A BRIEF OVERVIEW OF THE ARIES MODELLING PLATFORM

Brian Voigt, PhD Gund Institute for Ecological Economics University of Vermont brian.voigt@uvm.edu

ARIES: A BRIEF OVERVIEW

- ***** ARtificial Intelligence for Ecosystem Services
- × A modelling platform, not a model
- An assessment toolkit for quantifying ecosystem services and their values
- An intelligent system that customizes models to user goals.
- * Demonstrate a mapping process for ecosystem service provision, use, and flow.
- "Honest" probabilistic models inform decisionmakers of likelihood of all possible outcomes; users can explore effects of policy changes and external events.
- **×** Open-source software

ARIES DOCUMENTATION: 1

- Documentation for existing models
 - + Water supply: mm³/yr
 - + Subsistence fisheries: kg fish
 - + Carbon sequestration: Tonnes C / ha / year
 - + Flood regulation, Sediment regulation
 - + Aesthetic viewsheds:
 abstract units (1 100)
 - + Recreation: abstract units (1 100)

ARIES DOCUMENTATION: 2

- × Data inputs
- **×** Beneficiaries considered
- Bayesian networks developed
 - + Justification / literature resources
- Forthcoming PLOS One paper:
 - + Villa, F. et al: A methodology for adaptable and robust ecosystem services assessment

CASE STUDY SITES

ARIES AND ECONOMIC VALUATION

* ARIES is agnostic about valuation and tries to counteract inaccuracies by incorporating: + explicit uncertainty + flexible definition of value + flexibility and innovation in methods **×** VALUE can be based on ACTUAL or POTENTIAL physical flows or source values **×** Economic valuation + Bayesian and Econometric modeling can be easily integrated + Intelligent benefit transfer methods are in development

FUNDAMENTAL QUESTIONS

- * Where are the ecosystems providing benefits?
- **×** Where are the service users?
- **×** How do benefits move from ecosystems to users?
- **×** What is the quantity and value of the realized services?

ARIES MODELING ELEMENTS

1. Provision-shed

1. Areas of ES provision

3. Flow paths linking areas of provision and areas of use

2. Areas of ES use

2. Benefit-shed

ECOSYSTEM SERVICE FLOWS

THE INTEGRATED MODELING PLATFORM

ARIES SESSION WORKFLOW: 1

ARIES SESSION WORKFLOW: 2

- 1. Collect spatial data
- 2. Identify beneficiaries
- 3. Develop models for source, sink, and use
- 4. Develop / apply model to "flow" services between ecosystems and people

RUAHA RIVER WATERSHED, TANZANIA

- Modeling freshwater provision + economic livelihood + spread of infectious disease
- Collaborators: Sokoine University of Agriculture, Iringa Water District, Friends of Ruaha Society
- Mediated modeling workshop (April 2013)
 - + Data development & sharing
- Refining the model & communicating results (January 2014)

RUAHA CONCEPTUAL FRAMEWORK

IRRIGATION PRESSURES

Source: WWF, 2010 [IWMI Research Report]

Dry Season Flow at Msembe stream gauge plotted against ha of irrigated area in the Usangu Plains

1. COLLECTING SPATIAL DATA

- GIS data for as many components as possible
 - + Map provision (source), sink, and use
- Local data where possible for case studies, otherwise use global data
- Where no data exists / data quality is poor, use Bayesian belief networks
 - + Prior probabilities determined in consultation with local experts
 - + Benefit from similar contextual settings where complete data exists

2. IDENTIFYING BENEFICIARIES

Beneficiary	Water Demand
Agricultural producers: Slopes, rangeland & rain-fed maize	Transpiration for vegetative growth
Domestic users in villages	In-stream needs for cooking, drinking, etc.
Agricultural producers: Irrigated agriculture, rice	Transpiration, seepage for vegetative growth and open water evaporation
Livestock producers: Permanent & seasonal wetland	Evapotranspiration & in-stream consumption (for livestock, fisheries, wildlife, wetland ecology; domestic needs for inhabitants)
Tourism: Ruaha National Park	In-stream needs for wildlife and drinking needs
Power producers: Mtera/Kidatu HEP Stations	Release for hydro-electricity power
Urban power users	Light, power, heating, cooling
	Modified from Lankford et al 2004

3. SURFACE WATER SOURCE MODEL

Annual Precipitation
+ Global: WorldClim
+ Local: ?
Springs: ?

3. SURFACE WATER SINK MODEL

Soil Infiltration
 + Hydrologic Soils Group: ORNL
 + Slope: Derived from SRTM (90-m)
 + % Impervious:
 × NOAA-NGDC: Global Land Cover
 × FAO: Africover

3. SURFACE WATER SINK MODEL

Evapotranspiration

 Percent Canopy Cover & Vegetation Type
 NOAA-NGDC: Global Land Cover
 Food and Agriculture Organization Africover
 European Space Agency GlobCover

+ Land Cover × FAO: Africover

3. SURFACE WATER USE MODEL: 1

× Residential Use

+ Based on population counts

- Data disaggregation leads to erroneous assumptions about residential locations
- Currently developing water demand profile for residential users based on location, access to piped water, proximity to other water sources

+ Open questions

- Water rights: Converting paper files to digital format for inclusion in the modelling framework
- Water supply wells: Survey of village water resources
- Surface diversions: Mapping land cover change

3. SURFACE WATER USE MODEL: 2

× Agriculture

+ Open questions: Surface diversions, Water supply wells, Water rights

MODEL OUTPUTS: WATER DEMAND

Villa, Voigt & Erickson,

4. FLOW MODELS

Hydrologic services

Carbon sequestration, some cultural values

> Recreation, aesthetic proximity, some cultural services

Aesthetic viewsheds

Recreation, flood regulation, many ecosystem goods

MODEL OUTPUTS: FLOW MODEL

Villa, Voigt & Erickson, forthcoming

INDI<u>CATORS</u>

Using information about actual flows, indicators can be computed (with associated uncertainties) for:

<u>EFFICIENCY</u> of provision (actual vs. potential)
 <u>EFFICIENCY</u> of use (need met or unmet vs. total)
 <u>EQUITY</u> of distribution (winners and losers)
 <u>TOTALS</u>: actual use, actual production, unused potential, unmet need

Such indicators can be used as good objective functions in scenario analysis.

WATER SUPPLY SINK & DEMAND PROFILES

Villa, Voigt & Erickson, forthcoming

SCENARIO ANALYSIS: INFRASTRUCTURE

Scenario 1: Baseline

Routing that minimizes impact ES flows in *business as usual* scenario. Long feature required to avoid impacting water provision.

Scenario 2: Reforestation

Routing that minimizes impact on flows of ES with reforested corridors. Shorter feature offsets reforestation costs.

SCENARIO ANALYSIS: STAKEHOLDER IMPACTS

Alternative options (different buffer zones) evaluated for ecosystem service impact(s) ...

...against the needs of different stakeholder groups.

SCENARIO ANALYSIS: TRADEOFFS

Multiple Criteria analysis allows customizing the ES profiles to preexisting priorities or legal constraints. ARIES can produce a full ES profile for a set of areas under consideration for offsetting, under baseline or exante intervention scenarios.

Such profiles help selection of areas and documentation of ES offsets.

ALGONQUIN PROVINCIAL PARK: ONTARIO, CA

- Modeling Carbon sequestration and recreation
- Project collaborator: Ontario Ministry of Natural Resources
- Beneficiaries: recreational users – camping, hiking, canoeing
- Management considerations: Forest thinning, timber extraction, trail development, park leases
- Economic valuation
 - + Carbon: based on social cost of Carbon (Tol, 2008)

RECREATIONAL SERVICES: MOAB, UT

- Modeling the effects of minerals development on recreation and ground water resources
- Project collaborators: BLM, USGS, UVM & NPS
- 950,000 acres in eastcentral Utah
- **×** Expressions of interest
 - + Oil & gas: 120,000 acres of new development
 - + Potash: 350,000 acres of new development

RESOURCE MANAGEMENT ISSUES

- BLM has identified lands with outstanding visual resources, high value recreation and wilderness areas, & high quality air resources.
- Addendum to the existing Resource Management Plan (MLP)
- × Analysis of alternatives
 - + Beneficiary groups: hiking, mountain biking, jeep safari, rafting
 - + Support designation of Areas of Critical Environmental Concern
 - + Identify potential conflict areas due to mineral development

ADDITIONAL ONGOING PROJECT WORK

* ESPA: Agricultural production

 + Columbia, Peru & Malawi

 * Vermont, USA: Flood and nutrient regulation, aesthetic views, recreation
 * Molise, IT: Sediment regulation, agricultural tourism

MODEL CRITERIA & QUESTIONS: 1

× Quantitative output

+ Output units depend on service(s) being analyzed (tonnes/ha/year, mm³/year, etc.)

× Model rigor

- + Existing biophysical models can be incorporated
- + Bayesian models developed with input from local experts and review of literature

× Adaptability

- + Flexibility of Bayesian model structure
- + User-designed models to capture local context / setting

× Scalability

+ Dependent on model resolution (including # of source, sink, use locations)

MODEL CRITERIA & QUESTIONS: 2

× Classification

+ Semantic modeling system allows for existing / customized LULC schemes

× Labor & Infrastructure

- + Steep learning curve requiring technical abilities (programming, spatial analysis)
- + 2-week training Spring 2014, Basque Centre for Climate Change

Data requirements

- + Intentionally flexible, based on local context
- + Bayesian approach can accommodate / overcome data deficiencies

MODEL CRITERIA & QUESTIONS: 3

× Uncertainty

+ Standard with Bayesian models x Scenarios & Policy Alignment + Alter inputs to evaluate trade-offs **×** Economic Valuation **×** Beneficiaries + Strong focus on connecting ecosystem service provision to beneficiaries + Distinguish beneficiary types and identify their location(s)

