

Treatment of Environmental Data Application to UNSD Questionnaire on Environment Statistics

Wafa ABOUL HOSN

Sectoral Statistics Team

Sustainable Development and Productivity Division

ESCWA

Beirut-Lebanon

Email: aboulhosn@un.org

Wafa Aboul Hosn

ESCWA-SDPD-Sectoral Statistics

Outline

1. Introduction

ESCWA

- 2. Flow Diagram for Environmental Statistics
- 3. Collecting Compiling Treating Data
- 4. Why is Data Treatment Important?
- 5. What is the Purpose of the Treatment?
- 6. Flow Diagram from Data to Information
- 7. Tools for Data Treatment in Microsoft Excel
- 8. Level 1. Descriptive Statistics 1: Summary Tables Application to Questionnaire
- 9. Level 1. Descriptive Statistics 2: Graphs
- **10. Level 2. Inferential Statistics 1** Application to Questionnaire
- **11. Level 2. Inferential Statistics 2: Regression- Application to Questionnaire**
- 12. Level 2. Inferential Statistics 3. Forecasting
- 13. Level 3. Aggregated Data: Indicators, Indices Application to Questionnaire
- 14. Data treatment Statistics Software
- **15. Role of ESCWA in Environment Statistics**
- 16. Conclusion

Introduction

High quality environmental information is essential for carrying out more responsive and cost-effective policies and providing the right information for the right purpose. It implies:

-setting data collection and compiling systems

-ensuring appropriate analysis

-providing well targeted dissemination.

ESCWA Flow Diagram for Environmental Statistics								
Collect Determination of variables relevant to environmental concerns Definition and Classification Data Collection: (Measurements, Surveys, Administrative files) Good Experimental Design (replication Sampling	Compile Assessment of Data Quality Harmonization of Data Transmission Data Validation Structuring of data bases, information systems	Treat-Analyze Data Treatment Analytical Data Pyramid of detailed Data -Regional Needs (planning) -National Level (policy formulation- Environmental Indicators) -International level (Monitoring, trends, Aggregate measures, Indices)	Disseminate -news releases, short bulletins rapid reports; -key data cards: country in figures; -electronic media, major publication (print, disk, on-line): statistical year book.					

Cross-Cutting Issues: Multidisciplinarity ,Complexity, Assumptions, Availability, Periodicity, Nature: Quantitative ,Qualitative, GIS, time series

Compile Data

Assessment of Data Quality

Data Validation: Application to water questionnaire

Harmonizaton of Data Transmission

Structuring of data bases, information systems

Primary Data

Methods for Validating Data Example: Water Questionnaire: Precipitation:

Section: WATE	R							
Country: Belar	us		Contact perso	n:				
Contact institution	on:		E-mail:					
Table W1: Ren	ewable Fres	h Water Reso	urces					
Priority Categ ory	Unit	Long term annual	1990*	1995*	1996	1997	1998	1999

127258.8

125805.6

Steps to follow in Excel to Validate:

136185.6

1. From menu choose Data8. Inpu

151963.2

2. Select Validation:

mio m³/v

3. Data Validation:

Precip

itation

(1)

- 4. Allow: for example decimals
- 5. Data: between
- 6. Minimum: Choose a minimum
- 7. Maximum: Choose a maximum

ESCWA-SDPD-Sectoral Statistics

8. Input message

138054

172045

116286

9. Error Alert

April, 2004, Damascus

Why is Data Treatment Important?

Treat-Analyze

Data Treatment Analytical Data Pyramid of detailed Data -Regional Needs (planning) -National Level (policy formulation-Environmental Indicators) -International level (Monitoring, trends, Aggregate measures, Indices)

In General

- To better understand data and improve its quality
- To add value to data and improve its usefulness
- To get closer to analysts and understand their needs
- To provide objective and impartial analyses

For Environmental Data

- To monitor environmental conditions and trends
- To promote international harmonization of data

What is the Purpose of the Treatment?

- ü To Explain
- ü To Report
- To Explore and apply new analytical techniques
- To Improve methods for producing statistics
- To Develop new statistical products

In the context of this workshop, we shall concentrate on the first two purposes

Flow Diagram from Data to Information

Figure 1. Translation of an information need into policy-oriented information using variables, indicators and indices

This figure shows the difference between variables, indicators and indices, which all represent different stages of information collation. Indicators take variables and condense them into manageable information sets, which are then further condensed by indices. These can then be translated into policy-oriented information. Source: Lorenz, 1999

Wafa Aboul Hosn

ESCWA-SDPD-Sectoral Statistics

Wafa Aboul Hosn

ESCWA-SDPD-Sectoral Statistics

Tools for Data Treatment in Microsoft Excel

- **To install the tools for data treatment in Excel:**
- 1. Select Tools from menu
- 2. Choose Add-Ins...
- 3. Check Analysis ToolPack

4.	Ok	🔀 Mie	crosof	t Excel - Ba	ok5					
		1	<u>-</u> ile <u>E</u>	<u>dit V</u> iew	<u>I</u> nsert F	ormat <u>T</u> ools	: <u>D</u> ata <u>W</u>	/indow <u>H</u> el	p PDF Co	mple
		D (2 두	l 🔒 🔁	a 🖪	ኤ 🖻 🝼	∽ - 🍓	∑ ÷ ੈ₽↓	htta 😰 👘	*
		🛛 🍼 C	onvert	to PDF 🖕						
			A1	-	f ×					
		D		А	В	С	D	E	F	
		∑ ▲ Meī	1	Data Analy	sis				?	×
			2	<u>A</u> nalysis To	ools			[ок	1
		Þ	4	Correlatio	wo-Factor W n	'ithout Replicat	ion		Cancel	īĿ.
		<u>u</u> tos	5	Covariand					Cancor	
		- ap	6	Exponent	e Statistics ial Smoothini	9			<u>H</u> elp	
		₹		F-Test Tw	o-Sample fo	r Variances				-
		~	9	Histogram	iaiysis i					-
			10	Moving Av	verage Jumbor Cons	wation		-		
				Regentrated						

ESCWA-SDPD-Sectoral Statistics

Level I. Descriptive Statistics 1: Summary Tables

All data can be summarized in tables (incorporated into a final report, either in the body of the report (when the number of variables is small), or as appendices. Summary tables should be compiled and include basic statistics (# of values, minimum, maximum, mean, standard deviation, and period of record)

AMBIENT WATER QUALITY DATA SUMMARY OF HYPOTHETICAL SITE FOR THE PERIOD OF 1991-92									
CHARACTERISTICS	# OF VALUES	MINIMUM	MAXIMUM	MEAN	STD DEV.				
GENERAL									
Acidity T4.5 (mg/L)	13	30.9	34.1	32.6923	1.23184				
Acidity P8.3 (mg/L)	13	<0.5	<0.5	<0.5	0.0				
Coliform (CFU/cL)	14	1	2	1.9285	0.26726				
Color (true) (col. units)	1	<5	<5	<5					
Chlorophyll a (µg/L)	14	0.6	3.3	1.9071	0.89224				
Dissolved oxygen (mg/L)	229	4.13	15.56	11.3185	1.827				
pH (pH units)	237	5.95	7.9	6.90101	0.42637				
Secchi depth (m)	15	8.7	16	13.0433	1.93362				
Specific cond (µS/cm)	9	72	79	74.555	2.408				
Temperature (°C)	234	4	25	9.47829	5.99845				
Turbidity (NTU)	17	0.1	0.9	0.32941	0.20237				

Copyright © 1998 Province of British Columbia Published by the Resources Inventory Committee http://srmwww.gov.bc.ca/risc/pubs/aquatic/interp/interp3.htm Wafa Aboul Hosn ESCWA-SDPD-Sectoral Statistics April, 2004, Damascus

Application to the Water Questionnaire

Type of Analysis: Descriptive Statistics										
STEPS TO FOLLOW:										
1	Arrange c	lata to be co	ngruent							
2	2 Select from menu Tools Data Analysis									
3	Select De	scriptive Stat	tistics							
4	Select for	lect for Input range the cells that contain data								
5	Check Su	mmary Statis	stics							
6	Output ra	utput range Select the area whee you want the output to be displayed								
Total Precip	itation			127258.8	125805.6	138054	172045	116286		
Total renew	able fresh v	water resource	es (5)=(3+4)	51764	70860.8	65372	122389	71999		
					•••••••••••••••••••••••••••••••••••••••					
					Actual external	Total	Outflow of			
Summary Stats 1995-2000		Precipitation (1)	Actual evapotrans piration (2)	Internal flow (3)=(1)-(2)	Inflow of surface and ground waters (4)	renewable fresh water resources (5)=(3+4)	surface and ground waters			
Summary Stats 1995-2000		Precipitation (1) 138198.657	Actual evapotrans piration (2) 84830.8	Internal flow (3)=(1)-(2) 53367.8571	Inflow of surface and ground waters (4) 26200	renewable fresh water resources (5)=(3+4) 79567.8571	surface and ground waters 64442.8571			
Summary Stats 1995-2000 Mean		Precipitation (1) 138198.657 7059.98565	Actual evapotrans piration (2) 84830.8 3764.7699	Internal flow (3)=(1)-(2) 53367.8571 6651.49377	Inflow of surface and ground waters (4) 2546.8935	renewable fresh water resources (5)=(3+4) 79567.8571 8571.25133	surface and ground waters 64442.8571 6517.69961			
Summary Stats 1995-2000 Mean Standard I	Error	Precipitation (1) 138198.657 7059.98565 135978	Actual evapotrans piration (2) 84830.8 3764.7699 86456	Internal flow (3)=(1)-(2) 53367.8571 6651.49377 53560.8	Inflow of surface and ground waters (4) 26200 2546.8935 27600	renewable fresh water resources (5)=(3+4) 79567.8571 8571.25133 71999	surface and ground waters 64442.8571 6517.69961 65700			
Summary Stats 1995-2000 Mean Standard I Median	Error	Precipitation (1) 138198.657 7059.98565 135978 18678.9663	Actual evapotrans piration (2) 84830.8 3764.7699 86456 9960.645	Internal flow (3)=(1)-(2) 53367.8571 6651.49377 53560.8 17598.1984	Inflow of surface and ground waters (4) 2546.8935 27600 6738.4469	renewable fresh water resources (5)=(3+4) 79567.8571 8571.25133 71999 22677.3995	surface and ground waters 64442.8571 6517.69961 65700 17244.2123			
Summary Stats 1995-2000 Mean Standard I Median Standard I	Error Deviation	Precipitation (1) 138198.657 7059.98565 135978 18678.9663 348903782	Actual evapotrans piration (2) 84830.8 3764.7699 86456 9960.645 99214448	Internal flow (3)=(1)-(2) 53367.8571 6651.49377 53560.8 17598.1984 309696586	Inflow of surface and ground waters (4) 26200 2546.8935 27600 6738.4469 45406667	renewable fresh water resources (5)=(3+4) 79567.8571 8571.25133 71999 22677.3995 514264446	surface and ground waters 64442.8571 6517.69961 65700 17244.2123 297362857			
Summary Stats 1995-2000 Mean Standard I Median Standard I Sample Va	Error Deviation riance	Precipitation (1) 138198.657 7059.98565 135978 18678.9663 348903782 0.79774521	Actual evapotrans piration (2) 84830.8 3764.7699 86456 9960.645 99214448 -1.6151266	Internal flow (3)=(1)-(2) 53367.8571 6651.49377 53560.8 17598.1984 309696586 1.6312836	Inflow of surface and ground waters (4) 26200 2546.8935 27600 6738.4469 45406667 -0.6095157	renewable fresh water resources (5)=(3+4) 79567.8571 8571.25133 71999 22677.3995 514264446 1.70383716	surface and ground waters 64442.8571 6517.69961 65700 17244.2123 297362857 -0.8875145			
Summary Stats 1995-2000 Mean Standard I Median Standard I Sample Va Range	Error Deviation riance	Precipitation (1) 138198.657 7059.98565 135978 18678.9663 348903782 0.79774521 0.98945063	Actual evapotrans piration (2) 84830.8 3764.7699 86456 9960.645 99214448 -1.6151266 -0.1230756	Internal flow (3)=(1)-(2) 53367.8571 6651.49377 53560.8 17598.1984 309696586 1.6312836 0.76619613	Inflow of surface and ground waters (4) 26200 2546.8935 27600 6738.4469 45406667 -0.6095157 0.1980322	renewable fresh water resources (5)=(3+4) 79567.8571 8571.25133 71999 22677.3995 514264446 1.70383716 1.09180397	surface and ground waters 64442.8571 6517.69961 65700 17244.2123 297362857 -0.8875145 0.29926674			
Summary Stats 1995-2000 Mean Standard I Median Standard I Sample Va Range Minimum	Error Deviation riance	Precipitation (1) 138198.657 7059.98565 135978 18678.9663 348903782 0.79774521 0.98945063 55759	Actual evapotrans piration (2) 84830.8 3764.7699 86456 9960.645 99214448 -1.6151266 -0.1230756 25950	Internal flow (3)=(1)-(2) 53367.8571 6651.49377 53560.8 17598.1984 309696586 1.6312836 0.76619613 56525	Inflow of surface and ground waters (4) 26200 2546.8935 27600 6738.4469 45406667 -0.6095157 0.1980322 19500	renewable fresh water resources (5)=(3+4) 79567.8571 8571.25133 71999 22677.3995 514264446 1.70383716 1.09180397 70625	surface and ground waters 64442.8571 6517.69961 65700 17244.2123 297362857 -0.8875145 0.29926674 48700			
Summary Stats 1995-2000 Mean Standard I Median Standard I Sample Va Range Minimum Maximum	Error Deviation riance	Precipitation (1) 138198.657 7059.98565 135978 18678.9663 348903782 0.79774521 0.98945063 55759 116286	Actual evapotrans piration (2) 84830.8 3764.7699 86456 9960.645 99214448 -1.6151266 -0.1230756 25950 72244.8	Internal flow (3)=(1)-(2) 53367.8571 6651.49377 53560.8 17598.1984 309696586 1.6312836 0.76619613 56525 29064	Inflow of surface and ground waters (4) 26200 2546.8935 27600 6738.4469 45406667 -0.6095157 0.1980322 19500 17300	renewable fresh water resources (5)=(3+4) 79567.8571 8571.25133 71999 22677.3995 514264446 1.70383716 1.09180397 70625 51764	surface and ground waters 64442.8571 6517.69961 65700 17244.2123 297362857 -0.8875145 0.29926674 48700 42600			
Summary Stats 1995-2000 Mean Standard I Median Standard I Sample Va Range Minimum Maximum Sum	Error Deviation riance	Precipitation (1) 138198.657 7059.98565 135978 18678.9663 348903782 0.79774521 0.98945063 55759 116286 172045	Actual evapotrans piration (2) 84830.8 3764.7699 86456 9960.645 99214448 -1.6151266 -0.1230756 25950 72244.8 98194.8	Internal flow (3)=(1)-(2) 53367.8571 6651.49377 53560.8 17598.1984 309696586 1.6312836 0.76619613 56525 29064 85589	Inflow of surface and ground waters (4) 26200 2546.8935 27600 6738.4469 45406667 -0.6095157 0.1980322 19500 17300 36800	renewable fresh water resources (5)=(3+4) 79567.8571 8571.25133 71999 22677.3995 514264446 1.70383716 1.09180397 70625 51764 122389	surface and ground waters 64442.8571 6517.69961 65700 17244.2123 297362857 -0.8875145 0.29926674 48700 42600 91300			

ESCWA-SDPD-Sectoral Statistics

Level 1. Descriptive Statistics 2: Graphs

Graphical displays serve as an aid in the data presentation and interpretation

Level 2. Inferential Statistics 1

Parametric tests can be used If assumptions for (normality, independent random samples ,equal variances are satisfied, if not, use non-parametric tests -Hypothesis Testing (the F-test and the t-test, ANOVA tests) to determine if significant differences exist (either spatially or temporally).

- Correlation Analysis

STEPS TO FOLLOW										
1 Arrange data to be congruent										
2 Select from menu Tools Data Analysis										
3 Select Correlation										
4 Select for Input range the cells that contain data										
5 Output range Select the area whee you want the output to be displayed										
	Total gross fresh water abstraction	Total Precipitati on	Total renewa ble fresh water resour ces							
Total gross fresh	1									
Total Precipitatio	-0.253952518	1								
Total renewable	-0.407718892	0.9758462	1							
Type of Analysis		R	egressio	n						
STEPS TO FOLLOW										
1 Arrange data to be congruent in columns 2 Select from menu Tools Data Analysis 3 Select Regression 4 Select for Input range the cells that contain data for X and Data for Y 5 Check Residuals and line fit										

ESCWA Level 2. Inferential Statistics 2: Regression

Type of <i>J</i>	Analysis	:	Regression					
STEPS TO FO	OLLOW							
1	Arrange d	ata to be cong	gruent in colur	nns				
2 Select from menu Tools Data Analysis								
3	Select Reg	gression						
4	Select for	Input range the	he cells that co	ontain data	a for X and	Data for Y	r	
5		siduals and lin				he dieule	ve d	
0	Output rar	ige Select the	area whee yo	bu want th		be displa	yea	
		_	-	Total Pre	cipitation	n Line Fit	t Plot	
SOMMAR	0011 01	1500	000					
Regression	Statistics	ole						
Multiple R	0.885093	0001 Se at al	000 +					
R Square	0.783389			-	•			
Adjusted F	0.711185	rest						
Standard E	12404.69	To T	0 +		+ +		+ +	
Observatio	5		100000 110000	120000 13	30000 14000	0 150000 1	60000 1700	00 180000
				Тс	otal Preci	pitation		
ANOVA								
	df	SS	MS	F	ignificance	F		
Regressior	1	1669513345	1669513345	10.8 <mark>4971</mark>	0.045944			
Residual	3	461628996.9	153876332.3					
Total	4	2131142342						
	Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	.ower 95.0%	Jpper 95.09
	-50315.02	40815.2683	-1.23274992	0.305464	-180207.5	79577.5	-180207.5	79577.5
Iotal Preci	0.967738	0.293797945	3.293889565	0.045944	0.032741	1.902735	0.032741	1.902735

Wafa Aboul Hosn

Level 2. Inferential Statistics 3. Forecasting

ESCWA Level 3. Aggregated Statistics: Indices

An index is a mathematical means of calculating a single value from multiple test results.

Indices are highly aggregated Indicators

They **reduce** the number of indicators and add interpretive value to the process

<u>Weighing</u> indicators relative to each others is important in designing the index Indices allow comparison at the national and international levels

ESCWA Importance of Indices

Importance of Indicators and indices of Environment in the ESCWA

-To assist decision makers at the national level in monitoring progress towards sustainable development

-To provide scientists with a tool of understanding of human effects on the environment

-To support citizens in defining their remedial action and plan for lobbying campaigns

-To harmonize at the regional and global levels and compare uniform indicators

-To facilitate national reporting

-To help the international community to study global changes -To provide local authorities with instruments to develop policies and raise public awareness in the communities.

Examples of Water Indices

ESCWA

	Detailed information	Aggregated Information			
Indicators of Use	Annual extraction per capita (m3)				
	Annual extraction by sector (%)				
Indicators of Demand	Total demand (m3)				
	Use efficiency (%)				
	Recycling potential (%)				
Indicators of Generation	Number of dams (no)	Water Vulnerability In	Idex		
	Kilowatts per hectare inundated (kW)				
	Hydroelectricity production (mW)		Othor		
Indicators of Emissions	N emissions (kg)		Uther		
	Other emissions (kg)		muices		
Indicators of Availability	Reserves (m3)		Water		
	Rate of recharge (m3 yr-1)		Stress		
	Annual rainfall (mm)		Index		
	Annual extraction as % of total (%)		maax		
Indicators of Quality	Biological oxygen demand(mg L-1)	Water Quality Index			
	Chemical oxygen demand (mg L-1)		Water		
	Eutrophication		Use		
	Acidification		Index		
	Colibacilli (m L-1)				
Indicators of Effects	People affected by diarrheic diseases (#)				
	Population affected by inundation (#)				
	Toxicity/ Heavy metal concentration	Climatic Risk Index			
Indicators of Risk	Population risking inundations (no)				
	Capital risking inundations (\$)				
Indicators of Protection	Watershed land use				
	Watershed protected area				
Indicators of Satisfaction	Access to potable water (%)				
	Access to drains (%)	Safe Water Index			
	Aqueducts (#)				
	Treatment of used waters (%)				
	Water price (US/m3)				

Source: CIAT/World Bank/UNEP Project Rural Sustainability Indicators: Outlook for Central America **Technical Note Conceptual Framework to Develop and Use Water Indicators** by Manuel Winograd, Marta Aguilar, Andrew Farrow (CIAT), Lisa Segnestam, Michael Linddal, John Dixon (World Bank) August, 1999, CIAT, Cali, Colombia

ESCWA Information flow process in the development of water quality indices

Calculation of Water Stress Index

Category	1990*	1995*	1996	1997	1998	1999	2000
Total fresh surface water abstracted (1)	1673	876	827	770	759	756	755
Total fresh ground water abstracted (2)	1210	1104	1093	1089	1092	1095	1082
Total gross fresh water abstraction $(3)=(1)+(2)$	2883	1980	1920	1859	1851	1851	1837
Total renewable fresh water resources (5)=(3+4)	60619	29064	53561	45672	85589	42899	56171
Midyear Population Estimates (Population in thousands)	10,215	10,404	10,409	10,404	10,394	10,382	10,367
Annual per capita share of renewable water resources m	5934.3	2793.5	5145.6	4389.9	8234.5	4132.1	5418.3
Water stress index	4.75592	6.81255	3.58471	4.07033	2.16266	4.31479	3.27037
* http://www.census.gov/							

Data treatment Statistics Software

Statistical Statistics software for Microsoft Excel

includes over 30 parametric & non-parametric statistical functions, including multiple linear regression analysis, ANOVA, & chi-square statistics <u>http://www.analyse-it.com/</u>

XLStatistics Home Page - Excel, Statistics, Data Analysis

Contains most standard analyses, analyses using only summary data, power / sample size, nonparametrics, curve fitting, non-linear regression, analysis for 2x2 tables. XLStatistics is not an Excel add-in and all the working and code is visible. A free version for analysis of 1- and 2-variable data is available. <u>http://www.deakin.edu.au/~rodneyc/XLSTATS.HTM</u>

MINITAB Release 14 for Windows® Demo http://www.minitab.com/products/minitab/14/demo/

Role of ESCWA in Environment Statistics

- Advisory Services
- Administration: New team for Sectoral Statistics in the Sustainable Development Division to promote statistics for the environment, water, energy, productivity, agriculture and technology in the ESCWA
- Methodologies:
 - Development of ESCWA's Water Pollution Index (WPI) 1995
 Presentation by Ms. Aboul Hosn Water Quality Indices
 - Integrated Water Resources Management (IWRM) training material for the ESCWA region 2004
- Papers from workshops: Adequacy and Validity of Environmental data in the Arab Region by Hanan Atallah, Water team, SDPD, ESCWA
- On Data Dissemination: Presentation by M. A. Dawachi <u>http://unstats.un.org/unsd/methods/statorg/Workshops/Doha/Session2_1_IT_Dewachi_slides_E</u> <u>nglish.pdf</u>
- Publications

الإنتاج والطاقة والمياه والبيئة في منطقة الإسكوا: مؤشرات إحصائية

Distr. GENERAL E/ESCWA/SDPD/2003/3 23 May 2003ORIGINAL: ARABIC

- تقرير عن المهمة الاستشارية الى المكتب المركزي للاحصاء، الجمهورية العربية السورية، "المؤشرات البيئية اللازمة لوضع قاعدة البيانات الاحصائية"، اعداد السيد حسني الخردجي، اللجنة الاقتصادية والاجتماعية لغربي آسيا، وثيقة رقم E/ESCWA/IC/2000/39

- تطور مجموعة من المؤشرات البيئية للاستخدام في التحليل الاقتصادي بمنطقة "مينا"، اعداد السيدابر اهيم مصطفى، مجلة در اسات الخليج والجزيرة العربية، العدد 102، السنة 27، يوليو / أغسطس / سبتمبر 2001

Future Directions

- The collaboration among ESCWA member countries, 1. Secretariat of ESCWA, UNSD and UNEP is valuable
- Filling the questionnaire on environment is crucial to 2. improve the quality and quantity of environment statistics in the region
- Following-up on the completion of the questionnaire 3. and transferring to concerned parties is a common responsibility
- The appropriate data treatment will help monitor 4. environmental conditions and assess status and trends in the ESCWA region
- Following standards in data collection, treatment 5. and dissemination will promote harmonization of data among ESCWA countries and at the International level

ESCWA

References

A FRAMEWORK FOR THE DEVELOPMENT OF ENVIRONMENT STATISTICS 1984. UN STIESA/STAT/SEA.M/78

Development of Water Quality Index ESCWA's WPI 1995: EGM on the implication of Agenda 21 for Integrated Water Management in the ESCWA region. Amman 2-5 October. 1995

Guidelines for Interpreting Water Quality Data. 1998. Ministry of Environment, Lands and Parks Land Data BC, Geographic Data BC for the Land Use Task Force Resources Inventory Committee http://srmwww.gov.bc.ca/risc/pubs/aquatic/interp/interp3.htm