LADA Land degradation assessment in drylands

Hubert George

Land and Plant Nutrition Management Service Land and Water Development Division, FAO

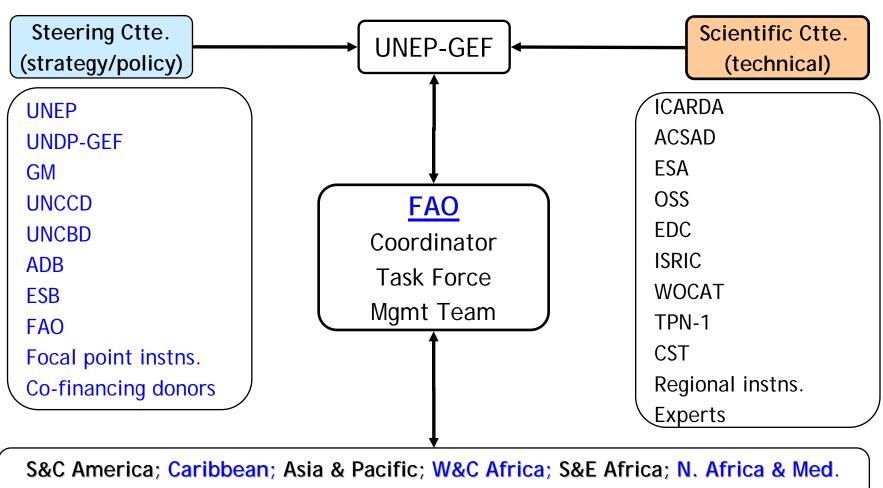
Outline

- Overview of LADA
- What is land degradation?
- The importance of land degradation in dryland areas
- Previous global assessments of land degradation
- Development of LADA methodologies
- Current status of LADA
- Conclusions

Overview of LADA project

inadequate information on the status of land degradation needed for program implementation: UNCCD, UNCBD, ...!

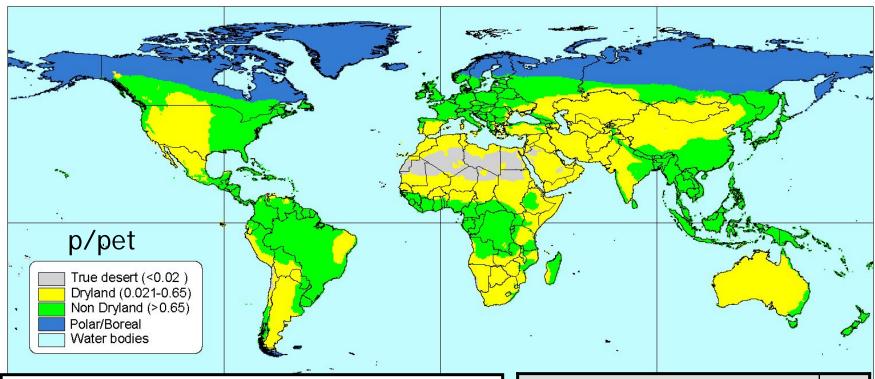
Aim: Standardized information & methodologies at national, regional & global scales


- Exploratory stakeholders workshop (Dec. 2000)
- Method Development (2002-2004; PDF-B) USD \$0.7m
- Global Assessment (2005 2008) USD \$7m

Funding: GEF (via UNEP): OP1, OP12, OP15

FAO, countries (in-kind)

Execution: FAO & numerous partners


LADA management

Argentina (MoE); Cuba (CITMA); China (BCD); Senegal (CSE); RSA (ISWC/MoA); Tunisia (MoA)

LADA National Task Forces

Land degradation in drylands

- Home & livelihood for > 2 b people (37%)
- Rural poor > 1 b; indigenous knowledge
- Habitat for plant & animal species uniquely adapted to variable/ extreme conditions: thermal, arid, saline
- Important carbon sink potential

Population in drylands (millions)				
Asia	1400	42		
Africa	268	41		
South America	87	30		

Degraded land

Land which due to natural processes or human activity is no longer able to sustain properly an economic function and/or the original ecological function (ISO, 1996)

Vegetation degradation

Implies reduction in <u>biomass</u>, decrease in species <u>diversity</u>, or decline in <u>quality</u> in terms of the nutritional value for livestock and wildlife (Eswaran et al, 2000)

"Soil" degradation

Decline in soil qualities commonly caused through improper use by humans (ISSS, 1996). This includes <u>physical</u>, <u>chemical</u> and/or <u>biological</u> deterioration.

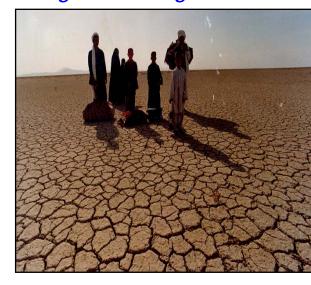
- loss of organic matter; decline in soil fertility,
- decline in structural conditions; erosion
- adverse changes in salinity, acidity or alkalinity
- the effects of toxic chemicals, pollutants or excessive flooding

.... encompasses the whole environment but includes individual factors

- Soils
- Water resources (surface, ground)
- Forests (woodlands)
- Grasslands (rangelands)
- Croplands (rainfed, irrigated)
- Biodiversity (animal, vegetative cover, soil)

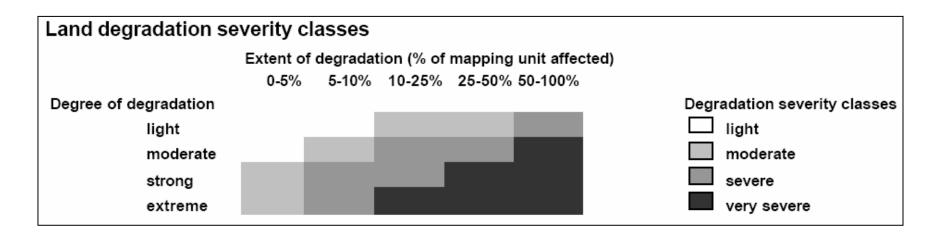
water erosion

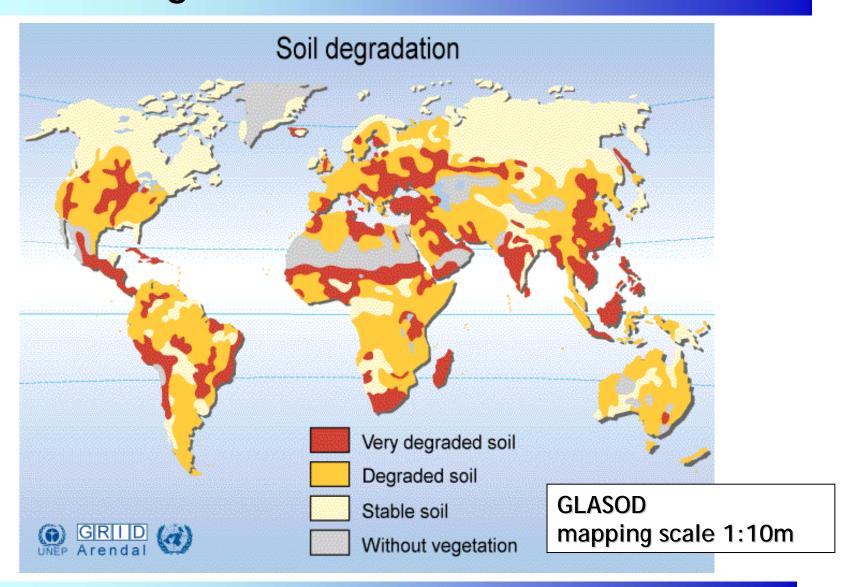
sand dune encroachment


salinization

loss of biodiversity

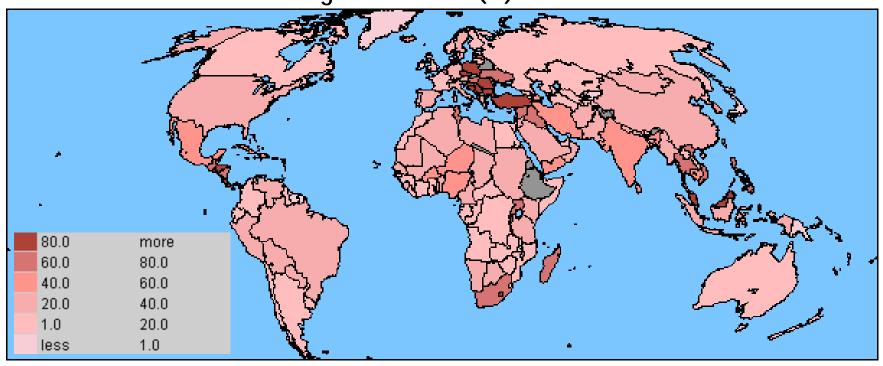
rangeland degradation




outmigration

- GLASOD only usable source of global data despite known limitations
 - •ISRIC (commissioned by UNEP IN 1988; in preparation for UNCED 1992; extent of human-induced soil degradation; published in 1990)
- Expert judgement of degradation status (type, extent, degree, rate and cause) for individual polygons on a national/sub-national level
- Regional data: ASSOD (1997); SOVEUR (2000)
 - more detailed than GLASOD

Estimate for each physically-homogeneous mapping unit


- •Type of degradation: (water/ wind erosion; chemical/ physical deterioration)
- Degree of degradation: (light, moderate, strong, extreme)
- Relative extent of degradation (% of mapping unit affected)
- Causes: (deforestation, overgrazing, agricultural activities, over-exploitation of vegetation, industrial activities)

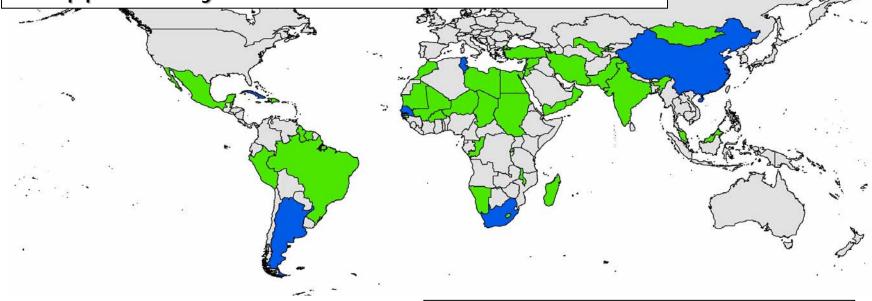
Total human-induced degraded area (%)

Area of land with <u>severe and very severe</u> human-induced land degradation.

Actual Extent Affected Legend				
Extent	Percentage			
Infrequent	0-5			
Common	5 - 10			
Frequent	10 - 25			
Very Frequent	25 - 50			
Dominant	> 50			

Severity	Mapped	Mapped	Population	Population %	Population density	Wasteland	Infrequent	Common	Frequent	Very frequent	Dominant	Degraded	Degraded %
		(km2)				(km2)	(km2)	(km2)	(km2)	(km2)	(km2)	(km2)	
None	61.8	617,113	3,262,300	4.9	5.29	617,113	-		-	-	-	0	0.00
Light	27.1	270,171	4,068,660	6.1	15.06		6,754		-	-	-	6,754	0.68
Moderate	2.5	25,364	421,468	0.6	16.62		-	690	3,012	-	-	3,702	0.37
Severe	6.5	64,739	45,467,704	68.2	702.33	-	-		11,653	-	-	11,653	1.17
Very Severe	1.8	17,860	13,026,000	19.6	729.32	-	-			-	13,395	13,395	1.34
Not Classified	0.3	3,008	391,348	0.6	130.11	3,008	-		-		-	0	0.00
TOTALS	100.0	998,255	66,637,480	100.0	66.75	620,121	6,754	690	14,665	0	13,395	35,504	3.56

GLASOD limitations


- •Small scale: not appropriate for national breakdowns
- Expert judgement: qualitative & subjective
- <u>Visual exaggeration</u>: entire mapping unit is classified, even if only a minor % is actually affected
- Extent classes (5) rather than percentages
- <u>Complex legend</u>: combined extent and degree (severity) for four major degradation types (water and wind erosion, physical and chemical deterioration)
- Only "dominant" main type of degradation is shown in colour; Degradation sub-types only shown by codes

Source: GLASOD http://lime.isric.nl/index.cfm?contentid=158

LADA - Achievements - (2002-2004)

- Steering & Technical Advisory Committees
- Pilot countries; partners
- Project document preparation

Approval by GEF Council - Nov. 2004

country reports

- Argentina; China; Senegal
- Cuba; South Africa, Tunisia

LADA - Achievements - PDF-A ('02-04')

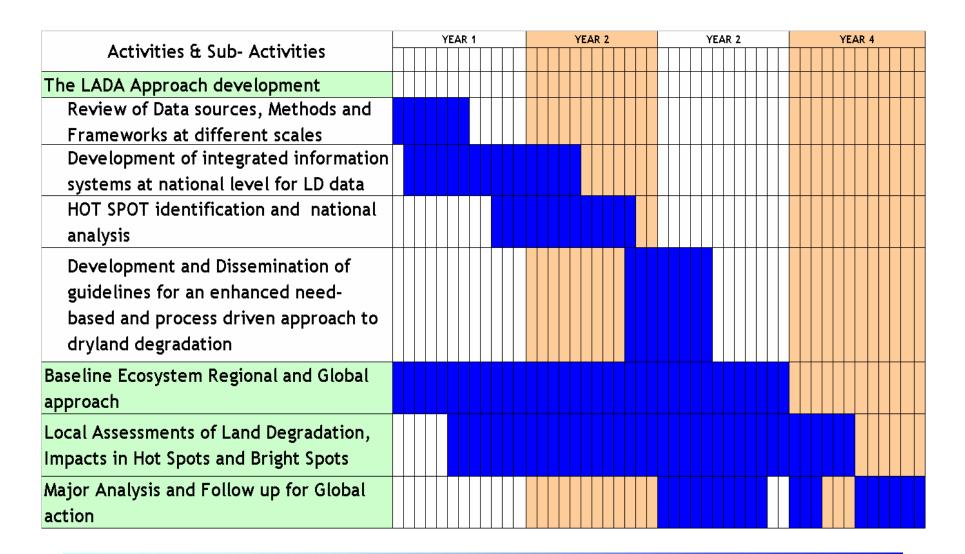
Reviews/ reports

- Assessment Indicators (biodiversity, land condition)
- Biodiversity issues within drylands
- Quantitative assessment of soil degradation
- National reports: provisional LD status & assessment capacity (51 countries)
- Pilot studies (Argentina, China, Senegal)

Methods

- LADA methodological framework
- Use of remote sensing for LD assessment
- Decision support tools for LADA

Information exchange


Web sites - global & 3 national (pilot countries)

• ..

LADA: Major objectives - '05-'08

- Develop & implement strategies, tools & methods to assess, quantify and analyse the nature, extent, severity and impacts of land degradation on ecosystems, watersheds, and river basins, and in drylands at a range of spatial & temporal scales
- 2. Build national, regional & global assessment capacities to enable the analysis, design, planning and implementation of interventions to mitigate LD and establish sustainable land use & management practices

LADA: Workplan

Regional and Global Assessments

- Compilation of regional/ global data (biophysical & socioeconomic)
- International Workshop to review data & methods
- Global 'hot spots'- (5' X 5') "GLADA"
 - land cover / NDVI changes (1970-2000)
 - soil erosion risk; updated GLASOD
 - socioeconomic drivers
- Regional 'hot spots' (1km X 1km) & training
 - WANA (ACSAD/ICARDA); SADC (South Africa RSC); Sahel (OSS)
 - LAC (Embrapa); Europe (JRC); NA (EDC)
- Workshops:
 - Regional & International Workshops
 - feedback on global & regional studies

Local Assessments

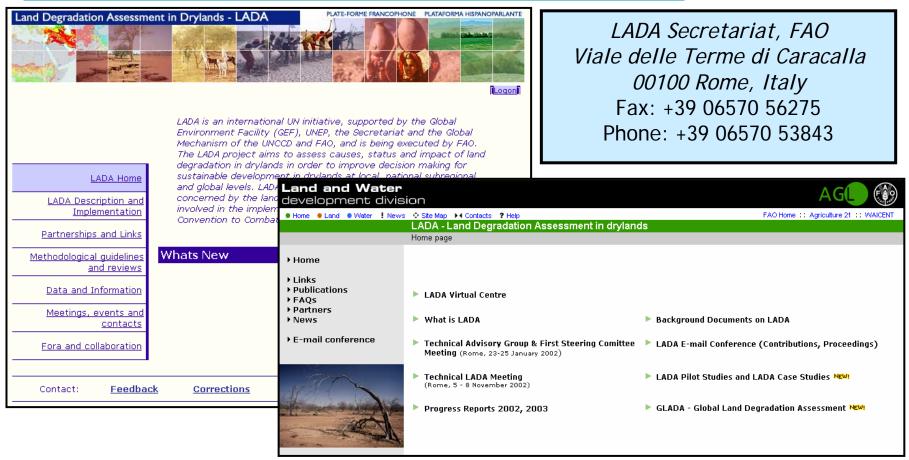
- Local scale; Impacts in Hot & Bright spots
- Stakeholder workshop (National LADA Task Force)
 - user needs;
 - field sites (NB biodiversity, climate change, local knowledge used for mitigating LD impacts)
- Training in local LD assessment techniques
 - VSA, WOCAT, ... + U. of Norwich/ Bern, ..)
- Local surveys (Hot & Bright spots)
 - Cuba & Tunisia 2; Senegal 3; Argentina & South Africa 4
 - China 6
- Local workshops feedback on findings
- Development of policy guidelines
 - policy makers & national planners
- National/regional workshops feedback on findings

Follow up for Global action

- Modeling Framework developed allowing analysis of critical components of land degradation (DPSIR)
- Modeling Framework tested in pilot countries
- 'Best practices' report prepared including policy and resource needs for implementation.
- Linkages to UNCCD, UNCBD SRAP and NAP, NEPAD, MA,
 ...
- Global action plan prepared
- Final Steering Committee meeting (GEF, UNEP, FAO)

Conclusions

Expected major LADA project outcomes


- Improved approach to LD assessment (strategies, methods & tools)
- Baseline regional & global assessments of LD in drylands
- Detailed local assessments & analysis of LD in hot & bright spots with linkages to policy formulation
- Promotion of action & decision making for the control of LD

LADA

...catalyzing widespread adoption of <u>validated techniques</u> of LD assessment & <u>trained people</u> to deliver improvements ...

For more information

http://lada.virtualcentre.org/pagedisplay/display.asp

http://www.fao.org/ag/agl//lada/default.stm