Data Generation on Water Abstraction and Water Use UNSD Tables W2-W4A

Contents of the presentation

- Who is Michael Nagy?
- UNSD Questionnaire's tables W2-W4A
 - I Tables
 - Water Schemes
 - I Terminology
- Austrian examples
- Conclusion

- Since 1998 working for the Austrian Umweltbundesamt (Federal Environment Agency)
- Fields of work related to this Workshop:
 - Austrian UWWTP database + related data politics
 - Preparation of national water data for international statistics (Eurostat)
 - Drafting of national reports for reporting under the UWWT-Directive (91/271/EEC)
 - Consultant of EC (DG ENV) for implementation of UWWT-Directive
 - Project manager in PHARE project for waste water statistics

Country comparison

	* *	
Country	SYRIA	AUSTRIA
Area	185,180 km²	83,858 km²
Population	15.7 mio.	8.0 mio.
Population dens.	~ 85 / km²	~ 125 / km²
Coast	193 km	No sea
Av. precipitation	~ 225 mm (Damascus)	~ 1170 mm
Av. daily water cons. / person	~ 159	~ 145 I
Irrigated land	12,130 km² (6.6 %)	~ 157 km² (0.2 %)
UWWTPs	?	1,495

Priority	Category	Unit	1990*	Table W/2. Water
!	Total fresh surface water abstracted (1)			Abstraction by
!	! by: Public supply (ISIC 41)			Abstraction by
!	! Agriculture, fishing and forestry (ISIC 01-05)			Source
	of which for Irrigation	mio m ³ /y		Total fresh surface
!	! Manufacturing industries (ISIC 15-37)			water abstracted
	Production of electricity (ISIC 40)	mio m ³ /y		(a art 1)
	Other economic activities	mio m ³ /y		(part T)
	Households	mio m ³ /y		
!	Total fresh ground water abstracted (2)	mio m ³ /y		
!	<i>by:</i> Public supply (ISIC 41)	mio m ³ /y		
!	Agriculture, fishing and forestry (ISIC 01-05)	mio m ³ /y		—
	of which for Irrigation	mio m ³ /y		lotal fresh
!	! Manufacturing industries (ISIC 15-37)			groundwater
	Production of electricity (ISIC 40)			abstracted (part 2)
	Other economic activities	mio m ³ /y		
	Households	mio m ³ /y		
!	Total gross fresh water abstraction (3)=(1)+(2)	mio m ³ /y		
	Water returned without use (4)	mio m ³ /y		
	Imports of water (5)	mio m ³ /y		
	Exports of water (6)	mio m ³ /y		Total freshwater
	Desalinated water (7)	mio m ³ /y		available for use
	Total reuse of fresh water (8)	mio m ³ /y		(nart 3)
!	TOTAL fresh water available for use (9)=(3)-(4)+(5)-			
	Non-fresh water abstraction	mio m ³ /y	 	

Table W2: Water Abstraction by Source – Water Scheme

Table W2: Water Abstraction by Source – Water Scheme

Table W2: Water Abstraction by Source – Definitions, Clarifications

- Fresh surface waters:
 - Includes bank-filtration
- Fresh ground water:
 - Includes springs
- Water returned without use:
 - Discharges into fresh waters without use
 - Primarily during mining and construction activities
 - Discharges into the sea are excluded
 - Not identical with water losses during transport
- I Imports and exports:
 - I Do not include bottled water

U

Table W3: Water Use by Supply Category and Activities

Priority	Category	Unit
!	Total public water supply (ISIC 41) (1)	mio m ³ /y
	of which used by: All economic actitivites	mio m ³ /y
	Agriculture, forestry, fishing (ISIC 01-05)	mio m ³ /y
	of which for irrigation	mio m ³ /y
	Manufacturing industries (ISIC 15-37)	mio m ³ /y
	Production and distribution of electricity (ISIC 40)	mio m ³ /y
	Other economic activities	mio m ³ /y
	Households	mio m ³ /y
	Self-supply (2)	mio m ³ /y
	Other supply (3)	mio m ³ /y
	Total water supply (4) = (1)+(2)+(3)	mio m ³ /y
	Water losses during transport	mio m ³ /y
!	Population connected to public water supply	%
		umwelt

www.umweltbundesamt.at

Table W3: Water Use by Supply Category and Activities

Table W2 - ABSTRACTION Priority Category Unit Total freshwater available for use (W2) ! mio m^3/v Total gross fresh water abstraction (3)=(1)+(2) Water returned without use (4) mio m^3/y - Water losses during transport (W3) Imports of water (5) mio m³/y Exports of water (6) mio m³/y Total water supply (W3) Desalinated water (7) mio m^3/y Total reuse of fresh water (8) mio m³/y Table W3 – WATER USE 1 TOTAL fresh water available for use (9)=(3)-(4)+(5)mio m³/y (6)+(7)+(8)Priority Unit Category Non-fresh water abstraction mio m^{3}/y Total public water supply (ISIC 41) (1) ! mio m^3/y of which used by: mio m³/y All economic actitivites Agriculture, forestry, fishing (ISIC 01-05) mio m³/v of which for irrigation mio m³/y Total water supply Manufacturing industries (ISIC 15-37) mio m³/y Production and distribution of electricity (ISIC 40) mio m^3/y Other economic activities mio m^3/y Households mio m³/y Self-supply (2) mio m^3/y Water losses Other supply (3) mio m³/y during transport Total water supply (4) = (1)+(2)+(3)mio m^3/y mio m³/y Water losses during transport ! Population connected to public water supply %

Table W3: Water Use by Supply Category and Activities – Water Scheme

umweltbundesamt[®]

www.umweltbundesamt.at

Table W3: Water Use by Supply Category and Activities – Water Scheme

Table W3: Water Use by Supply Category and Activities – Definitions, Clarifications

Total public water supply:

- I Includes desalted sea water
- Excludes system operation for agricultural purposes
- Excludes deliveries of public water supply to another

Self supply:

I Includes water drawn from village wells

Other supply:

- e.g. supplies from commercial and industrial establishments
- e.g. reusable water

U

Table W4A: Waste Water Generation

Priority	Category	Unit	1990*
!	Total waste water generated	1000 m ³ /d	
	<i>by:</i> Agriculture, forestry and fishing (ISIC 01-05)	1000 m ³ /d	
	Mining and quarrying (ISIC 10-14)	1000 m ³ /d	
	Manufacturing Industries (ISIC 15-37)	1000 m ³ /d	
	Production and distribution of electricity (ISIC 40)	1000 m ³ /d	
	Construction (ISIC 45)	1000 m ³ /d	
	Other economic activities	1000 m ³ /d	
	Households	1000 m ³ /d	

Table W4A: Waste Water Generation – Definitions, Clarifications

I Total waste water generated:

- No further immediate value
 - I quality
 - ı quantity
 - time of occurence
- Cooling water is included
- Not identical with water returned without use (W2)

AUSTRIAN EXAMPLES

Austrian Example – Administrative Background

Statistics

- 1 National Statistical Institute (Statistik Austria)
- No direct surveys on water use and water abstraction
- Connection rates to public water supply, etc.
- Water Management
 - 1 National Water Act
 - 9 Provinces administrate the Water Act (enforcement)
- Calculation and presentation of national water data
 - I Federal Environment Agency: National and international reporting obligations
 - Austrian Gas- and Water Supply Association (AGWSA): Public water supply - voluntary

Austrian Example – Key players for data management

- Statistik Austria Focal Point for ESTAT, National Surveys (connection rate to PWS, Agrarian Statistics, Material Input Survey, Energy Statistics...)
- Ministry of Agriculture, Forestry, Environment and Water Management – Water Act, Hydrographic Information
- 9 Provincial authorities Enforcement and regional data collection
- Federal Environment Agency National data collection
- Austrian Gas- and Water Supply Association (AGWSA) Public water supply

Austrian Example – Background and assumptions for data calculation

- Water losses only considered in public water supply
 - Big supply networks and long water pipes
 - Data of good quality available at AGWSA
- Water consumption / person connected to PWS = water consumption / person not connected to PWS
- Cooling water is not considered as waste water (not valid for UNSD Questionnaire!)
- Waste water generated = water abstraction consumptive use cooling water

Austrian Example – Priorisation of available data

- 1. Metering of water abstraction / supply
 - I Accuracy
 - I Data flow to national institutions
- 2. Calculated with use factors
 - Derivation of factors
 - Calibration of factors
- 3. Estimation / calculation based on enforcement data
 - Permitted uses
 - Surveillance monitoring (is the permitted use exceeded?)

Austrian Example – Data availability / Sector (situation 1999)

- PUBLIC WATER SUPPLY (ISIC 41):
 - Annual reports based on metered volumes (AGWSA statistics)
 - $1 \sim 65$ % of population covered by reports
- DOMESTIC SECTOR:
 - Population connected to PWS 1981 and 1991 (Statistik Austria)
- MANUFACTURING INDUSTRY:
 - Annual data from survey until 1994 based on measurements and "plausible estimations" (Statistik Austria)
 - Cooling water included
- PRODUCTION OF ELECTRICITY (ISIC 40):
 - I Cooling water is not measured
 - Information about produced electricity available from national reports
- I RRIGATION:
 - Data on irrigated area 1994 and 1999 (Statistik Austria)
 - Crop-specific irrigation volumes (studies, Farmers Assoc.)

umweltbundesa

www.umweltbundesamt.a

Available data:

- Abstraction, supply and losses of most of the water works (AGWSA)
- Population supplied by AGWSA water works (AGWSA)
- Population connected to PWS (Statistik Austria) every 10 years

Calculation:

Step 1: data collected in AGWSA statistics were assigned to provinces

Step 2: water pumpage and supply figures were grossed up on the basis of inhabitants connected to the public water supply

Province of Upper Austria 1996

STATISTIK AUSTRIA data

- a) Inhabitants: 1.381 mio.
- b) Population connected to PWS: 74.4 % \approx 1,027 mio. people

AGWSA data

c) Pumpage by AGWSA water works: ~ 50 mio. m³

d) Population supplied by AGWSA water works : 689,180 \approx 67.1% of population connected to PWS

Final calculation:
$$\frac{c}{d} = \frac{50 \text{ mio. m}^3}{67.1\%} = 74.5 \text{ mio. m}^3$$

Austrian Example – Self Supply of Households

Assumptions:

- Water consumption / person connected to PWS = water consumption / person not connected to PWS
- No losses during transport (à abstraction = use)

Data sources:

- Statistik Austria: Total population and population connected to PWS
- AGWSA: Average annual water consumption / person

Calculation:

(Total population – population connected to PWS) x average water consumption

Austrian Example – Industrial Water Use

www.umweltbundesamt.at

- Individual information about dominating users from annual questionnaires
- + grossed up representative samples of "typical users / sector" (Industry Statistics)
- Probably full survey every 6 years in the future

Available data

- Metered data
 - only from water cooperatives available
 - available only on regional level
- Irrigated area from Agrarian Statistics
- Climatic information
- Crop specific irrigation volumes
 - I Studies
 - Regional Farmers Associations

Calculation

Objectives of the calculation

- è Taking into account regional and system-specific differences
- è Taking into account actual climatic conditions

Calculation - "mixed approach"

- Step 1: Collection of metered data
- Step 2: Assessment of climatic conditions for each year and region
- Step 3: Calculation of region-specific irrigation value/ha by using national data (irrigated area, crop- and climate specific volumes)

Step 4: Final calculation:

 $(\sum metered volumes) + remaining area \times region specific irrigation value)$

Austrian Example – Cooling Water in Caloric Power Plants

Available data

- Electricity produced by caloric power plants for each region and year (Energy Statistics of Statistik Austria)
- Estimated or measured use of cooling water of a few plants

Calculation

(Average m³/GWh) x produced electricity

Austrian Example – Total National Supply

Austria – Long Term Average Water Balance

www.umweltbundesamt.at

Data on water uses is often a by-product

- Economic needs (e.g. acounting of actually used water of water cooperatives)
- Material input statistics
- Enforcement (surveillance monitoring of the authority, self-monitoring of the operator)

Usually there are many national partners involved

- Authorities
- National Statistical Institutes
- Professional associations or cooperatives
- Environment Agencies
- I Universities

Consistency of data requires

- Agreed terminology (glossary, water flow schemes)
- Defined data flows (law, bilateral contracts etc.)
- Duplicable calculation methodologies

Thank you very much for your attention!

Michael Nagy

