Carbon Accounting

(Levels 0, 1 and 2)

Project: Advancing the SEEA Experimental Ecosystem Accounting

Overview: The Carbon Accounting

1. Learning objectives

2. Review of Level 0 (5m)

- What is it?
- Why do we need it?
- What does it look like?
- Expertise & data required
- Links to related training materials

3. Level 1 (Compilers)

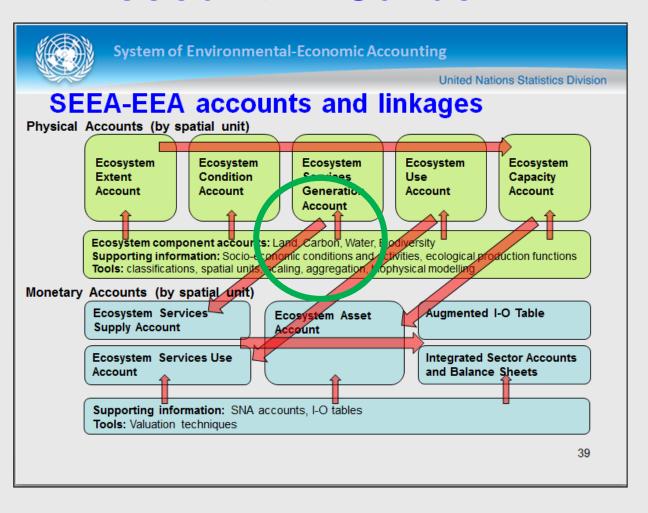
- Concepts (15m)
- Group exercise & Discussion (30m)

4. Level 2 (Data providers)

- Data options, examples & issues (15m)
- Group exercise & Discussion (15m)

5. Closing Discussion (10m)

© wiktor bubniak / Fotolia.com


SEEA-EEA Training Levels 1 and 2

Learning objectives

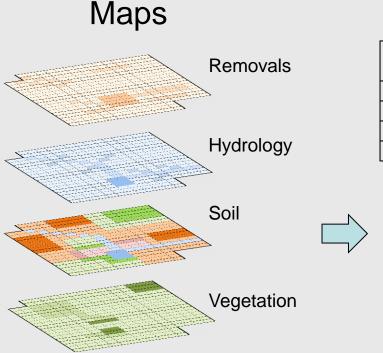
- Level 1: To understand:
 - Why carbon accounts are important
 - The basics of the carbon cycle and the difference between carbon stocks and carbon flows
 - How carbon is treated in the SEEA, including basic concepts and the structure of the accounts that include carbon
 - How to start to build a carbon asset account
- Level 2
 - Understand the data options and sources
 - Be aware of how other countries have approached Carbon Accounting

Account 4: Carbon

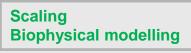
Level 0: Account 4: Carbon

What?

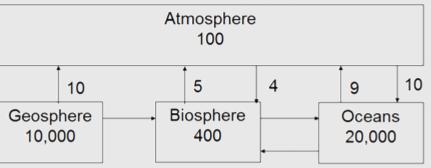
- Accounting for biocarbon as an asset (depletion)
- Carbon-related services (sequestration and storage)
- Carbon as a characteristic of ecosystem condition (productivity)


Why?

- Policies on climate change, low-carbon economy
- Assess changes in land cover, land use on carbon stocks and sequestration
- Links to other SEEA accounts (Condition, materials, Services)
- Links to SEEA-CF (timber and soil)
- Links to international guidelines (<u>IPCC</u> and <u>REDD+</u>)
- Indicators:
 - Natural and human additions to carbon stock → where
 - Natural and human removals from carbon stock → where


Level 0: Account 4: Carbon

What does a Carbon Account look like?



Tables

	Geocarbon	Biocarbon	Oceans	Atmosphere	
	billion tonnes C				
Opening stock	10,000	400	20,000	100	
Additions	-	4	10	24	
Reductions	10	5	9	14	
Closing stock	9,990	399	20,001	110	

Level 0: Account 4: Carbon

- What does a Carbon Account look like?
 - Spatially detailed in terms of:
 - Stock,
 - · Additions, and
 - Reductions of biocarbon
 - Natural & human additions and removals

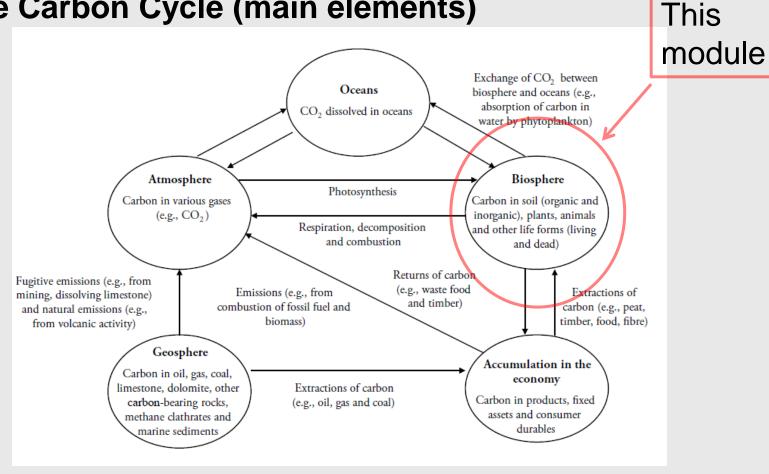
Level 0: Account 4: Carbon

What do you need to compile a Carbon Account?

- Ecosystem Extent Account
- Common spatial infrastructure (spatial units)
- Lookup tables (storage and sequestration by land cover type)
- Data:
 - Biocarbon (above-ground biomass) from satellite data
 - Carbon sequestration and storage from vegetation cover
 - Soil carbon from soil type
 - Removals from agriculture, forestry data, fires

• Expertise:

- Ecologists (biophysical modelling)
- Agriculture, forestry experts
- Geographers (GIS, remote sensing)


Level 1: Account 4: Carbon

- Why carbon accounts?
- Increasing atmospheric carbon is causing climate change:
 - → Increasing temperatures, changes in rainfall, sea level rise
- Information on carbon stocks and flows supports:
 - Assessing the impact of changes in land cover and land use on carbon stocks and carbon sequestration
 - Assessing the impact of different policy options on industries and sectors. For example, a mandated reduction in the level of emissions from fossil fuels on the mining, manufacturing and agricultural industries
 - Information compilers to improve coherence between data sources and systematically address gaps and deficiencies in primary information sources

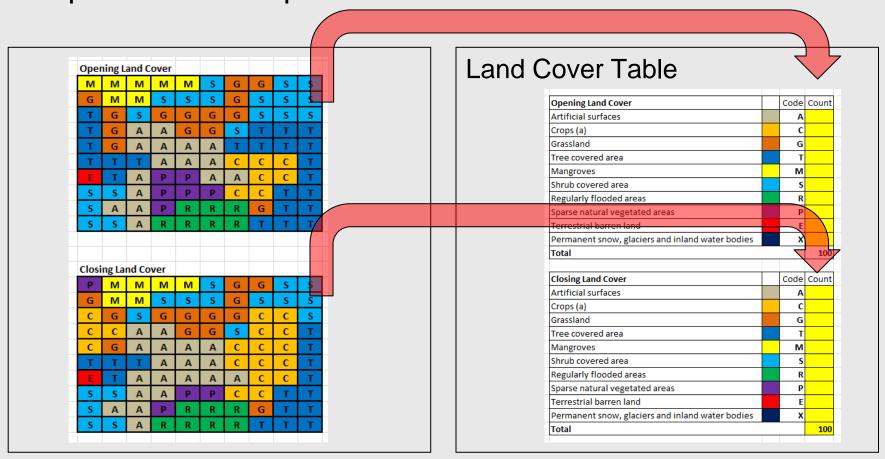
Level 1: Account 4: Carbon

The Carbon Cycle (main elements)

Source: SEEA-EEA, p. 88

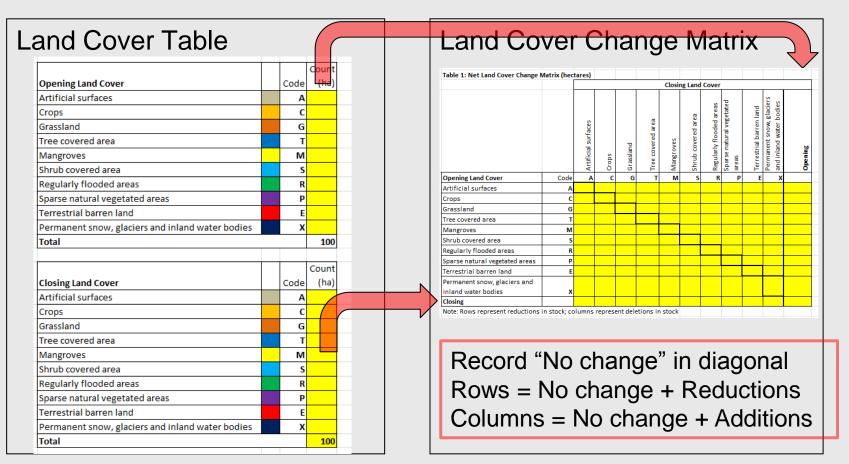
Level 1: Account 4: Carbon

The SEEA-EEA describes:

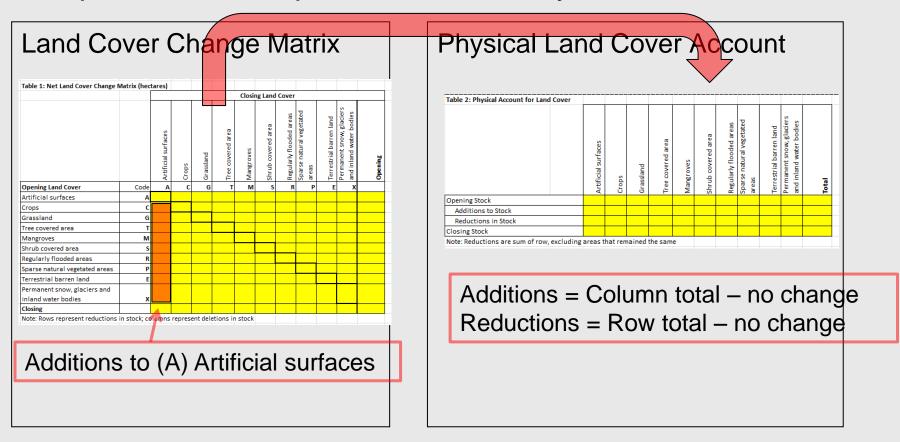

- 1. Carbon as an asset
 - Fossil fuels, soil carbon
- 2. Carbon-related ecosystem services
 - Stock = stored in soil, water and biomass
 - **Sequestration** = removal from the atmosphere
- 3. Carbon as a characteristic of ecosystem asset condition (Condition Account)
 - Biomass accumulation is an indicator of productive ecosystems

Level 1: Account 4: Carbon

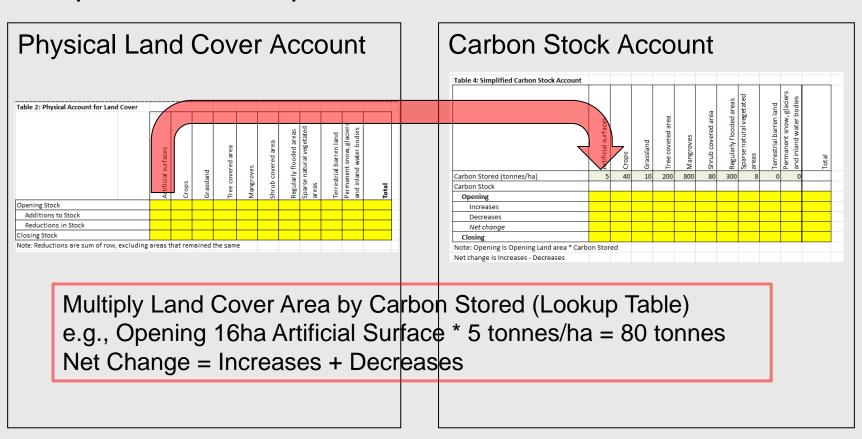
- Compilation Group Exercise (30m)
 - Situation:
 - Land cover units defined for two periods (Opening and Closing)
 - Need to calculate: Land Cover Change, Carbon Stock and Carbon Sequestration
 - Objective (Groups of 3-5):
 - 1. Transfer Land Cover from map to table
 - 2. Calculate Land Cover Change Matrix
 - 3. Calculate Physical Account for Land Cover
 - 4. Calculate Simplified Carbon Stock Account
 - Calculate Account for Ecosystem Services from Carbon Sequestration
 - 6. Report and discuss results


Level 1: Account 4: Carbon

Group Exercise: Step 1 – Calculate Land Cover

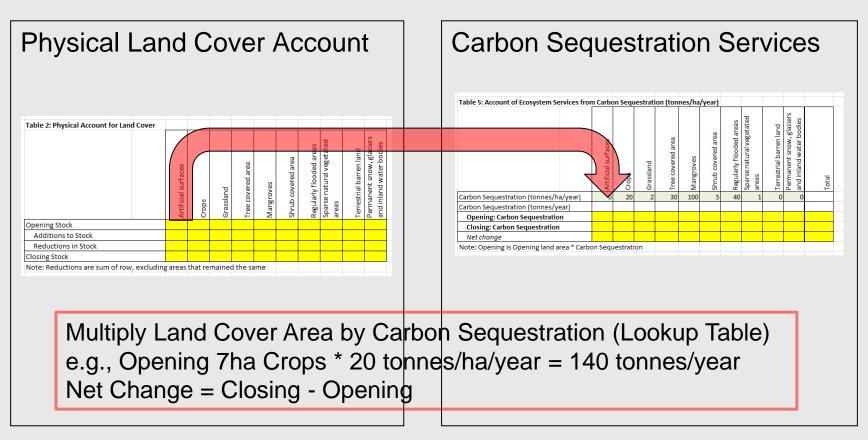

Level 1: Account 4: Carbon

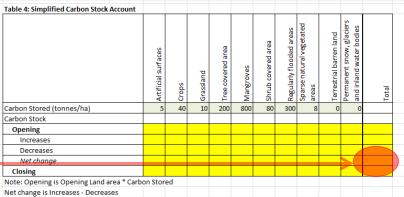
Group Exercise: Step 2 – Calculate Land Cover Change

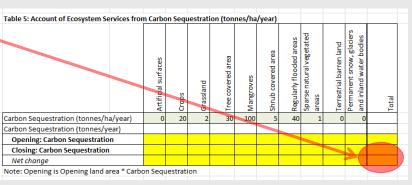

Level 1: Account 4: Carbon

Group Exercise: Step 3 – Calculate Physical Land Cover

Level 1: Account 4: Carbon


Group Exercise: Step 4 – Calculate Carbon Stock Account


Level 1: Account 4: Carbon


Group Exercise: Step 4 – Calculate Carbon Sequestration

Level 1: Account 4: Carbon

- Is everyone clear on the objectives?
- 30 minutes group work
- Please ask questions!
- Results:
 - Each group report:
 - Net change in Storage
 - Net change in Sequestration
 - What was the main source of change?
 - Bonus question:
 Why does deforestation and degradation of forests often result in higher releases to the atmosphere?

Level 2: Account 4: Carbon

- Learning objectives (Level 2)
 - Understand the data options and sources
 - Be aware of how other countries have approached Carbon Accounting

Level 2: Account 4: Carbon

A full Carbon Account is more complex

System of Environmental-Economic Accounting

United Nations Statistics Division

A full Carbon Account, Linking carbon stocks and flows to ecological and economic information

By type of resource (e.g. coal, oil, gas)

Ecosystem /land cover classification

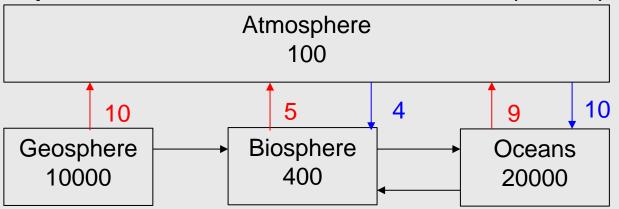
Sector and industry classification

Carbon stock account (billion tonnes C)

	Geocarbon	Biocarbon	Accumulation in economy
Opening stock			
Additions to stock			
Reductions in stock			
Imports & exports			
Closing stock			

Linkage to carbon flows (i.e. national GHG inventory reports under IPCC guidelines)

Concordance tables for products


Linkage to economic information through SNA

Linked through SEEA: consistency in concepts, standards and classifications Linkage to
biodiversity
& other ecosystem
information through
SEEA EEA
(research in progress)

Level 2: Account 4: Carbon

A simplified carbon stock account (Mt C)

Additions to Atmosphere

Reductions from Atmosphere

	Geocarbon	Biocarbon	Oceans	Atmosphere
Opening stock	10000	400	20000	100
Additions	-	4	10	24
Reductions	10	5	9	14
Closing stock	9990	399	20001	110

Level 2: Account 4: Carbon

Additions to Stock:

- Natural expansion (e.g. natural growth of unmanaged ecosystems)
- Managed expansion (e.g. human managed growth of plantations)
- Discoveries (geocarbon)
- Upwards reappraisals (new information resulting in increased estimates of stock)
- Reclassifications (e.g. between seminatural and natural ecosystems)
- Imports (show separately with exports)

Level 2: Account 4: Carbon

Reductions in Stock

- Natural contraction (natural losses from unmanaged ecosystems, e.g. due to fire or floods)
- Managed contraction (e.g. human removal of timber from plantations)
- Downwards reappraisals (new information resulting in decreased estimates of stock)
- Reclassifications (e.g. between semi-natural and natural ecosystems)
- Exports (show separately with imports)

Level 2: Account 4: Carbon

- Building carbon accounts data sources and methods
- Geocarbon is **not** a focus as it is addressed in other places. For example:
 - SEEA Energy http://unstats.un.org/unsd/envaccounting/seeae/
 - International Recommendations for Energy Statistics http://unstats.un.org/unsd/energy/ires/default.htm
 - Energy Statistics Compilers Manual.
 http://unstats.un.org/unsd/energy/ESCM.htm
 - Key Energy Statistics 2014
 http://www.iea.org/publications/freepublications/publication/KeyWorld2014.pdf
 - European Commission (2003). Subsoil asset accounts for oil and gas Guidelines for the set of standard tables.
 http://unstats.un.org/unsd/envaccounting/ceea/archive/Energy/Eurostat_Guidelin

es Jan2003.PDF

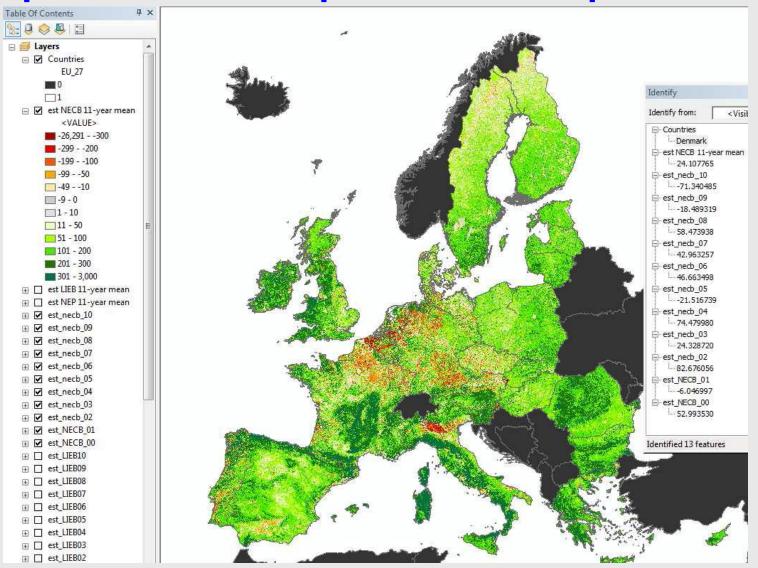
Level 2: Account 4: Carbon

- Building carbon accounts data sources and methods
 - Biocarbon is the focus:
 - Land cover or vegetation maps are the starting point for estimates of stocks and flows
 - Global land cover or vegetation maps are available
 - Standard "look-up" tables convert land cover information into stocks of carbon

Level 2: Account 4: Carbon

International data sources for carbon stocks

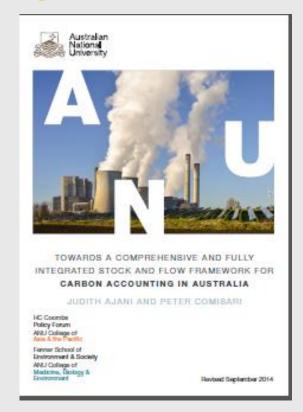
Carbon stocks		
Terrestrial Carbon	Carbon Dioxide	http://cdiac.ornl.gov/carb
Management Data	Information Analysis	onmanagement/
Sets and Analyses	Centre (CDIAC)	
Land use and	Carbon Dioxide	http://cdiac.ornl.gov/land
ecosystems	Information Analysis	<u>use.html</u>
	Centre (CDIAC)	
Global carbon	Carbon Dioxide	http://cdiac.ornl.gov/epub
biomass look-up	Information Analysis	s/ndp/global_carbon/car
table	Centre (CDIAC)	bon_tables.pdf
National Biomass	Woods Hole	http://www.whrc.org/map
and Carbon Dataset	Research Centre	ping/nbcd/
Project Carbon	Forestry	http://www.forestry.gov.u
Sequestration	Commission (UK)	k/forestry/INFD-8JUE9T


Level 2: Account 4: Carbon

International data sources for carbon sequestration and storage

Carbon sequestration and storage				
Carbon and biodiversity calculator	CBD Secretariate, LifeWeb and UNEP-WCMC	http://carbonbiodiversitycalculator.une p-wcmc.org/		
UNEP-WCMC Ecosystem Services Toolkit	Climate regulation	UNEP-WCMC, 2011		
Envision	Oregon State University	http://envision.bioe.orst.edu/Default.as		
InFOREST	Virginia Department of Forestry	http://inforest.frec.vt.edu/		
REDD+ (Reduce Emissions from Deforestation and forest Degradation).		https://www.forestcarbonpartnership.o rg/		
Guidelines for National Greenhouse Gas Inventories Vol. 4. Agriculture, Forestry and other Land Use (AFOLU)	IPCC (Intergovernmental Panel on Climate Change). 2006.	http://www.ipcc- nggip.iges.or.jp/public/2006gl/vol4.htm l		
Greenhouse gas emissions from Agriculture, Forestry and other Land Use	FAO	http://faostat3.fao.org/faostat- gateway/go/to/download/G2/*/E		

European Union – Map of carbon sequestration


Carbon Accounting in Australia

Towards a Comprehensive and Fully Integrated Stock and Flow Framework

Dr Judith Ajani, Fenner School of Environment and Society, Australian National University (judith.ajani@anu.edu.au)

Mr Peter Comisari Centre of Environment Statistics, Australian Bureau of Statistics (<u>peter.comisari@abs.gov.au</u>)

https://coombsforum.crawford.anu.edu.au/publication/hc-coombspolicy-forum/4708/carbon-accounting-australia

Background

- November 2012, the Australian Bureau of Statistics, Department of Environment and Australian National University began a project to:
 - Identify the need for carbon stock information and potential data
 - Populate the SEEA carbon stock account for Australia.
 - Assess what is needed for regularly producing a carbon stock account for Australia.

Results for Australia

Biocarbon 31,081 Mt C

Geocarbon 239,581 Mt C (fossil fuel only)

Total 270,662 Mt C

Geocarbon (fossil fuel only) is overwhelming majority of carbon

(Biocarbon 11.5% and geocarbon 88.5% of total estimate)

Australian Biocarbon by type of ecosystem

Primary reservoir	Geocarbon (Mt C)	Hectares (million)	Biomass carbon (Mt C)	Soil organic carbon (Mt C)	Total biocarbon (Mt C)
Biocarbon					
Natural ecosystems					
Rangelands		596.3	6,374	6,603	12,977
Non rangelands:			·		
Eucalypt native forests		16.7	4,671	3,753	8,424
Shrub lands & woodlands		14.7	500	636	1,137
Grass, shrub & heath lands		1.6	37	51	87
Rainforests		2.3	1,225	252	1,477
Other		0.7	15	16	32
Marine ecosystems		1.8	114	1,084	1,198
Fresh water ecosystems		9.9	4	7	11
Total Natural ecosystems		644.0	12,941	12,402	25,343
Semi-natural ecosystems					
Highly modified rangelands		50.0	750	1,500	2,250
Grazing in modified pastures outside rangelands		32.9	132	1,315	1,447
Total Semi-natural ecosystems		82.9	882	2,815	3,697
Agricultural ecosystems					
Cropping		25.5	102	1,022	1,124
Irrigated agriculture		2.6	12	105	117
Plantation wood		2.4	177	120	296
Reservoir/dam		0.6	1	6	7
Other		6.3	120	244	363
Total Agriculture ecosystems		37.4	412	1,497	1,907
Settlements		2.6	30	79	108
Other		0.5	7	19	26
Total Settlements and Other		3.1	37	98	134
Total biocarbon ^d		767.4	14,270	16,811	31,081

Key points from Australian carbon accounts

- It is possible to construct carbon stock accounts for Australia with current information.
- 2. Having comparable information on carbon stocks in fossil fuels and ecosystems (terrestrial and marine) linked to economic information enables **past policies** and future policy options to be assessed (including scenario analysis).
- Different parts of government and academia can successfully work together to assess the usefulness and feasibility of producing environmental or ecosystem accounts

Level 2: Account 4: Carbon

- Concepts group exercise (15m) (Groups of 3-5)
- In your country, what are some important land cover types for carbon sequestration?
- What are some main sources of change in their capacity to sequester carbon? (positive and negative)
- 3. Are **national** data available in your country on the extent and change in these ecosystem types?
- 4. Report your results

Level 2: Account 4: Carbon

- Concepts Group exercise (15m)
- Group reports
 - The land cover types you selected
 - Main sources of change (positive and negative)
 - Are national data available in your country on the extent and change in these ecosystem types?
- Discussion
 - What other land cover types would be important to measure?
 - What other data sources could you suggest?

Level 2: Account 2: Carbon

- Discussion and questions
- Take home points
 - Data on biocarbon may be limited, but much can still be used in ecosystem accounting
 - There are some simple methods to calculate carbon storage and sequestration from land cover data
 - Testing will provide a better understanding of data opportunities and constraints
 - Focus on available data and priority services

Level 2: Account 4: Carbon

- Further Information
 - SEEA Experimental Ecosystem Accounting (2012)
 - SEEA-EEA Technical Guidance (forthcoming)
 - Detailed supporting document on "Carbon Accounts" by Michael Vardon

System of Environmental-Economic Accounting

United Nations Statistics Division

References

- Ajani J., Keith H., Blakers M., Mackey B.G., King H.P. 2013, Comprehensive carbon stock and flow accounting: A national framework to support climate change mitigation policy, *Ecological Economics* 89, 61–72
 http://www.sciencedirect.com/science/article/pii/S092180091300030X
- Archer D., Eby M., Brovkin V. et al. 2009, Atmospheric lifetime of fossil fuel carbon dioxide, Annu. Rev. Earth Planet Sci. 37:117-134.
- Comisari P., Ajani J. and Vardon M. 2013. Carbon stock accounting: A report on progress in Australia and estimates of geocarbon. Report to the 19th London Group Meeting.
 http://unstats.un.org/unsd/envaccounting/londongroup/meeting19/LG19 16 3.pdf
- European Commission, Food and Agricultural Organization, International Monetary Fund, Organisation for Economic Cooperation and Development, United Nations and World Bank 2012, System of Environmental-Economic Accounting Central
 Framework http://unstats.un.org/unsd/envaccounting/White_cover.pdf
- European Commission, Organisation for Economic Co-operation and Development, United Nations and World Bank 2013,
 SEEA Experimental Ecosystem Accounting, http://unstats.un.org/unsd/envaccounting/eea_white_cover.pdf
- European Communities, International Monetary Fund, Organisation for Economic Co-operation and Development, United Nations and World Bank 2009, System of National Accounts 2008, http://unstats.un.org/unsd/nationalaccount/docs/SNA2008.pdf
- Feely R.A., Sabine C.L., Lee K., Berelson W., Kleypas J., Fabry V.J., Millero F.J., 2004, Impact of anthropogenic CO₂ in the CaCO₃ system in the oceans, Science 305, 362-366.
- Global Carbon Project, Global Carbon Budget 2012 http://www.globalcarbonproject.org/carbonbudget/13/hl-full.htm
- Holmém, K. 2000, The global carbon cycle, Chapter 11 in: Jacobson M.C., Charlson R.J., Rodhe H., Orians G.H., (Eds), Earth System Science: From Biogeochemical Cycles to Global Change, Academic Press, London.
- Lal R., 2004. Soil carbon sequestration impact on global climate change and food security, *Science* 304, 1623-1627.
- Steffen W. and Hughes H. 2013, The Critical Decade 2013, Climate Change Science, Risks and Responses, Climate Commission Australia http://www.aaee.org.au/wp-content/uploads2/2013/06/The-Critical-Decade-2013_lowres.pdf
- Sterman J.D. 2000, Business Dynamics: Systems Thinking and Modeling for a Complex World, Irwin McGraw-Hill.

Evaluation of the training module

- Please complete the evaluation form for this module
- For this module
 - What did you learn that you could apply in your work?
 - Was the presentation clear and informative?
 - Was it too simple? Too complex?
 - Was there anything you did not understand?
 - What additions or deletions would you suggest (recognizing that the unit is intended for a general audience)?
 - Do you have any suggestions as to how the SEEA-EEA may be improved (concepts, principles) in this area?

Acknowledgements

This project is a collaboration of The United Nations Statistics Division, United Nations Environment Programme and the Secretariat of the Convention on Biological Diversity and is supported by the Government of Norway.

