

OVERVIEW OF THE SEEA AND ITS APPLICATIONS

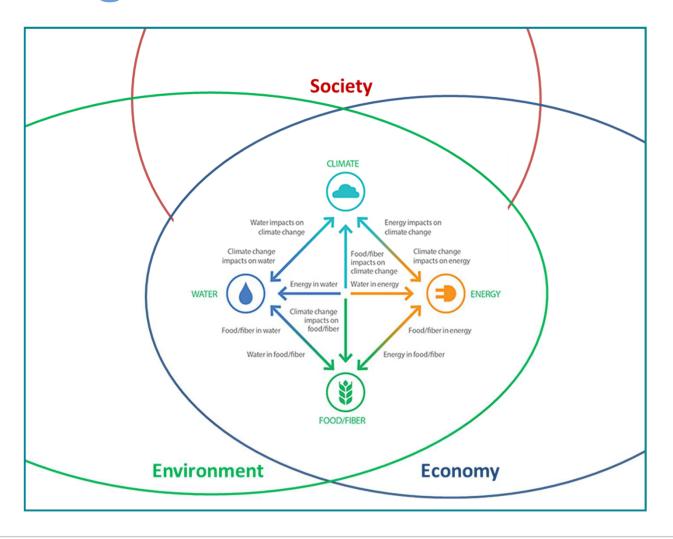
Sokol Vako

United Nations Statistics Division

Content

- Why environmental-economic accounting?
- Advancing environmental-economic accounting
- Applications of the SEEA
 - > Measuring the SDGs
 - > Accounts for policy an example

WHY ENVIRONMENTAL-ECONOMIC ACCOUNTING?


Good measurement for good management

- Sustainable management of the environment contributes to social and economic development
- Accounting for the environment means nature can be managed as a valuable asset and reflected in policy

Integration for sustainable development

Integrated Policy

Integrated Information

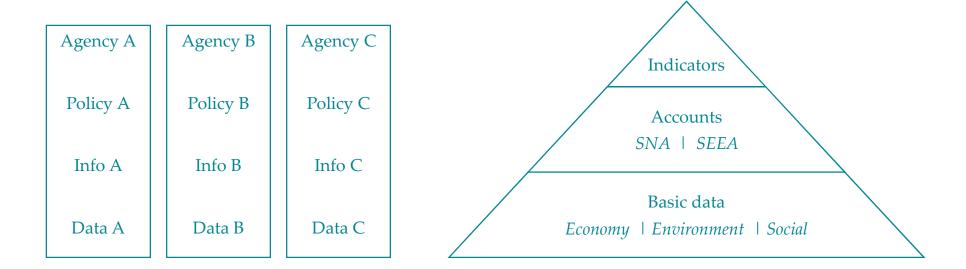
Statistics for sustainable development

Sustainable Development Policy

Evidence Based

Integrated

Integrated Information System


Applies a uniform standard approach

Integrates environmental, economic and social information

Captures synergies and trade-offs

Silo approach → Integrated statistics

Accounts to integrate statistics:

- Address institutional arrangements
- Integrate statistical production process and services
- Ensure consistency between basic data, accounts and indicators

Silo approach → Integrated statistics

ADVANCING ENVIRONMENTAL-ECONOMIC ACCOUNTING

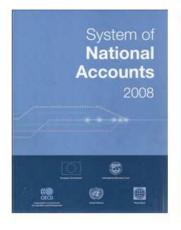
1. Legal and political commitments

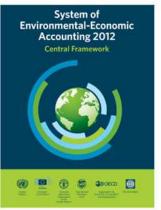
1992: Agenda 21 (Rio)

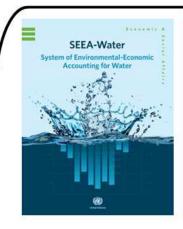
2012: The Future we Want (Rio+20)

2015: Sustainable Development Goals

European Legislation


2. International statistical standard


- The SEEA Central Framework
 was adopted as an international
 statistical standard by the UN
 Statistical Commission in 2012
- The SEEA Experimental
 Ecosystem Accounting
 complements the Central
 Framework and represents
 international efforts toward
 coherent ecosystem accounting


The SNA and SEEA: Systems of integrated information

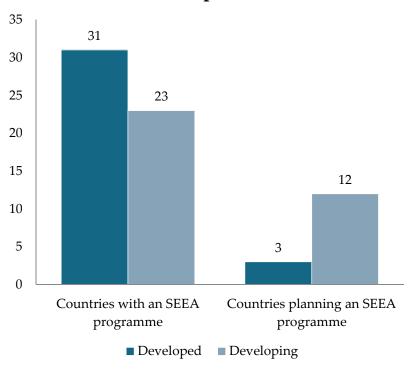
SEEA-Energy

SEEAAgriculture,
Forestry and
Fisheries

(forthcoming)

Others

(forthcoming)


3. Implementation of the SEEA

- Implementation strategy (2013) objectives:
 - > Adopt the SEEA as the measurement framework for sustainable development
 - > Mainstream SEEA implementation in countries
 - Target 100 countries by 2020 for adoption of SEEA
 - > Establish technical capacity for regular reporting
- A number of **international policy frameworks** have adopted the SEEA as the underlying statistical framework;
 - > European Union Beyond GDP
 - > CBD Aichi Target 2
 - > OECD: Green growth strategy
 - > World Bank: WAVES
 - > 10YFP for Sustainable Consumption and Production

Status of SEEA implementation

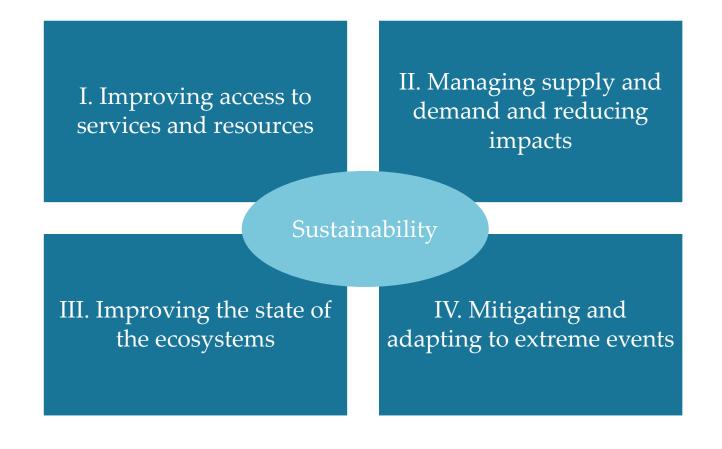
Status of SEEA Implementation (2014)

- Global Assessment on Environmental Economic Accounting 2014
 - > 84 countries responded
 - > 54 countries have an SEEA program
- Accounts most commonly compiled;
 - > Air Emissions, Material Flows, Energy (due to Eurostat legislation)
- Priorities accounts going forward;
 - > Developed Countries: Energy, EPEA and EGSS
 - Developing Countries: Energy, Water and Environmental Taxes and Subsidies

Implementation tools

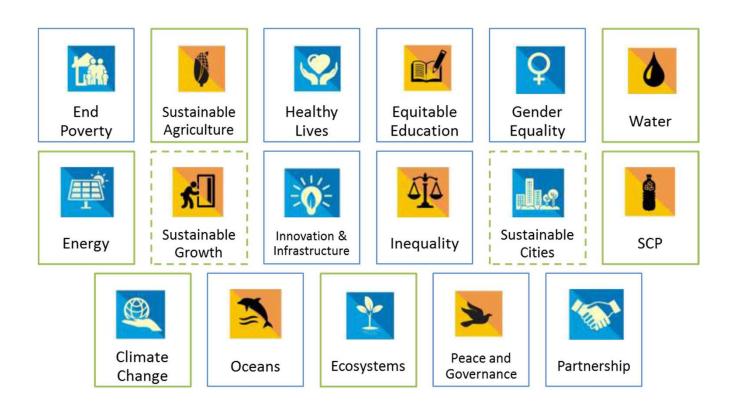
- Implementation Strategy
- Implementation Guide and Diagnostic Tool
- Technical Notes and Core Tables
- Compilation Guidelines
 - > Water
 - > More being developed...
- SEEA Training
 - > Current online and in-person phase
 - > In-depth modules being further developed

APPLICATIONS OF ENVIRONMENTAL-ECONOMIC ACCOUNTING


Integrated environmental and socio-economic data for policy

Information from the SEEA can be used to:

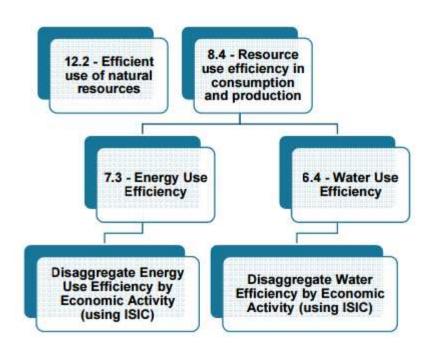
- Analyze the impact of economic policies on the environment and vice versa
- Identify socio-economic drivers, pressures, impacts and responses affecting the environment
- Provide a quantitative basis for policy design, including;
 - > Productivity analysis
 - > Natural resource management
- Support greater precision for environmental regulations and resource management strategies
- Develop indicators that express the environment-economy relationship



Policy quadrants and the SEEA

Sustainable Development Goals and SEEA

The SEEA is an important statistical framework for **monitoring the SDGs** in an integrated way

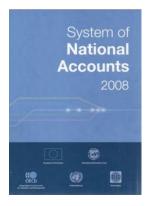


Integrated architecture for SDGs

Integrated monitoring for the SDGs requires methodological consistency.

The SEEA should be the basis for:

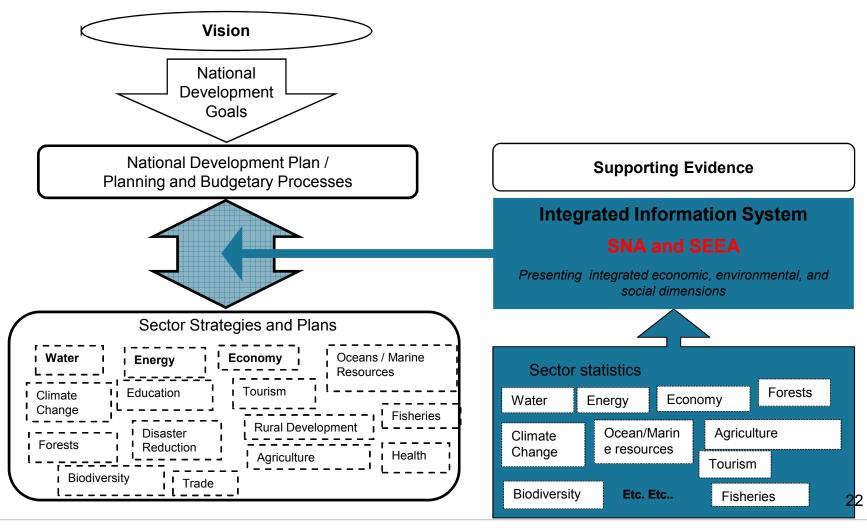
- The development of coherent environmental-economic SDG indicators
- 2. The disaggregation of SDG indicators to inform national policy (spatial, sectoral, etc.)



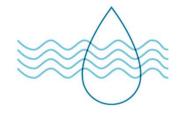
Indicators based on standards

Indicators based on Standards

- Higher quality
- International comparability
- Comprehensive basis for (dis)aggregation
 - Standards for Statistics
 - Aligned Definitions and Classifications
- Improved capacity to compare and/or combine statistics from different sectors
 - > Basis for coherent and comprehensive data sets


Frameworks to coherently integrate information:

A National Information System to Support Integrated Policy



Policy application - Example

- Increasing competition for scarce water resources:
 - > Growing mineral sector → Increased water demand
- Need for a diversified economy:
 - > Ensure energy security → Coal mining → Increased water demand
 - > Support other sectors (agriculture, services, manufacturing) → Manage rising water costs
- Need for social and environmental protection:
 - > Maintain reliable and affordable domestic supply → Manage competing uses (from mines esp. rural)
 - > Ensure sustainability of use → **Avoid over-abstraction** of groundwater (from mines)

Water accounts - Information

Physical Supply and Use Table

Combined water use and national accounts data:

	Mineral Mining	Coal Mining	Agriculture	Manufacturing	Services
Water Use	HIGH	HIGH	VERY HIGH	LOW	LOW
Value Added	HIGH	LOW	LOW	HIGH	HIGH
Formal Employment	LOW	LOW	LOW	HIGH	HIGH
Important Considerations	High Growth	Energy Security	Food Security	Employment & protection from price volatility	

- Illustrated supply-side issues losses
- Illustrated potential of wastewater re-use and alternate sources

Physical Asset Account

Enabled monitoring of reservoirs and illustrated spatial concerns

Water accounts - Policy response

- 1. Invest in water supply system to reduce losses
- 2. Increase wastewater re-use and recycling, particularly in mining and agriculture
- 3. Use alternate sources of untreated freshwater and sea water (to protect supply of potable water to households and services)
- 4. Address cost discrepancies in supply of water to different sectors
- 5. Address over-extraction of groundwater by large mines

THANK YOU

seea@un.org