35.2.1 Analogue map production

Until the end of the 20th century, maps were produced using analog techniques, and the unit of production always was one single map sheet. The cartographer who had to execute the map lettering, tried to do it in such a way that the extent of a feature on the map sheet would be visualised optimally by the size, spacing and extent of the lettering within that map sheet. But this could result on neighbouring map sheets in map names in sizes that did not reflect the actual extent of the feature to be portrayed in reality.

If only a small part of the feature would be located on one of the sheets that were to be prepared, then the placement of the label coordinates at the bottom of the map sheet would be correspondingly small. The true size of the feature could not be deduced from the lettering only.

35.2.2 Digital map production


Der Kartograf nahm bei der Namensplatzierung keine Rücksicht mehr auf den für die Ausgabe vorgesehenen Blattschnitt. Die Geographischen Namen von Gebieten, Gebirgen und Landschaften konnten das Objekt in Ausdehnung und Schriftgrad bestmöglich beschreibend platziert werden. Dadurch kam es zu keinen Mehrfachbenennungen im „Kartographischen Modell“.

35.2.3 Namenbearbeitung für Blattschnittausgabe


Die obige Abbildung zeigt die Kartenrandbearbeitung am Beispiel der abgeschnittenen Bezeichnung der „Ankogelgruppe“.

Der abgeschnittene und fehlende Teil des geographischen Namens wird beider...
04/05/2016

Figure 4. GNR workspace structure

There are over 200 daily NLS users using the application and performing GNR transactions.

3.2. Workspace Management

The GNR workspace management user interface is common to PNR and MNR production and includes, e.g., the functionality for browsing the workspace structure (Section 2.6), creating, refreshing and merging the workspaces as well as the detection and automatic and semi-automatic resolution of possible object conflicts during the merge.

3.3. Place-Name-Register Maintenance

The Place-Name-Register production is maintenance of Places and their attributes described in Section 2.3. Places names are maintained as attributes of Places, with attributes of their own.

To be able to edit Places and Place names, the user creates a new or opens an existing PNR workspace (Sections 2.6 and 3.2). The existing Places to be edited are fetched from the PNR by using the Place Name Register search form. The form allows the user to combine different search terms freely. The search terms for Places include, e.g., the Place ID, the location (a polygon, map sheet or administrative area) and the height of the feature, the feature type, the Place name, the spelling of the name, the language of the name and the status of the name. A time period for the latest modification of Places and related Place names can also be included as a search term.

A PNR search is a search for Places and returns a sortable list of Place names with the essential information on both Places and Place names arranged as columns. All parallel Place names are included in the list even if the search terms would match only some of them. For example, a query for the Finnish name and spelling "Inari" returns all parallel names of the municipality, i.e., Inari, Enare, Anar, Aanaar and Aanar as separate rows, with their parallel names as columns by language interruption.

The map interface of the PNR production application includes the background map, the portrayal of PNR data on the screen, and the geometry tool for maintaining Places locations. As to the background maps, both the TDB vector map data and a complete set of NLS raster maps in different scales are available. In the portrayal of PNR data, the locations of selected Places are displayed as red symbols and the Place names are automatically placed around Places according to the language of the name: Finnish name(s) in upper-right, Swedish name(s) in upper-left, North Saami name(s) in lower-right, Inari Saami name(s) in lower-left position and Skolt Saami name(s) under the symbol of the Place (Figure 5).
would be familiar with the names incorporated in the school atlases they used, and there is a good chance that these names would have been exonyms. Of course, the media also have an educational function, and that is why they should make the audience also familiar with the endonym. It is for the journal’s editor to decide which course to take here.

Communication aspects

The editors of the newspaper or TV news journal that includes maps in their papers or broadcasts want to make sure that their audience can handle these maps — abstract representations of reality at best. They have, therefore, to match the previous knowledge of that audience — gained at school by using school atlases and looking at wall charts. So this previous knowledge of the user has to be taken into account by the cartographers (see figure 9).

The geographical names on newspaper maps are the best link between these maps and the article in the newspaper. In these newspaper maps, people are confronted with geographical features that are unfamiliar to them (such as the locations of earthquakes, tsunamis, battles, railway accidents, etc.). In order to be understood, the location of these new features have to be linked to map features people already know. Readers such as the map title, the map scale (a graphic scale, that will be enlarged or reduced together with the map) and the legend (see figure 10). Of course, actually the name of the presentation and the producer should also remain linked to it, but we should already be happy when at least scale, legend and title have been preserved. The title will decide whether the map will be looked at all, and so it must be concise and informative, with mention of the geographical area concerned, the theme mapped and the year for which the data were collected. "Unemployment in Britain in 1990" would be an example of a good title (see figure 10). Additional information, like the units in which the data have been measured or the nature of the enumeration areas, can be added in a subtitle.

Conceptual aspects

For diapositive text slides we used to have the rule that, because of the restricted time these would be on display, the number of words per line shouldn’t exceed 7 or 8, and there should not be more than 7 or 8 lines either.

Marginal information As maps in the media, especially when they turn out to be successful, tend to get detached from the presentation they belong to, it is essential that key marginal information is combined with the map display.
Section 14---44-Fieldwork·Interviews

Elisabeth Calvarin

44---Fieldwork·preparation

Preparations for the collection of geographical names: make it necessary to anticipate possible difficulties that could manifest themselves in the field and to try to devise adequate solutions in advance, in order to avoid unnecessary efforts and loss of time.

44.1-At the office, selection of the itinerary

Before the whole undertaking, one should start at the office with the selection of the itinerary. It would be a good practice to opt for a test route first, selecting an area with a variation in geographical objects: administrative centres, dispersed or concentrated population, varied relief, permanent rivers or wadis, construction works (wells, dams, bridges), forests, cattle-breeding and agricultural areas, many hamlets, manufacturing plants, schools, cultural centres, etc...

Figure 44-1: Itinerary selected on the basis of a map 1:200'000 of Ouagadougou (Burkina Faso) in 2008

Figure 44-2: Abstraction of a toponymic card prepared by the Names bureau of IGN, the French national topographic mapping agency.

Moreover, it is always essential for those in charge of the fieldwork to contact the names bureau or the toponymists in their agency. Those may have prepared toponymic card-index systems, technical reports, or guidelines regarding the languages spoken in the fieldwork region, linguistic and social influences exercised there, sub-regions for which the orthography of place names families should be harmonised, or even overviews of the mistakes that have been made in the past.

44.2-Specific preparatory information needed for meeting local authorities

It is always advantageous for those in charge of the fieldwork operations to contact the names bureau or the toponymists in their agency. Those may have prepared toponymic card-index systems, technical reports, or guidelines regarding the languages spoken in the fieldwork region, linguistic and social influences exercised there, sub-regions for which the orthography of place names families should be harmonised, or even overviews of the mistakes that have been made in the past.

44.3-Quality check

It is always worthwhile to take stock of the state of the toponymy of the region concerned, on the basis of the collected documentation, in order to be able to estimate the time needed to complete the work.

The names bureau may assess the quality of the existing toponymy: on the basis of the principles adopted (standardisation rules, transcription, transliteration, use of glossaries). By doing so, place names may be judged correct, muddled, ready for improvement or for correction after verification.

44.4-Names density

It would be just as important to discuss in advance the required average names density and the insertion or positioning of the selected names on maps of a given scale.

The number of names inserted would vary according to the nature of the operations (depending on the kind of the terrain and the legibility). The following numbers might give an idea of good practice.

On the average, we need 4 names per km², that is, between 420 and 550 names on a standard map sheet at the scale 1:10'000, between 660 and 780 names on a standard map sheet at the scale 1:20'000, and from 1800 to 2000 names on maps at the scale 1:25'000.
Future:

- Incorporating the manual in the UNGEGN website from which it can be downloaded would allow for easy updating it and extending it in new directions.

- The UNGEGN toponymy manual is regarded as a ‘living’ resource, answering the changing needs of the toponymic community.