

Towards a Qatari Framework for Environment Statistics

The use of the (draft) UN FDES in Qatar Michael Nagy

Qatar Facts

- Total area: 11,580 km²
- Population (October 2012): 1,757,540
 - Male: 1,310,065
 - Female: 447,475
- Precipitation: 82 mm/year (1990-2008)
- Temperature (mean max):
 - Summer: 41.3 °C
 - Winter: 23.6 °C
- GDP per capita: \$80,440 (2011)
- CO₂ emitted/person: 46.1 t/year
- Water use: ~310 l per capita per day

Baseline

- Annual Environment Statistics available:
 - QSA website
 - Environment Statistics Report
 - Main data source: Ministry of Environment
- Needs:
 - Classifications, Terminology, units of measurements
 - Data quality (coverage, coherence, consistency)
 - Metadata
 - Better adressing national and international information needs
 - Coordination with users and producers

Objectives of Environment Statistics of Qatar

- 1. Production of official environment statistics on a regular basis.
- 2. Supporting evidence-based policy and decision making based on QV 2030 and QNDS 2011-2016 with official statistics on the environment
- 3. Supporting awareness raising concerning the environment
- 4. Supporting other national and international needs related to environmental information
- 5. Environment statistics are part of the National Statistics System (NSS)
- 6. Qatar Statistics Authority has the overall responsibility and mandate to produce official environment statistics by
 - Involving all relevant stakeholders (producers and users of data)
 - Using international standards for environment statistics, data integration and analysis (e.g. SEEA) and quality assurance
 - Developing business rules and tools for efficient data sharing in cooperation with the relevant stakeholders

Example Water: Why do numbers not match?

Kahramaa 2010 Report

Table WT15 Average Water Per Capita Consumption. Last 5 Years

160

Gulf Times 20 March 2012

Qatar's per capita water use 'highest in world'

Qatar's per capita water consumption rate, estimated at around <u>430 litres a day</u>, could be the highest in the world, Kahramaa president Issa Hilal al-Kuwari said yesterday.

Last year, Kahramaa had gone on record saying that Qataris consumed as much as 1,200 litres of water a day while expatriates used about 200 litres. The estimate was based on the figures of 2009. The average consumption was then given as about 310 litres per person a day.

QNDS, page 217

Cubic Meters per Person per Year

QNDS, page 218

Statistics Authority

Example Water: Why do numbers not match?

nority	مياه الصرف الصحي المعالجة TREATED WASTE WATER 2005 - 2010 TABLE (236)							جول رقم (236)
QSA, Environment Statistics 2010	Particulars	2010	2009	2008	2007	2006	2005	التفاصيل
	Waste water input ⁽¹⁾	8,777,336	2,953,492	2,736,936	2,747,629	1,700,000	157,500	كمية مياه الصرف الصحي الخام الداخلة للمحطة ⁽¹⁾
	Treated waste water output ⁽¹⁾	7,681,484	2,646,493	2,437,252	2,805,313	0	141,750	كمية مياه الصرف الصحي المعالجة والخارجة من المحطة (1)
=	Distributed waste water ⁽¹⁾	7,681,484	2,646,493	2,437,252	2,805,313	125,000	141,750	توزيع مياه الصرف الصحي المعالجة(¹⁾
	Number of samples Analysed in laboratory	20,403	2,321	2,856	4,080	3,016	3,500	عد العينات التي تم تحليلها في المختبر
	Number of tests perfomed	105,171	37,680	48,552	31,110	30,848	24,500	عد الاختبارات تم عملها في المختبر
S 200 220	Waste water dischared to castal areas ⁽²⁾	33,458	0	1,159,827	0	0	0	كمية المياه المعالجة الملقاه في المناطق الساحلية 2

QNDS, page 220

(2) Flow Figure is an approximation

(1) Unit: Cubic Meter.

Figure 6.3 About a third of water produced leaks into the water table each year septic lagoons ~95 million cubic metres Small industry waste water ~18 million cubic metres **Disconnected homes** dump untreated sewage ~75 million cubic metres Treated septic Excess treated sewage effluent lagoons ~70 million cubic metres ~70 million cubic metres Desalination 312 million cubic metres Sewage network Treated sewage effluent Fodder ~96 million ~25 million cubic metres Municipal use cubic metres ~200 million cubic metres Septic tank overflow ~1 million cubic metres Runoff Leakage of untreated sewage ~0.5 million cubic metres ~20 million cubic metres Leakage in transmission ~100 million cubic metres Water table ~120 million cubic metres **Outflows** pumped to sea ~50 million cubic metres

FAO Aquastat

http://www.fao.org/nr/water/aquastat/countries_regions/qatar/qa tar_cp.pdf

Non-conventional sources of water			
Produced wastewater	2005	55	10 ⁶ m ³ /yr
Treated wastewater	2006	58	10 ⁶ m ³ /yr
Reused treated wastewater	2006	43	10 ⁶ m ³ /yr
Desalinated water produced	2005	180	10 ⁶ m ³ /yr
Reused agricultural drainage water		-	10 ⁶ m ³ /yr

Page 6

(1) الوحدة: متر مكعب

(2) كمية المياه الملقاه (تقريبية)

Example Water: What is the problem?

• **No comprehensive view** on all water-related aspects (e.g. groundwater stocks, groundwater quality, desalination, losses, treatment, re-use, discharge, economy etc.)

Different classifications:

- Municipal, Agricultural, Industrial...
- International Standard Industry Classification (ISIC)
- Residential Flat, Residential Villa, Commercial, Big Hotels, Small Hotels, Industries, Government, Special Rate

Different units of measurements:

- Imperial Gallons versus Metric System
- Cubic meters per person per year versus liters per capita per day

Problem with terminology, indicators and definitions, e.g.:

- Water per Capita Consumption (Kahramaa): (System Input Volume Transmission Losses) /
 Population. Industrial, commercial and agricultural uses are included!
- Per Capita Household Use (United Nations): The quantity of water used to cover the household and related utility needs of the population (including enterprise employees), calculated per capita. Industrial, commercial and agricultural uses are excluded!

Example: Ozone Depleting Substances: Increasing or decreasing consumption in Qatar?

TABLE (2(7) (Unit:Metric Ton)

Substance

CFC-11 (1)

CFC-12 (1)

Montreal Protocol:
Metric tonnes <> ODP tonnes!

QSA, Environment Statistics 2010 استهرك المراد المستنفذة لطبقة الأوزون CONSUMPTION OF OZOMA DEPLETING SUBSTANCES 2010 - 2010

2007

3.03

10.00

2006

4.35

27.08

2005 المادة المادة مركبات الكلور والفلور العضوية -11 1 6.09 مركبات الكلور والفلور العضوية -12 1 30.91 مركبات الكلور والفلور العضوية -22 22 22.22

ول رقم (217) (الوحدة: طن مترى)

المجموع 2,027 1,417 757.55 476.25 357.28 309.22 المجموع

2008

1.78

3.27

UN FDES EGM, 5-7 November 2012, N

(1) Importation of (CFC-11, CFC-12) has been stopped by 2010, in accordance to Montreal Protocol.

Year

2010

0.00

0.00

2009

0.00

0.00

(مركبات الكلور والفلور العضوية 11, مركبات الكلور والفلور العضوية- 12) تم حظر تِيرادها إعتبارا من 2010 حسبهرو**توكول مونتريا**ل.

The National Development Strategy defines the Policy Information Needs

QNV 2030

NATIONAL DEVELOPMENT STRATEGY, 2011-16

HUMAN DEVELOPMENT

Development that expands the opportunities and capabilities of all the people of Qatar to enable them to sustain a prosperous society

SOCIAL DEVELOPMENT

Development of a just and caring society based on high moral standards, and capable of playing a significant role in global partnership for development

ECONOMIC DEVELOPMENT

Development of a diversified economy capable of meeting the needs of, and securing a high standard of living for, all its people for the present and for the future

ENVIRONMENTAL DEVELOPMENT

Management of the environment such that there is harmony between economic growth, social development and environmental protection

SUSTAINABLE DEVELOPMENT

Policy Objectives and Information Needs (QNDS 2011-2016)

- Water: Cleaner water and sustainable use
- Air quality and air pollution: Cleaner air and effective climate change responses
- Waste: Reduced waste, more recycling and more efficient use
- **Biodiversity:** Nature and natural heritage conserved, protected and sustainably managed
- **Human habitat**: More sustainable urbanization and a healthier living environment
- Awareness raising: An increasingly environmentally aware population
- Governance and cooperation: Improved governance and regional and international cooperation

Use of the (draft) UN FDES

- Identification of a structured list of statistics with priority for implementation.
- Top down: structured matching of various information needs with required environmental statistics
- Bottom-up: analyzing the international comparability of existing statistics (terminology, classifications, units of measurement, comprehensiveness, etc.)
- Matching the statistics framework with other (e.g. institutional) frameworks of main data providers (e.g. Kahramaa, Qatar Petroleum, etc.)
- Providing the foundation for the implementation of Environmental-Economic Accounts

We need a common framework to be consistent, coherent and efficient

Environment Statistics Workshop with Key Stakeholders (23-25 September 2012) Outcomes

• CONCLUSIONS:

- QV2030 and QNDS is common umbrella; however, activities addressing environmental policies, indicators and information demand requires more coordination
- Need for common standards (classifications, units of measurement etc.) and terminologies has been identified
- Priority information needs were identified = Scope of Qatari Framework of Environment Statistics

• RECOMMENDATIONS:

- Continue work on environment statistics framework
- Establish a Task Force on Environment Statistics and Indicators (based on existing "Environment Statistics Team") + Thematic Working Groups
- Agree on set of key environmental indicators and a comprehensive set of environment statistics

1. Environmental Conditions and Quality

- 1.1: Physical Conditions
 - 1.1.1: Atmosphere, climate and weather
 - 1.1.2: Hydrological systems
- 1.1.3: Geological and geographic information
- 1.2: Soil and Land Cover
- 1.2.1: Soil characteristics
- 1.2.2: Land cover
- 1.3: Biodiversity and Ecosystems
- 1.3.1: Biodiversity
- 1.3.2: Ecosystems
- 1.4: Environmental Quality
- 1.4.1: Air quality
- 1.4.2: Freshwater quality
- 1.4.3: Marine water quality
- 1.4.4: Soil quality

1.4.5: Noise

2. Environmental Resources and their Use

- 2.1.1: Stocks and changes of mineral and energy resources
- 2.1.2: Extraction of mineral and energy resources and related activities

- 2.2.1: Land use
- 2.2.2: Land use changes

2.3: Soil Resources

- 2.3.1: Soil resources
- 2.4: Biological Resources
 - 2.4.1: Timber resources and their use
 - 2.4.2: Aquatic resources and their use
 - 2.4.3: Other biological resources and their use
- 2.5: Water Resources
 - 2.5.1: Water resources
 - 2.5.2: Abstraction, use and returns of water

3. Emissions, Residuals and Wastes

- 3.1: Emissions to Air
 - 3.1.1: Pollutants Emissions
 - 3.1.2: Greenhouse Gas Emissions
 - 3.1.3: Ozone Depleting Substances
- 3.2: Generation, Management and Discharge of Wastewater
 - 3.2.1: Generation and pollutant content of wastewater
 - 3.2.2: Collection and treatment of wastewater
 - 3.2.3: Discharge of wastewater to the environment

3. Emissions, Residuals and Wastes

- 3.3: Generation and Management of Municipal Solid Waste
 - 3.3.1: Generation of Municipal Solid Wastes
 - 3.3.2: Management of Municipal Solid Waste
- 3.4: Generation and Management Hazardous Wastes
 - 3.3.1: Generation of Hazardous Wastes
 - 3.3.2: Management of Hazardous Wastes
- 3.5 Contaminated sites
- 3.6 Chemical Substances

4. Disasters and Extreme Events

- 4.1: Natural Disasters and Extreme Events
 - 4.1.1: Occurrence of natural disasters and extreme events
 - 4.1.2: Impact of natural disasters and extreme events
- 4.2: Anthropogenic/technological Disasters
 - 4.2.1: Occurrence of anthropogenic/technological disasters
 - 4.2.2: Impact of anthropogenic/technological disasters

5. Human Habitat and Environmental Health

5.1: Human Habitat

- 5.1.1: Urban and rural population
- 5.1.2: Water and sanitation
- 5.1.3: Housing conditions
- 5.1.4: Exposure to ambient pollutants related to spatial location of population
- 5.1.5: Other urban habitat concerns (Green spaces)
- 5.2: Environmental Health
 - 5.2.1: Airborne diseases and conditions
 - 5.2.2: Water-related diseases and conditions
 - 5.2.3: Vector borne diseases
 - 5.2.4: Health problems associated with excessive UV radiation exposure
 - 5.2.5: Toxic substance related diseases and conditions
 - 5.2.6: Nuclear radiation related diseases and conditions

6. Environment Protection, Management and Engagement

6.1.2: Corporate, non-profit institution and household environment protection and management expenditure

- 6.2.1: Institutional strength
- 6.2.2: Environmental regulation and instruments
- 6.2.3: Participation in MEAs and environmental conventions

6.3: Disaster Preparedness

- 6.3.1: Disaster preparedness for natural disasters and extreme events
- 6.3.2: Disaster preparedness for anthropogenic/technological disasters

6.4: Environmental Information, Education and Perception

- 6.4.1: Environmental information
- 6.4.2: Environmental education and awareness
- 6.4.3: Environmental perception

Conclusions

- UN FDES is the basis for prioritization (Qatari Framework)
- It has to be brought into context with national and international information needs, environmental-economic accounts and indicators
- It helps to harmonize and link existing national frameworks and concepts with international standards
- It enables common understanding and provides the single reference of environmental information to QSA and key ministries and other institutions
- Show linkage between FDES, SEEA and other statistical standards, be consistent

Thank you for your attention!

michael.nagy@qsa.gov.qa