Data Generation on Waste Water Treatment and Water Quality UNSD Tables W4B-W9

U

Federal Environment Agency Wien

> Training Workshop on Environment Statistics Damascus, 5 April 2004

Contents of the presentation

UNSD tables W4B – W5

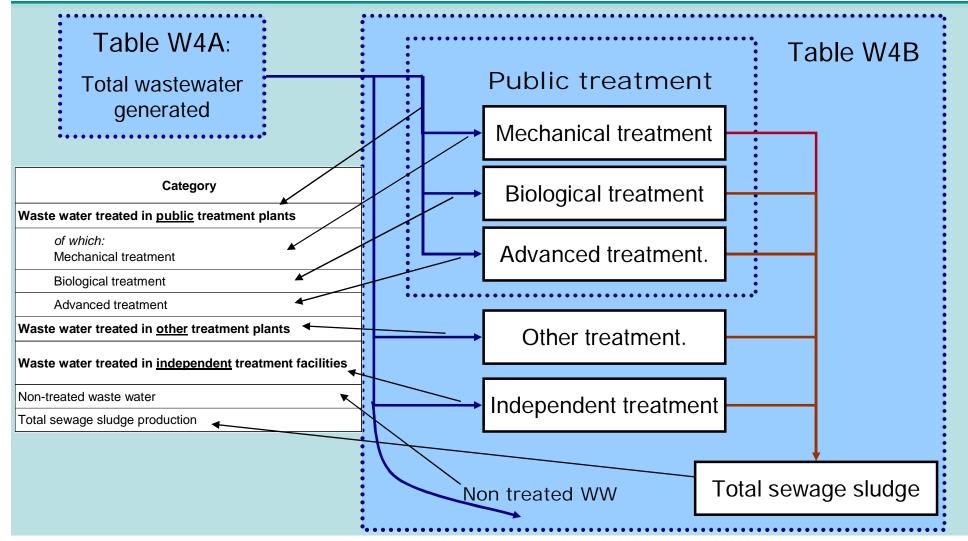
I Tables

I Terminology

Austrian examples on wastewater data

- Quality data (UNSD tables W6A W8A)
- Keeping quality monitoring networks

Conclusion


Table W4B: Waste Water Treatment

		1	
Priority	Category	Unit	1990*
!	Waste water treated in public treatment plants	1000 m ³ /d	
	of which: Mechanical treatment	1000 m ³ /d	
	Biological treatment	1000 m ³ /d	
	Advanced treatment	1000 m ³ /d	
!	Waste water treated in <u>other</u> treatment plants	1000 m ³ /d	
	Waste water treated in independent treatment facilities	1000 m ³ /d	
!	Non-treated waste water	1000 m ³ /d	
	Total sewage sludge production	1000 t	

Table W4B: Waste Water Treatment – Water Scheme

Public treatment plant:

- Synonyms: Urban wastewater treatment plant, municipal wastewater treatment plant
- Operated by official authorities or private companies for local authorities
- Main purpose: urban waste water treatment

Mechanical treatment:

- Physical and mechanical nature
- Results in decanted effluents and separate sludge
- (OECD/ESTAT: treatm. efficiencies: TSS >50%, BOD >20%)
- Examples (minimum requirements):
 - Sedimentation
 - Flotation

Biological treatment:

- Aerobic or anaerobic micro-organisms
- Results in decanted effluents and separate sludge containing microbiological mass and pollutants
- (OECD/ESTAT: treatm. eff.: BOD >70%, COD/TOC >75%)

Examples:

- I Trickling Filters
- Activated Sludge
- with or without nitrification

Advanced treatment:

- All treatment processes which are not mechanical or biological
- (OECD/ESTAT: treatm. eff.: BOD >95% and COD/TOC 85%, N
 - > 70% or P >80% or faecal coliforms < 1000/100 ml)

Examples:

- Chemical coagulation
- Flocculation
- Stripping
- Reverse osmosis
- Ultra-filtration

No double-counting!

Volumes treated in mechanical treatment plants

- + Volumes treated in biological treatment plants
- + Volumes treated in advanced treatment plants
- = Waste water treated in public treatment plants

Reporting under the highest level of treatment only!

Other treatment plants:

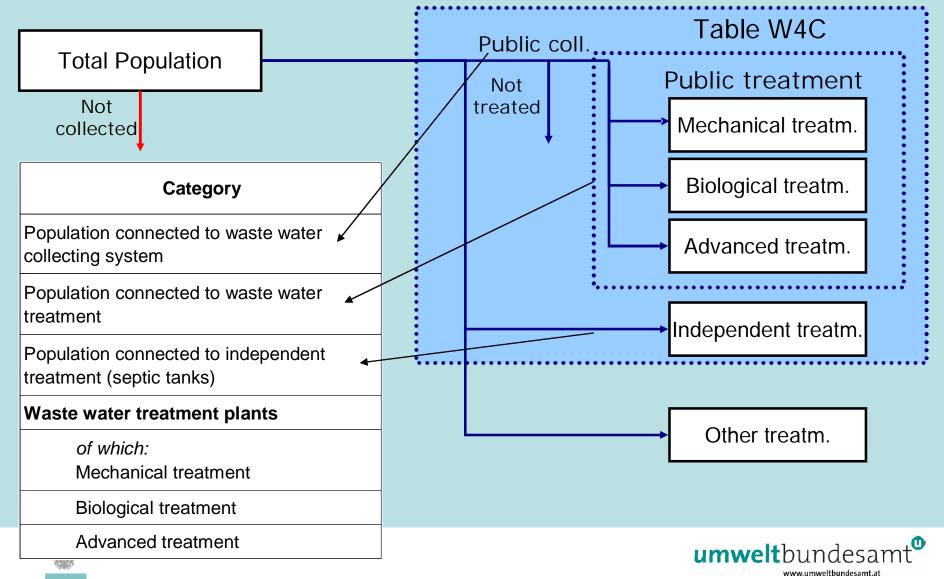
- Non-public treatment plants
- i.e. Industrial waste water plants

Independent treatment facilities:

- Individual private treatment facilities
- I Public waste water network is not in place
- e.g. septic tanks, filtration bed, rootzone systems etc.

Total sewage sludge production:

- I Tons dry substance
- I If wet weight please indicate in footnote


Table W4C: Waste Water Treatment Facilities

Priority	Category	Unit	1990*	
!	Population connected to waste water collecting system	%		
!	Population connected to waste water treatment	%		
!	Population connected to independent treatment (septic tanks)	pendent %		
!	Waste water treatment plants	number		
	<i>of which:</i> Mechanical treatment	number		
	Biological treatment	number		
	Advanced treatment	number		
!	Design capacity of waste water treatment plants	1000 m ³ /d		
	of which: Mechanical treatment	1000 m ³ /d		
	Biological treatment	1000 m ³ /d		
	Advanced treatment	1000 m ³ /d		

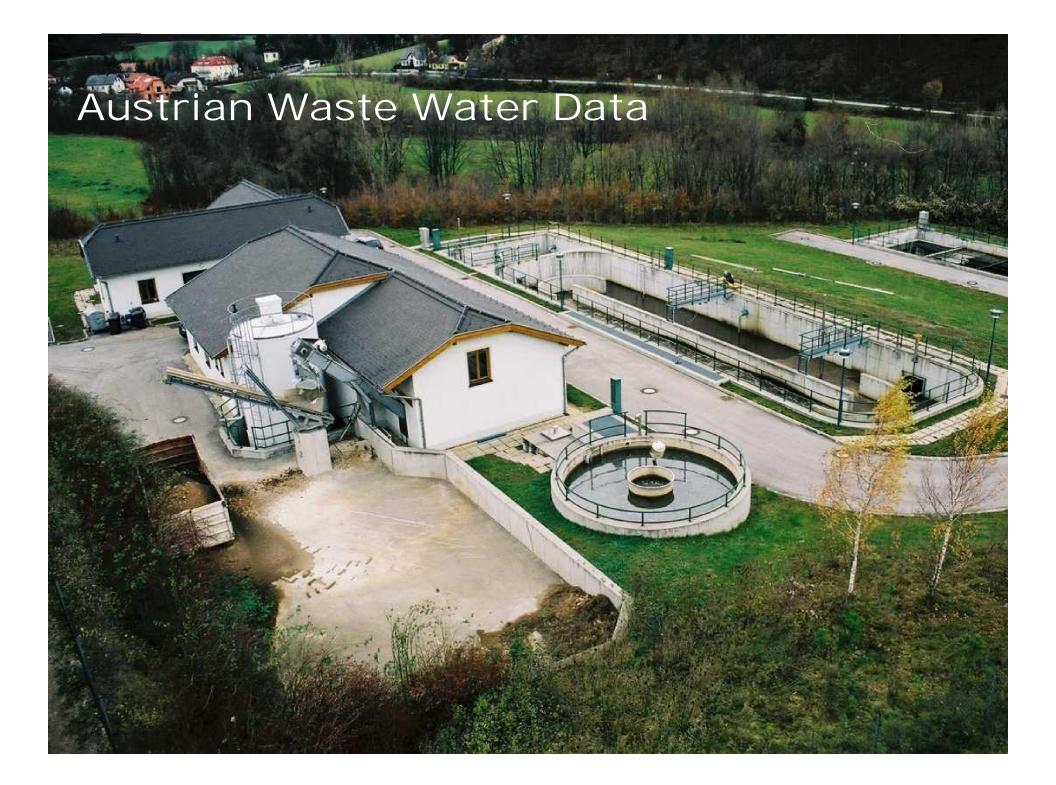
Table W4C: Waste Water Treatment Facilities– Water Scheme

Table W4C: Waste Water Treatment Facilities– Definitions, Clarifications

Derivation from the water scheme

% of population connected to urban waste water collecting system (W4C)

- + % of population connected to independent treatment (W4C)
- + % of population connected to other treatment (not asked)
- + % of population not connected to collecting systems (not asked)
- = 100 % of resident population of the country



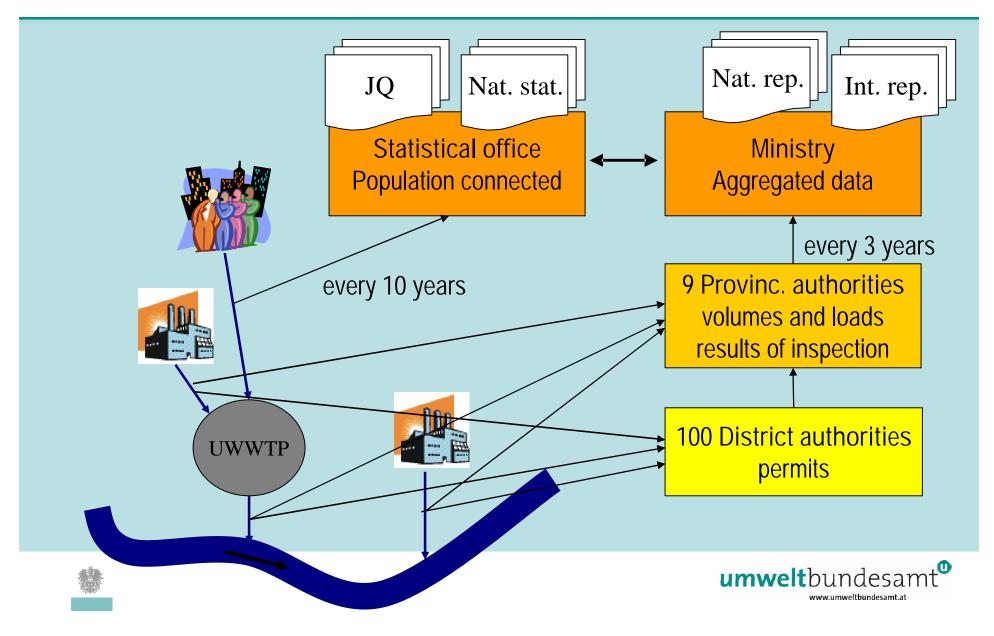
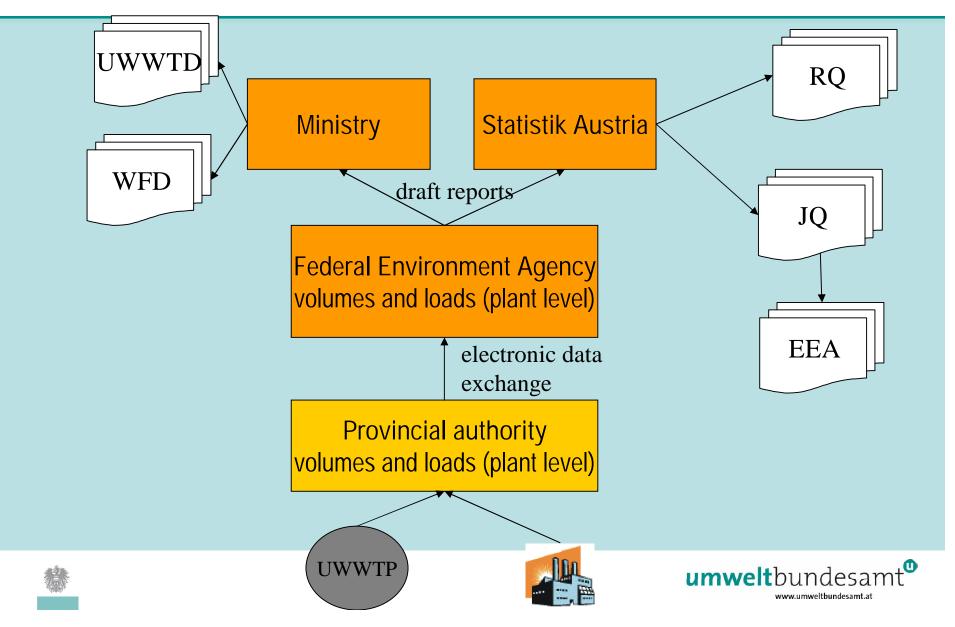
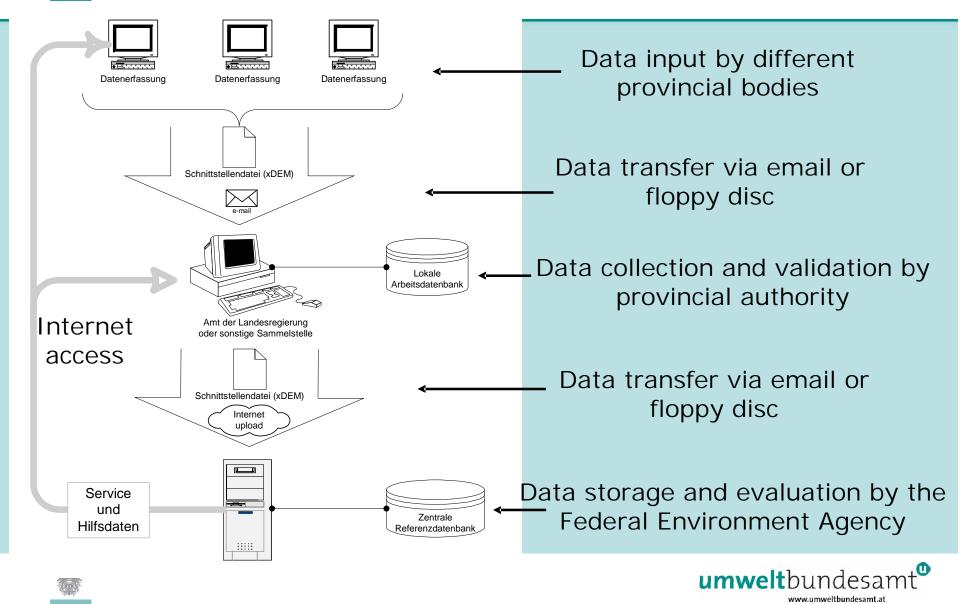


Table W5: Selected Variables at the City Level


Priority	Category Ur		1990*	Analog information
!	City Population	1000		in table
!	Population connected to waste water collecting system	%		
!	Population connected to waste water treatment	%		} ₩4C
!	Public water supply (ISIC 41):	mio m ³ /y		
	of which to Households	mio m ³ /y		} ₩3
!	Waste water generated	1000 m ³ /d		W4A
!	Treated in public treatment plants	1000 m ³ /d		
	of which: Mechanical treatment	1000 m ³ /d		
	Biological treatment	1000 m ³ /d		≻ W4B
	Advanced treatment	1000 m ³ /d		
!	Treated in other treatment plants	1000 m ³ /d		
!	Waste water treatment plants	number		
	of which: Mechanical treatment	number		
	Biological treatment	number		
	Advanced treatment	number		
!	Total design capacity of waste water treatment plants	1000 m ³ /d		ל ₩4C
	of which: Mechanical treatment	1000 m ³ /d		
	Biological treatment	1000 m ³ /d		umwelt bundesamt [®]
	Advanced treatment	1000 m ³ /d		www.umweltbundesamt.at


Austrian Example (until 2000)

Austrian Example (after 2000)

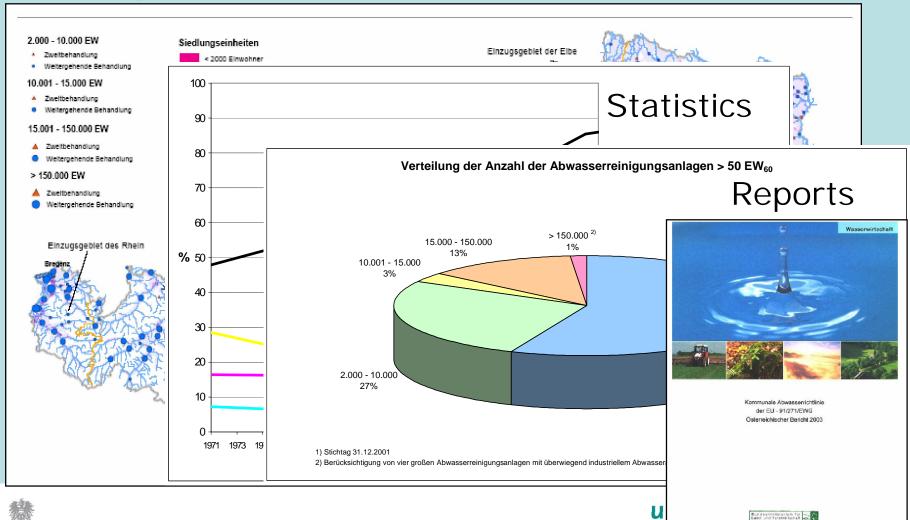
- Answering of the question: What do we need to know?
- Legal basis
- Administration of parameters:
 - Numbering and definition of parameters
 - Mandatory and optional information
 - New information to be collected
 - Information not to be collected in the future
 - Clear definition of parameters (how to measure, frequency of measurements, way of calculation,...)
 - Technical agreements for electronic data exchange

Austrian Example – Technical Agreements for Data Exchange

REM IFN PRG COL ETR ETR	9-MA58-3418/92 9-MA58-1393/66	 besZahl besBetreff Hauptkläranlage Kläranlage Blume	besKurzbezeichnu Wien - Simmering mtal	HKA-Wien	besAusstellungsD: 1999-02-11 1966-10-03	atum 2030-12-31 0000-00-00	besAbl: 1 1
REM REM	REM ====================================						
IFN	EMI						
PRG	KEY	emiLID					
COL	emiLID		emiBundesland		emiArt	emiEinleiterArt	emiBMNH
ETR	9-HKA-Simmering			9	~	1	1
ETR	9-KA-Blumental	Kläranlage Blume		9	0	1	1
ETR	9-EMI-10324	Collini Skolnik		9.,	1027810324	10	2 104121(
ETR REM							
REM	Interface Emitte						
IFN	EMIDATA						
PRG	KEY	emiLID	parID	emdRefDate			
COL	emiLID	parID	emdRefDate	emdValue	emdRemark		
ETR	9-EMI-10324	4	2003-10-23	Collini-Skolnik	GmbH	Übernahme aus EP	ER
ETR	9-EMI-10324	6 7	2003-10-23	1210	Übernahme aus EPH		
ETR	9-EMI-10324		2003-10-23	Wien	Ubernahme aus EPH		
ETR	9-EMI-10324	10 11	2003-10-23	1210 Ud an	Übernahme aus EPH		
ETR ETR	9-EMI-10324 9-EMI-10324	107	2003-10-23 2003-10-23	Wien 16	Übernahme aus EPH Übernahme aus EPH		
ETR	9-EMI-10324 9-EMI-10324	107	2003-10-23	23	Ubernahme aus EPH		
ETR	9-EMI-10324 9-EMI-10324	110	2003-10-23	48	Übernahme aus EPH Übernahme aus EPH		

Improvement of data quality and consistency due to the new system

- Federal Environment Agency keeps "reporting data"
- Information about individual plants:
 - \mid UWWTPs >= 2000 p.e. (later down to > 50 p.e.)
 - Spatial information (GIS)
 - Annual loads and volumes
- Annual data collection
- Core parameters: needed for national and international reporting


- "Official national data" is kept at one single institution
- Agreements for data exchange exist with provincial authorities (law) and Statistik Austria (contract)
- Data is annual data calculated or checked by provincial experts:
 - Measurements
 - "Plausible" estimation (indicated in data)
- Information for each treatment plant is kept at national level:
 - Link to other national data (economic data, monitoring data etc.)
 - I Different spatial aggregation levels (administrative, catchment areas)
- Missing information is calculated / estimated on national level
- Data is collected electronically
- Responsibility on data collection and validation is with provincial authorities

Austrian Example – Products of new improved data flow

Maps

Waste Water Data - General Conclusion and Recommendations

Waste water data is often a by-product

- Economic needs (e.g. accounting of treated waste water volumes or pollutants)
- Operation of treatment plants (measurements for finetuning of processes)
- Enforcement data:
 - Permitted water discharges
 - Surveillance monitoring (water inspectors, self-monitoring)

Waste Water Data - General Conclusion and Recommendations

Usually the following partners are involved

- Authorities
- National Statistical Institutes
- Operators and their associations
- Environment Agencies
- I Universities or other basic research institutions

I

L

L

Waste Water Data - General Conclusion and Recommendations

Requirements for Consistency

- Agreed terminology (glossary, water flow scheme)
- Defined data flows
 - Legal basis (law, contract,...)
 - Defined responsibilities (data producer, data validation, data keeping, administration of parameters...)
 - Identification of information to be kept at national level
 - Defined data collection frequencies
 - Agreements on data exchange formats
 - Duplicable calculation methodologies

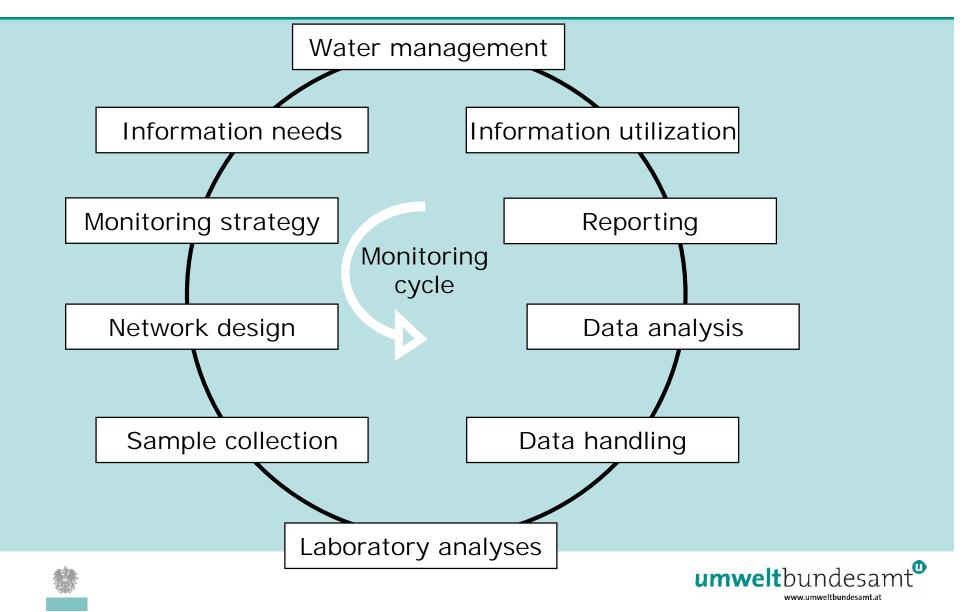

UNSD Water Quality Tables

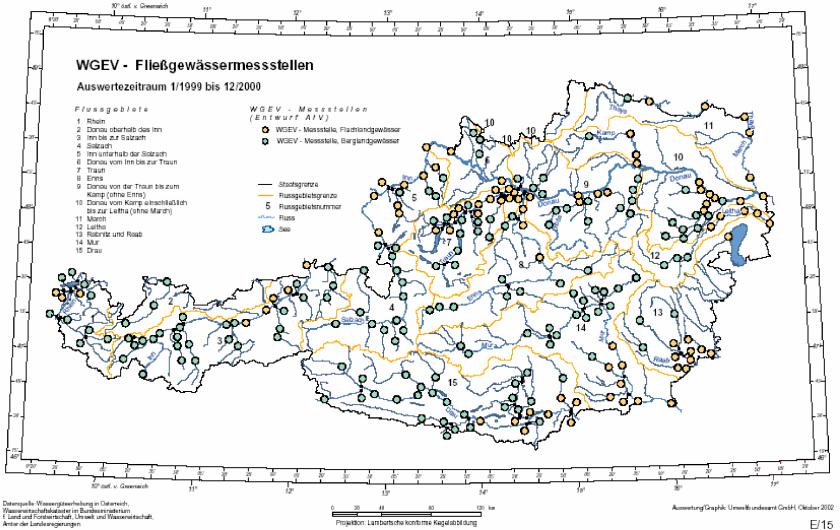
Table W6A: Water Quality of Selected Rivers Name of River A: Sampling frequency: Minimum: /ye Name of Measuring station: Maximum: /ye Distar Table W7A: Water Quality of Selected Lakes Name of Lake A: Sampling frequency: Minimum: Prior Name of Measuring station: Maximum: Surface a **Table W8A: Water Quality of Selected Coastal Areas** Mean de Maximur Name of the estuary/coastal location: Sampling frequency: Minimum: Samplin Name of Measuring station: Maximum: Mean depth: Sampling depth: m Maximum depth: m Prioritv 1 ! 1990* 1995* 1998 1999 Priority Category Unit 1996 1997 2000 ! Chlorophyll-a (Chl-a) mg chl-a/l Biochemical oxygen demand (BOD5) 1 mg O₂/I Chemical oxygen demand (COD) mg O_2/I mg P/l Total phosphorus Total nitrogen mg N/I MPN/100ml** Faecal coliform Other, specify

Monitoring of Water Quality

Types of monitoring:

- Strategic monitoring
 - status and trends
 - preliminary surveys

I Testing for compliance


- water quality standards
- discharge permits

Operational monitoring

- process control
- early warning

- started 1991
- main goals
 - Show the situation
 - Show trends
 - Show problems (in relation to use)
 - Show results of measures

Legal Background

- Water Act
- Hydrography Act
- Ordinance on Monitoring Water Quality
- Ordinance on Groundwater Threshold Values
- Ordinance on Water Quality Standards (in prep.)

Partnerns involved

- Federal authorities
- Provincial authorities
- Private sector

U

Austrian Water Quality Monitoring System

Publications

- Biannual reports
- State of the environment report
- Water Protection Report
- Internet http://www.umweltbundesamt.at
 - I full version of biannual report
 - on-line queries

U

Austrian Water Quality Monitoring System

Budget

- Analyses and data transfer
 - 2/3 federal authorities
 - 1/3 provincial authorities
- Selection and establishing sampling sites
 - 100% federal authorities
- Total costs from 1990 to 1999: 25 million Euro
- Costs per year: 2,2 to 2,9 Mio. Euro

- ~ 2000 Groundwater Monitoring Sites
 - captured springs and springs
 - investigation wells, private wells, industrial wells, water supply wells
 - 250 in karst and fractured groundwater
 rest in groundwater in porous media
- monitored four times a year

- 242 Running Waters Sampling Sites
- sampling frequency
 Ø water chemistry monthly
 Ø biological water quality annually
 Ø sediments annually
 Ø specific rivers every two weeks
 Ø special programs monthly

U

Austrian Water Quality Monitoring System

About 100 different parameters are monitored

- Block 1: the most important inorganic parameters, e.g. nitrate, nitrite, ammonium, phosphate, boron, alkali metal and alkaline earth metal (e.g. potassium, calcium, magnesium)
- Block 2: heavy metal group (e.g. arsenic, mercury, cadmium) and lightly volatile halogenetic hydrocarbons (e.g. tetrachloroethylene)
- Block 3: pesticide substances (e.g. triazine, phenoxy alkane carbon acids), polycyclic aromatic hydrocarbons, etc.

U

Austrian Water Quality Monitoring System

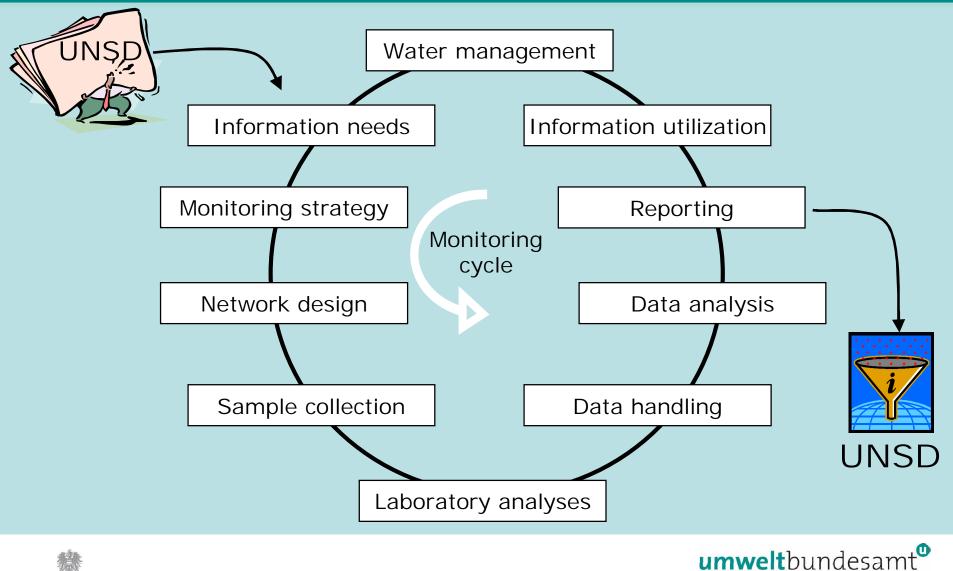
Cyclic Procedure

6 years

- Groundwaters: 1 year initial monitoring (enlarged set of parameters) + 5 years ,adapted' monitoring (Block 1 + relevant other parameters)
- Running waters: 2 years initial monitoring + 4 years ,adapted' monitoring
- I + special monitoring campaigns

Selection of monitoring points

- Representative locations
- Internationally agreed locations (e.g. Danube convention)
- Locations in catchments / water bodies with high anthropogen pressures


Conclusion and recommendations for a taylor made and effective monitoring

- Development of national guidelines
- What do we want to know?
- Monitoring cycle
- I Technical equipment: Don't go for the best possible if less is sufficient!
- Individual catchment areas aspects
- Transparency of work and access to data is important

Conclusion – Monitoring and UNSD Tables

www.umweltbundesamt.at

Thank you very much for your attention!

Michael Nagy

