The Estimation of the Wastewater Generation and Pollution Load by the Branches of Industry

By Kaia Oras and Eda Grüner Statistical Office of Estonia

Introduction

Statistical Office of Estonia conducted a small study with the aim to improve the quality of the data delivered by the Joint OECD/Eurostat Questionnaire on Inland Waters from Estonia, and particularly on the table 7 and 3.2 on wastewater treatment and also on discharged wastewater volumes and wastewater pollutant loads.

As practically no information existed on wastewater loads generated by the branches of industry in Estonia, the estimations of the wastewater generation on the level of industry groups were made. Factors based on economic indicators were developed and used for the estimation of missing data on wastewater discharge quantities.

As a starting point, the data about wastewater generation were readily available only for the enterprises that discharged wastewater directly to environment (and possessed discharge consent). For others, which deliver their wastewater to wastewater treatment plants, practically no relevant information existed. The survey was carried out to enterprises, which deliver their wastewater to wastewater treatment plants with the focus to identify their water consumption and discharge. As a result the detailed water consumption data on enterprise level were obtained. Data obtained by this survey were used as a starting point for combining economic data with data on water management.

The estimation of pollution (P, N, BOD, suspended solids) of industrial wastewater was performed in two locations of the flow: generation and discharge to environment:

Generation

Discharge to environment

UWWTP = Urban waste water treatment plant

The estimations for industry groups (NACE 2-digit grouping level) were made for following parameters: volume, BOD, N, P, suspended solids. The estimations were based on water use data and statistical databases available in Statistical Office (production statistics, environmental expenditure statistics) and Estonian Environment Information Centre of the Ministry of the Environment of Estonia (Wastewater inflow part of the database of wastewater treatment plants reports).

Wastewater factors

In order to reach full coverage of industrial sector on NACE 2 digit level on water use (by purpose types) and wastewater generation the factors were developed. Wastewater factors should be understood as the ratio between the amount of generated wastewater in m3 d and net sales in kroons for given branch.

As a first step the quantity relationship between the water use and wastewater generation on NACE 2 digit level were figured out.

Factors based on economic indicators were developed and used for the estimation of wastewater discharge quantities. The estimation of wastewater discharge quantities was based on net sales values. Wastewater factors were calculated according to the formula:

$$Fww = Wt/S$$

Where:

Fww — wastewater factor Wt — total quantity of wastewater generated S — total net sale

On the bases of data of enterprises included in Statistical Office survey, the wastewater factors for NACE categories on 2 or 3 digit levels were calculated.

$$Fww \longrightarrow \sum_{i=1}^{n} Wt, i/\sum_{i=1}^{n} S, i,$$

Where:

Wt — total quantity of wastewater generated by i enterprise,

Si — total net sale of i enterprise,

N — number of enterprises in given NACE category

For each economic activity group wastewater quantities were summed from the three categories of data: Wastewater quantities on the bases of EEIC database on water use and discharge, Statistical Office survey results and the estimations of missing wastewater quantities based on monetary factor. Details on total estimated quantities of wastewater generated in each NACE category in 2001 are presented in Table 1.

Why the factors could not be developed from the basis of enterprises with pollution permission

For comparison wastewater factors on economic activity level were also calculated just on the basis of the data of enterprise who possessed a discharge consent. The number of such enterprises is low: in several economic activities only few enterprises were possessing pollution consents and some economic activities were not represented at all.

Wastewater factors of enterprises with water permits are 10 times higher than the ones without water permits inside the same economic activity. So, the wastewater quantities could have been heavily overestimated if the factors of the permit owners would have been used for the wastewater generation estimation. So, the reliability of the factors developed from the basis of the data of enterprises having water permits is lower.

Another reason is that quite often these enterprises have unique production type inside NACE category and the estimations based on these enterprises data cannot be applied on other enterprises in this economic category.

For example inside economic activity production of paper and products of paper (NACE category 21), only 2 enterprises produce paper from pulp or recycled paper. These are also the only 2 enterprises with water permits. Other enterprises in the same economic activity (NACE category 21) do not possess water permits and they have completely different production profile as they are producing paper products out of paper. So, the factors derived from the data of the paper mills are not suitable for the estimation of the wastewater production of the paper products fabricators.

Another economic activity with big variability is production of chemicals and chemical products (NACE 24), where one enterprise (big wastewater generation and low net sales) is distorting the picture. The majority of enterprises does not have water permits and produce mainly cosmetics and other domestic chemicals.

Comparison of wastewater factors derived from the data of enterprises with and without water permits is outlined in Table 2.

The estimation of the pollution load reaching the environment by source industry groups

No factors for pollution loads (BOD, N, P, suspended solids) were calculated on economic activities level, because pollution load estimations were based on the quantities of generated wastewater. In fact they would have been the same factors multiplied with average pollution load of wastewater.

The "upside down" approach (i.e. the estimation of the share of every economic activity in total number) was used for the estimation of the share of different NACE categories in the pollution load (N, P, BOD, suspended solids) released into environment by wastewater

The following presumptions were made:

- 1. All wastewater discharged into environment has the same (average) load of pollutants.
- 2. Share of pollutants originated from different NACE categories is proportional to the quantity of generated wastewater.

Load of the following pollutants in wastewater was estimated: BOD₇, suspended solids, total N and total P. These are the most common pollutants for which data were collected and total quantities of these pollutant released into environment with wastewater was known.

Quantities of pollutants in wastewater originating from different NACE categories are presented in Table 3.

The estimation of the pollution load generated by industry groups

Estimations were made on the basis of the influents flows to WWTP. In order to find out the industry wastewater, wastewater generated by households was subtracted from the total wastewater. The basis for the calculation was the expert opinion that in Estonia 1 inhabitant uses as average 127 litres water per day and produces the same quantity of wastewater.

The assumption was made that the nutrients load of households and industry wastewater does not differ drastically and thus the quantities of pollutants were divided between population and industry proportionally to the quantity of treated wastewater.

There are two types of WWTP-s which show different characteristics: URBAN-type WWTP and all other types (including industrial) of WWTP.

For the both types of WWTP's the average concentrations of pollution loads of the inflow were found. Next, the division between the quantities of pollutants in influent flow originating from industry and households was found. The estimated quantities of pollutants and wastewater volumes treated by both types of WWTP were summed. Next table outlines in right side the average pollution load of wastewater from industry and on the left side the division of total pollution between population and industry.

Pollutant	Total influent	From population	From industry	у	Average pollution load of wastewater industry per cubic n	from netre
BOD7. tons	37 104	14 028	23 076	318		
Suspended solids, tons	31 324	12 233	19 090	263		
Total N, tons	7 356	2 858	4 497	62		
Total P, tons	1 527	589	937	13		
Wastewater treated, m3		46 558 349	72 561 204			

Quantities of pollutants in influent

Estimation of the pollution generation by NACE categories

In order to estimate the pollution load of wastewater generated by NACE categories the total estimated quantities of pollutants originated from industry were divided by NACE categories proportionally to the quantity of generated wastewater.

Following presumption was made:

1) Wastewater from all industry branches (NACE categories) has the same pollution load (estimated as described above)

2) Cooling wastewater wherever it is generated has the same pollution load (average concentration according to the inflow data of WWTP)

3) Sanitary wastewater from of all enterprises has the same pollution load (which was equalized to average concentration of the pollution load of URBAN-type of WWTP influent):

In the Table 4 the pollution load by the sources and categories of wastewater are outlined for the year 2001. Next, the pollution loads by categories of wastewater were summed in order to get the pollution loads by economical sectors. Table 5 outlines the results.

Conclusions

Data about wastewater generation were available only for the enterprises, which discharged wastewater directly to environment (and were possessing a discharge consent). For other enterprises, which deliver their wastewater to wastewater treatment plants, practically no information existed on the quantities of wastewater generation and pollutions loads.

The estimations on the wastewater generation by industry on the NACE 2-digit grouping level were made for following parameters: volume, BOD, N, P, suspended solids. The estimations were based on water use data and statistical databases available in Statistical Office (production statistics, environmental expenditure statistics) and environmental Ministry (database of wastewater treatment facilities).

In order to reach full coverage of industrial sector on NACE 2digit level on water use (by purpose types) and wastewater generation the wastewater factors were developed. Wastewater factors were based on statistical survey data and connected amount of generated wastewater with economical data (net sales) of enterprises.

In addition the estimation of pollution load (P, N, BOD, suspended solids) of industrial wastewater by industry on the NACE 2-digit grouping level in two locations of the flow — generation and discharge to environment — was performed. The pollution loads estimations were made on bases of data from database of wastewater treatment facilities and estimated wastewater generation on the NACE 2-digit grouping level.

The result of the study could also provide the tool for forecasting of water supply demand based on industrial statistics and forecasting.

NACE	Enterprises having water permits	Statistical Office survey	Estimation according to Statistical Office survey	TOTAL
15	5 951 187	399389	17 723	6 368 299
17	2 204 552	53 126	8 052	2 265 730
18	371 625	108 957	11 996	492 578
19	55 870	47 992	1 758	105 620
20	1 198 840	108 990	14 164	1 321 994
21	8 034 998	18 118	101	8 053 218
221	0	8 196	9 868	18 064
222	0	51 827	103 427	155 254
23	529 500		0	529 500
24	1 779 739	2 022 925	68 646	3 871 310
25	15 662	34 661	1 877	52 200
26	981 228	66 894	2 388	1 050 510
27	0	7 092	1 376	8 468
28	20 059	221 006	24 287	265 352
29	49 237	84 567	9 762	143 567
30	0	659	450	1 109
31	0	29 137	12 742	41 879
32	0	106 058	6 769	112 827
33	36 417	85 772	12 446	134 636
34	0	33 742	235	33 977
35	74 800	4 186	3 140	82 126
36	421 219	76 870	17 968	516 057
Total	21 724 935	3 570 164	329 176	25 624 275

Table 1. Generation of wastewater by NACE categories and by enterprise categories

	Enterprises without	water permits	Enterprises with water	permits	
NACE	Number of enterpris	esWastewater factor of category	NACENumber of enterprises	Wastewater factor of category	NACE
15	112	0.177	66	0.796	
17	56	0.057	7	0.561	
18	132	0.070	1	1.360	
19	26	0.087	3	1.210	
20	182	0.034	16	0.579	
21	13	0.027	2	16.891	
221	31	0.018	0		
222	31	0.511	0		
23	0		1	4.627	
24	19	1.141	4	342.391	
25	43	0.027	2	0.066	
26	43	0.083	16	2.328	
27	3	0.054	0		
28	132	0.092	2	0.042	
29	53	0.081	4	0.323	
30	2	0.005	0		
31	20	0.041	0		
32	19	0.092	0		
33	12	0.138	2	1.205	
34	9	0.033	0		
35	10	0.064	2	0.394	
36	87	0.050	13	0.295	

Table 2. Wastewater factors derived from the data of enterprises with and without water permits

NACE		BOD7	,	Su	spended	solids		Nitrog	gen	Phos	ohorus	
	Industrial and sanitary	cooling	total	Industrial and sanitary	cooling	total	Industrial and sanitary	coolin	ig total	Industrial and sanitary	coolin	g Total
15	96.959	0.782	97.741	144.981	2.704	147.685	182.279	0.495	182.774	11.145	0.024	11.169
17	20.320	0.000	20.320	30.384	0.000	30.384	38.200	0.000	38.200	2.336	0.000	2.336
18	3.611	0.000	3.611	5.400	0.000	5.400	6.789	0.000	6.789	0.415	0.000	0.415
19	0.111	0.000	0.111	0.166	0.000	0.166	0.209	0.000	0.209	0.013	0.000	0.013
20	6.449	0.000	6.449	9.643	0.000	9.643	12.124	0.000	12.124	0.741	0.000	0.741
21	36.130	8.307	44.436	54.024	28.728	82.751	67.922	5.260	73.182	4.153	0.257	4.410
221	0.019	0.000	0.019	0.028	0.000	0.028	0.035	0.000	0.035	0.002	0.000	0.002
222	2.117	0.051	2.168	3.165	0.178	3.343	3.980	0.033	4.012	0.243	0.002	0.245
23	9.862	0.000	9.862	14.747	0.000	14.747	18.541	0.000	18.541	1.134	0.000	1.134
24	5.104	12.444	17.548	7.632	43.037	50.669	9.595	7.880	17.475	0.587	0.385	0.972
25	0.057	0.019	0.075	0.085	0.064	0.149	0.107	0.012	0.119	0.007	0.001	0.007
26	2.101	1.118	3.218	3.141	3.865	7.006	3.949	0.708	4.657	0.241	0.035	0.276
27	0.047	0.001	0.048	0.071	0.002	0.073	0.089	0.000	0.089	0.005	0.000	0.005
28	2.980	0.045	3.024	4.455	0.155	4.610	5.602	0.028	5.630	0.342	0.001	0.344
29	0.727	0.011	0.738	1.088	0.037	1.125	1.368	0.007	1.374	0.084	0.000	0.084
30	0.021	0.000	0.021	0.031	0.000	0.031	0.039	0.000	0.039	0.002	0.000	0.002
31	0.026	0.029	0.055	0.039	0.099	0.138	0.049	0.018	0.067	0.003	0.001	0.004
32	0.879	0.048	0.927	1.314	0.167	1.481	1.653	0.031	1.683	0.101	0.001	0.103
33	2.162	0.000	2.162	3.233	0.000	3.233	4.064	0.000	4.064	0.248	0.000	0.248
34	0.266	0.017	0.283	0.397	0.060	0.458	0.499	0.011	0.510	0.031	0.001	0.031
35	0.039	0.026	0.065	0.058	0.088	0.147	0.074	0.016	0.090	0.004	0.001	0.005
36	4.195	0.000	4.195	6.272	0.000	6.272	7.886	0.000	7.886	0.482	0.000	0.482
	194.181	22.897	217.078	290.354	79.184	369.538	365.051	14.498	379.549	22.320	0.708	23.029

Table 3. Quantities of pollutants in wastewater originating from different NACE categories, tons

Quantit	y of wastewate	er		Wastewater f	Wastewater from industry (excl cooling water)			
NACE	Total	From i (excl. water)	ndustryCooling water cooling	Sanitary	BOD7	Suspended so	olids Total N	Total P
15	6 368 299	5 205 582	205 038	957 679	1 655 510	1 369 573	322 668	67 272
17	2 265 730	1 090 942	0	1 174 788	346 948	287 023	67 622	14 098
18	492 578	193 872	0	298 706	61 656	51 007	12 017	2 505
19	105 620	5 971	0	99 649	1.899	1.571	0.370	0.077
20	1 321 994	346 237	0	975 757	110.112	91.094	21.461	4.474
21	8 053 218	1 939 742	2 177 987	3 935 489	616.888	510.340	120.235	25.067
221	18 064	998	0	17 066	0.318	0.263	0.062	0.013
222	155 254	113 653	13 480	28 120	36.145	29.902	7.045	1.469
23	529 500	529 500	0	0	168.395	139.310	32.821	6.843
24	3 871 310	274 022	3 262 832	334 457	87.146	72.094	16.985	3.541
25	52 200	3 059	4 855	44 286	0.973	0.805	0.190	0.040
26	1 050 510	112 787	293 023	644 700	35.869	29.674	6.991	1.458
27	8 468	2 546	140	5 783	0.810	0.670	0.158	0.033
28	265 352	159 972	11 736	93 644	50.875	42.088	9.916	2.067
29	143 567	39 055	2 813	101 699	12.420	10.275	2.421	0.505
30	1 109	0	0	1 109	0.000	0.000	0.000	0.000
31	41 879	1 400	7 503	32 976	0.445	0.368	0.087	0.018
32	112 827	47 195	12 653	52 980	15.009	12.417	2.925	0.610
33	134 636	116 065	0	18 571	36.912	30.536	7.194	1.500
34	33 977	14 262	4 575	15 140	4.536	3.752	0.884	0.184
35	82 126	2 099	6 690	73 337	0.668	0.552	0.130	0.027
36	516 057	225 200	0	290 857	71.620	59.250	13.959	2.910
Total	25 624 275	10 424 157	7 6 003 325	9 196 793	3 315.153	2 742.565	646.141	134.711

Table 4. Pollution load of wastewater generated, by NACE categories, estimations for 2001

Conti	inues									
	Wastewater from sanitary					Cooling water				
	BOD7	Suspended solids	Total N	Total P	BOD7	Suspended solids	s Total N	Total P		
15	402 216	290 330	61 854	10 0/1	0 792	2 704	0 405	0.024		
10	402.210	200.000	75 976	13.041	0.762	2.704	0.495	0.024		
17	493.400	07 407	10.000	10.979	0.000	0.000	0.000	0.000		
10	125.454	87.437 00.460	19.295	4.317	0.000	0.000	0.000	0.000		
19	41.852	29.169	0.430	1.440	0.000	0.000	0.000	0.000		
20	409.809	285.022	63.021 054.494	14.103	0.000	0.000	0.000	0.000		
21	1 652.870	1 151.988	254.181	56.880	8.307	28.728	5.260	0.257		
221	7.167	4.995	1.102	0.247	0.000	0.000	0.000	0.000		
222	11.810	8.231	1.816	0.406	0.051	0.178	0.033	0.002		
23	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
24	140.469	97.902	21.602	4.834	12.444	43.037	7.880	0.385		
25	18.600	12.963	2.860	0.640	0.019	0.064	0.012	0.001		
26	270.768	188.715	41.639	9.318	1.118	3.865	0.708	0.035		
27	2.429	1.693	0.374	0.084	0.001	0.002	0.000	0.000		
28	39.330	27.411	6.048	1.353	0.045	0.155	0.028	0.001		
29	42.713	29.769	6.568	1.470	0.011	0.037	0.007	0.000		
30	0.466	0.325	0.072	0.016	0.000	0.000	0.000	0.000		
31	13.850	9.653	2.130	0.477	0.029	0.099	0.018	0.001		
32	22.251	15.508	3.422	0.766	0.048	0.167	0.031	0.001		
33	7.800	5.436	1.199	0.268	0.000	0.000	0.000	0.000		
34	6.358	4.432	0.978	0.219	0.017	0.060	0.011	0.001		
35	30.801	21.467	4.737	1.060	0.026	0.088	0.016	0.001		
36	122.157	85.139	18.786	4.204	0.000	0.000	0.000	0.000		
Total	3 862.570	2 692.067	593.993	132.921	22.897	79.184	14.498	0.708		

NACE	BOD7	Suspended solids	Total N	Total P
15	2 058 509	1 652 607	385.017	81 137
17	2 030.309	630 905	1/3/08	31.077
18	187 110	138 444	31 310	6 823
10	13 751	30 740	6 806	1 517
19	510 022	276 716	0.000	10 577
20	2 279 065	1 601 056	04.403	10.577
21	2 278.005	F 259	379.070	0.200
221	7.400	5.256	1.104	0.280
222	48.006	38.311	8.894	1.877
23	168.395	139.310	32.821	6.843
24	240.059	213.033	46.467	8.760
25	19.591	13.832	3.062	0.680
26	307.755	222.254	49.338	10.810
27	3.239	2.364	0.532	0.116
28	90.249	69.654	15.992	3.422
29	55.144	40.081	8.996	1.975
30	0.466	0.325	0.072	0.016
31	14.323	10.120	2.235	0.496
32	37.308	28.092	6.378	1.377
33	44.711	35.972	8.394	1.768
34	10.912	8.244	1.873	0.404
35	31 494	22 108	4 883	1 088
36	193 777	144 389	32 745	7 114
Total	7 200.620	5 513.815	1 254.633	268.341

Table 5. Pollution loads of BOD ₇ ,	suspended solids	, total N and	total P by	economical
sectors, tons				