

A future task in good hands

The realisation of economic valuation: Practical examples of valuation exercises

Dr. Burkhard Schweppe-Kraft

German Federal Agency for Nature Conservation Unit I 2.1: Legal Affairs, Economics and Ecologically Sound Regional Development Email: Burkhard.Schweppe-Kraft@BfN.de

What's the problem? A "conservationist's" view on economic valuation

"Sustainability indicator for species diversity" of the German Sustainability Strategy

State of biodiversity:

near stability but on a rather low level

Political targets regarding biodiversity

European Göteborg Strategy:

Halt the loss of biodiversity until 2010

Workshop "Evaluating the Economic Valuation of Biodiversity and Ecosystem Services", Frankfurt 17 February 2011

What does this all have to do with money?

Natural vegetation of Germany is predominantly woodlands; Agricultural use has fundamentally changed wild species composition

Today nearly 50% of the biodiversity of Germany depends on traditionally or less intensively used farmland, which is not economically competitive on the world market

Nearly 30% of the overall expenditure for nature conservation in Germany (overall expenditure is about 1 Bio. € per year) is dedicated to farmers to apply farming practices that help to conserve species rich farming areas

Importance of traditional and nonintensive agriculture for biodiversity

Importance of extensive land use for biodiversity in Germany Source: Korneck et al. 1998					
	% - share of endangered and extinct species				
Biotope / land use	… regarding species richness of	regarding the overall number of endangered and	Ranking		
= traditional and extensive forms of land use	biotope (p1)	extinct species in Germany (p2)	p1 + p2 2		
Vegetation of oligotrophic running and stagnant waters	83,0	4,6	43,8		
Oligotrophic peatlands incl. woods on peatland	62,1	12,3	37,2		
Natural and semi-natural dry grasslands	43,5	24,8	34,1		
Schlammbodenvegetation	64,1	2,9	33,5		
Halophyte Vegetation	45,5	4,7	25,1		
Meadows and pastures on moist to wet sites	38,7	9,3	24,0		
Dwarf shrub heathlands	37,8	8,3	23,1		
Arable land with threatened herbaceaus vegetation communities and pioneer vegetation	31,6	9,9	20,7		
Vegetation of eutrophic waters	34,1	6,8	20,5		
•••• Workshop "Evaluating the	Economic Valuation of Biod	liversity and Ecosystem Services", Fran	kfurt 17 February 2011		

Financial needs and real expenditures for nature conservation

Costs / need for ressources to stop the loss of biodiversity in Germany

Nature Conservation expenditures ³⁾ (fed. state, countries, communities = 0,07% of overall public spending)

Bil. € in 2000	Per household and year ⁴⁾	% of GDP
1.7 – 2.3	43 - 59 €	0,1
0.67	17 €	0,03

Saving biodiversity needs economic ressources!!!

Are we willing to pay or are we willing to forego for additional income resp. market goods in favour of more nature conservation???

= Is nature conservation beneficial from the point of view of welfare economics?

The answer could be so easy: Willingness to pay for nature conservation in Germany

Special aims / programmes covering smaller areas Workshop "Evaluating the Economic Valuation of Biodiversity and Ecosystem Services", Frankfurt 17 February 2011

Willingness to pay, a politically adequate argument for nature conservation?

	Bil. € in 2000	Per household and year ⁴⁾	% of GNP
Willingness to pay to stop the loss of biodiversity in Germany (1990)	3.9 – 4.8	99 - 123 €	0,21
Costs / need for ressources to stop the loss of biodiversity in Germany	1.7 – 2.3	43 - 59 €	0,1
Nature Conservation expenditures ³⁾ (fed. state, countries, communities = 0,07% of overall public spending)	0.67	17 €	0,03

Pro

Stated willingness to pay to prevent the loss of biodiversity substantially exceeds current expenditures as well as estimated costs to conserve biodiversity in Germany

Contra

Politicians distrust of the liability of figures derived from stated preference techniques

Political steps towards (other) economic arguments for nature conservation

European Commission

Worrying that the EU-member states are going to miss the Göteborg objective to halt the loss of biodiversity until 2010 the European Commission set off a study with the aim of giving additional economic arguments to conserve biodiversity

Institute for European Environmental Policy

VALUE OF BIODIVERSITY

Documenting EU examples where biodiversity loss has led to the loss of ecosystem services

ENV.G.1/FRA/2004/0081

G8 Environment Ministers Meeting Potsdam, 15-17 March 2007 "Potsdam Initiative – Biological Diversity 2010" (Initiated by Germany an the EU)

"In a global study we will initiate the process of analysing the global economic benefit of biological diversity, the costs of the loss of biodiversity and the failure to take protective measures versus the costs of effective conservation."

The idea of "Naturkapital Deutschland"

Encouraged by the TEEB-Study (The Economics of Ecosystems and Biodiversity)

the aim is to

- ⇒ show the benefits (ecosystem services) of nature and nature conservation
- ⇒ not only in qualitative and physical terms
- but also where possible and meaningful in <u>monetary</u> terms
- also for the specific situation of Germany

Ecosystem Services following the Millenium Ecosystem Assessment (MA) as a new argument for biodiversity

Why do conservationists deal with ecosystem services

Regulating and cultural services are very often correlated with high biodiversity

- (e.g. C-sequestration by peatlands,
 - mitigation of CO₂ emissions by peatland restoration,
 - flood-protection and water purification by natural flood plains)
- Furthermore there is often a conflict or trade-off between

(the intensive use of) provisioning services on the one hand (e.g. food production, biomass production for use in energy-production) and cultural or regulating services as well as biodiversity on the other hand

Monetary value of certain ecosystem services can often serve as an additional (economic) argument for the conservation and restoration of high-nature-value ecosystems

The role of cost benefit analysis (CBA)

Cost-benefit-analysis is an instrument of welfare economics

(All) Costs and benefits are made comparable and valued in monetary terms:

A ratio "benefit / costs" that exceeds "1/1" means: this project has positive effects on welfare.

applying cost-benefit-analysis helps to value gains in provisioning services (by intensification of land use) against losses in regulating or cultural services (or the other way round)

"Total Economic Value" and "Ecosystem Services" as a basis for CBA

	Categories	Examples, explanations	Valuation methods (examples)
	direct use values	agricultural and forest products, recreation, hunting, fishing	Market gains, production costs, travel cost method, hedonic pricing
s of TEV	indirect use values	improvement of water quality, carbon sequestration, flood prevention, pollination	reduced damage costs, reduced avoidance costs, reduced (alternative) water purification costs
onent	option value	benefit from ensuring the option for a future use	Different stated
Comp	existence value	benefit without direct or indirect use, ethical obligation to preserve	preference methods (contingent valuation,
	bequest value	benefit from preserving for future generations	choice analysis,)

vgl.: Jürgen Meyerhoff Mitteilung 5 Ökonomische Bewertung ökologischer Leistungen (Elbe Ökologie) (Mitteilungen der BfG/Projektgruppe Elbe-Ökologie), nach Barbier 1994 fußend auf Pearce 1993, http://elise.bafg.de/?2103

economic relevance versus reliability and political acceptance of value categories and valuations methods

	Categories		Examples, explanations		Valuation methods (examples)
	direct use values	en	agricultural and forest products, recreation, hunting, fishing	decrea	Market gains, production costs, travel cost method, hedonic pricing
s of TEV	indirect use values	creasing	improvement of water quality, carbon sequestration, flood prevention, pollination	sing relia	reduced damage costs, reduced avoidance costs, reduced (alternative) water purification costs
ponent	option value	econon	benefit from ensuring the option for a future use	bility / a	Different stated
Com	existence value	nic rele	benefit without direct or indirect use, ethical obligation to preserve	accepta	preference methods (contingent valuation,
	bequest value	vance	benefit from preserving for future generations	ance	choice analysis,)

vgl.: Jürgen Meyerhoff Mitteilung 5 Ökonomische Bewertung ökologischer Leistungen (Elbe Ökologie) (Mitteilungen der BfG/Projektgruppe Elbe-Ökologie), nach Barbier 1994 fußend auf Pearce 1993, http://elise.bafg.de/?2103

Ecosystem Services and non-use values

Ecosystem Services in the narrow and in the broader sense

	Categories	Examples, explanations	Valuation methods (examples)
ecosystem services in the narrow sense	direct use values	agricultural and forest products, recreation, hunting, fishing	Market gains, production costs, travel cost method, hedonic pricing
	indirect use values	improvement of water quality, carbon sequestration, flood prevention, pollination	reduced damage costs, reduced avoidance costs, reduced (alternative) water purification costs
ecosystem services in the broader sense	option value	benefit from ensuring the option for a future use	Different stated
	existence value	benefit without direct or indirect use, ethical obligation to preserve	preference methods (contingent valuation, choice analysis
	bequest value	benefit from preserving for future generations	

vgl.: Jürgen Meyerhoff Mitteilung 5 Ökonomische Bewertung ökologischer Leistungen (Elbe Ökologie) (Mitteilungen der BfG/Projektgruppe Elbe-Ökologie), nach Barbier 1994 fußend auf Pearce 1993, http://elise.bafg.de/?2103

"Total Economic Value" or/and Ecosystem Services as a basis for CBA

	Categorie	S	Examples, explanations		Valuation methods (examples)
economic arguments	direct use values	en	agricultural and forest products, recreation, hunting, fishing	decrea	Market gains, production costs, travel cost method, hedonic pricing
additional to ethical arguments	indirect use values	creasing	improvement of water quality, carbon sequestration, flood prevention, pollination	sing relia	reduced damage costs, reduced avoidance costs, reduced (alternative) water purification costs
full range of welfare effects including	option value	econor	benefit from ensuring the option for a future use	bility /	Different stated
willingness to pay for conservation	existence value	nic rele	benefit without direct or indirect use, ethical obligation to preserve	accepta	preference methods (contingent valuation, choice analysis
without direct or indirect use	bequest value	vance	benefit from preserving for future generations	ance	

vgl.: Jürgen Meyerhoff Mitteilung 5 Ökonomische Bewertung ökologischer Leistungen (Elbe Ökologie) (Mitteilungen der BfG/Projektgruppe Elbe-Ökologie), nach Barbier 1994 fußend auf Pearce 1993, http://elise.bafg.de/?2103

Non market direct and indirect use values of (natural and semi-natural) ecosystems

- contribution of urban green to a sound urban climate and air quality
- importance of urban green for other aspects of urban life quality
- importance of (semi-) natural ecosystems and less intensive land uses for recreation
- contribution of less intensive farming to the protection of fresh-water
- organic farming as a sink for greenhouse gas due to humus accumulation
- natural or semi-natural forests as a carbon sink
- carbon dioxide fixation in bogs and swamps
- effect of natural floodplains on running water purification
- contribution of natural floodplains to mitigate flood damages
- effects of hedgerows, wood patches and similar biotopes on crops
- importance of (semi-) natural biotopes for hunting
- importance of (semi-) natural waterbodies for fishing
- use of waterbodies with high water quality for bathing and swimming
- retention of avalanches and land slides by forests
- gathering fruits growing especially in (semi-) natural biotopes

Non market use values – a sufficient basis to argue for biodiversity on economic grounds?

Pro

Non market use values incl. non marketed contributions to goods and services (and their production) are far more accepted as political arguments to conserve biodiversity particularly if they are elicited by revealed preferences or production cost methods.

Contra In industrialized countries like Germany non market use values might be too small to act as the only economic argument for biodiversity

In developing countries the case should be different due to the important role of natural and semi-natural ecosystems to meet basic needs

Differences between developing and industrialized countries

importance of natural and semi-natural ecosystems (gradings do not fit to all countries / exceptions exist)

	developing countries	industrialized countries
spread	larger share of surface	small share of surface
importance for water supply	high	low / moderate
contribution to food supply	moderate / high	no / low
importance for recreation and leisure	low/ moderate ?	high
existence values	low/ moderate ??	high

Case-Study: Regaining 35.000 ha natural flood plains by dike shifting along the river Elbe

Project alternative with the <u>maximum number</u> of redevelopments by dyke shifting

- 60 dyke "shiftings" (= usually opening the first dyke and raising the second one)
- Redevelopment of 35.000 ha active flood plains
- De-intensification of agricultural use on new flood plains

Value of ecosystem services, recreation and existence values

Cost-benefit-analysis of dykeshifting and regaining natural flood plains at the river Elbe

Source: Grossmann et al. 2010

Results of the cost benefit analysis

Annual costs and benefits in Mio. €

Investments for dike shifting, loss of agr. production
 avoided flood damage cost
 reduced cost for dike maintenance
 nitrate reduction (alternative cost appr.)
 willingness to pay for habitats and recreation value

Cost-benefit-analysis of dykeshifting and regaining natural flood plains at the river Elbe Source: Grossmann et al. 2010

Cost benefit ratio: 1:3

incl.

- regained ecosystem services,
- willingness to pay for biodiversity,
- lost provisioning services and
- project costs

Example: Mitigation of climate gas emissions and carbon sequestration by peatland restoration

Source: Schäfer 2007, 2009

intensively used meadows and pastures on peat soil

rewetted grassland with elder afforestation

Results of cost benefit analysis

intensively used meadows and pastures on peat soil

rewetted grassland with elder afforestation

net value of lost agricultural production

- net value of forest production
- conversion cost
- = 0 100 € /ha

A very cheap opportunity for climate gas mitigation

Source: Schäfer 2007, 2009

Mitigation costs per t CO₂: = 0 - 4 €

alternative costs per t CO₂ by
wind power:
= 40 €

Climate-gas-mitigation value of peatland restoration in Mecklenburg-Vorpommern

In the years after reunification Mecklenburg-Vorpommern rewetted and renaturalized peatlands of an area of 30.000 ha.

Reduced CO₂ emissions and additional carbon sequestration monetized with damage costs of 70 € per t CO₂ (which is +- the value used in the Stern-Report) have a value of about 30 Mio. € per year

Source: Schäfer 2009

Example: Ecosystem services of high-nature-value grassland (meadows and pastures)

Data Representative sample of high-nature-value basis: (HNV) grassland; estimated area of HNV-grassland in Germany: 1.062.322 ha = 2,8% of total land cover

Value of ecosystem services of HNV-grassland compared with conversion to cropland

- Production: reduced market returns minus production costs:
- Carbon sequestration, climate-gas-mitigation damage cost approach (70 € / t C0₂, +- Stern-Report)
- Groundwater purification compensation payments for reduced fertilizer input on cropland
- Nature conservation downscaling of germanwide willingness to pay for nature-conservation measures on a simple ha basis

0 – - 435 €/ha/a

+ 285 to + 1.541 €/ha/a

+ 40 to + 120 €/ha/a (only in groundwater catchment areas relevant for fresh water supply)

1.000 €/ha/a

Example: Welfare effects of urban green

Additional value through parks is very significant but slightly smaller than < 172 \in / m² due to intercorrelations with other factors that have positive effects on land value.

All urban green factors contribute to 36,7 % of land value in densely populated urban areas

Example: Assessing recreation values for germany with an extended travel cost approach (still in work)

Monetary calculation - limits -

- Only a few ESS can be estimated for different ecosystems relative easily (e.g.: carbon sequestration, existence values for species habitats)
- Other ESS are extremely hard to quantify because they depend heavily on local physical and social conditions (e.g.: flood mitigation)

Model for assessing greenhose gas emissions / carbon sequestration of different types of peatlands

Relationship between greenhouse gas emissions, average groundwater level and land use

Models applied for the estimation of flood damage reduction, I

Source: Hartje, Grossmann, 2010

Models applied for the estimation of flood damage reduction, II

Source: Hartje, Grossmann, 2010

Monetary calculation - more limits -

- Some monetary values of ESS can be heavily dependent on assumptions on discount rates (e.g. flood mitigation, climate gas mitigation)
- Important components of total economic value can only revealed with stated preference methods, which are in the public not regarded as beeing reliable enough

Monetary calculation - chance and risks -

Chance: Often <u>evaluating only a few aspects</u> of the overall figure is enough to show that <u>nature conservation counts even</u> <u>economically</u>, especially if existence values are included

If stated preference methods are not accepted, only use values can be measured.

This may lead to results where benefits are only slightly higher than or even <u>below costs</u>

The restoration cost approach as an additional economic argument - the value of "green infrastructure" -

The rationale:

- If values based on stated preferences (e.g. willingness to pay to stop biodiversity loss) face low acceptance in the political debate
- and (potentially) more accepted use-values are not completely available or show only moderate amounts
- then restoration costs (including benefit losses until ecosystem services reach full recovery) could be taken as an additional or second best approach to point out the potential economic consequences and the risks of biodiversity loss

A cost approach coping with restoration time

Methodological background: "Habitat Equivalency Analysis" (HEA) developed in the USA to determine the extent of measures to compensate for ecosystem damages, particularly for interim losses (NOAA 1995, 2000, 2006) "Investment Model" proposed by Schweppe-Kraft, 1996, 1998 as one Model to determine compensation fees for the German "Eingriffsregelung" Basic Assumptions: Benefits of Biodiversity can be measured in annual rates and can be discounted

2) Normal "profitability". Nature conservation projects to develop new habitats for threatened species are (on average) at least as cost-effective (profitable on the basis of total economic value) as commercial investments.

Recommended	Natural and semi-natural ecosystems that are essential for the
field of	conservation of biodiversity (in Germany: 10 to 15% of the
application:	landscape)

Costs and benefits of a habitat development project

opportunity costs)

Discounted benefits of a restoration are at least as high as discounted costs

Rationale for the above assumption: politically expressed will to stop biodiversity loss

Assumption: costs = benefits (normal profitability)

Benefits of a matured ecosystem compared with a developing one

costs / benefits

High-Nature-Value Habitat / Ecosystem	Area (ha)	% of land- cover	Euro / m²	Value (Mio. €)
Dwarf shrub heathlands	83,170	0.22	41.83	34,790.01
Natural and semi-natural dry grasslands	99,720	0.27	8.06	8,037.43
Molinea meadows	14,000	0.04	18.51	2,591.40
Riparian grasslands and tall herbaceous perennial vegetation of moist to wet sites	37,700	0.10	6.14	2,314.78
Low intensively used meadows	179,000	0.48	6.14	10,990.60
and swamps free of woodland	11,100	0.03	9.80	1,087.80
Other types of agricultural grasslands with a high species diversity	447,264	1.19	2.66	11,897.22
Arable land with threatened herbaceous vegetation communities	473,124	1.26	0.49	2,318.31
Low intensively managed vineyards	7,380	0.02	13.31	982.28
Traditionally managed orchards	350,000	0.93	9.75	34,125.00
Low intensively used ponds for fish farming	3,150	0.01	48.93	1,541.30
Copses, thickets, scrub, hedgerows and tree rows in agricultural used areas	750,000	2.00	16.28	122,100.00
Natural woods and low intensively used species-rich forests	734,438	1.96	18.44	135,430.28
Pasture woodland	31,950	0.09	20.64	6,594.48
Coppice and coppice with standard	182,813	0.49	4.47	8,171.72
Nature-like woodland edge communities	3,450	0.01	22.79	786.26
Species-rich herbaceous forest fringe communities	788	0.00	2.82	22.21
Raised bogs including less degraded restoreable forms	67,489	0.18	195.46	131,914.41
Transition mires and strongly degraded raised bogs	78,498	0.21	127.42	100,022.52
Nature-like running and standing surface waters	246,675	0.66	48.93	120,698.08
Total	3,555,033	9.48		736,416.07

"Capital stock" of high-naturevalue ecosystems in Germany

Valuation Basis: Restoration costs and restoration time

Method: Habitat Equivalency Analysis

Result: 80% of the value of Germany's productive capital / equipment

What can these informations help for?

% of GNI Bil. € (in 2000) Value of high biodiversity Ecosystems -28,5 1.39 **HEA & Investment Model** 3,9 - 4,8Willingness to pay to stop the loss of 0,21 99 - 123 € biodiversity in Germany (1990) Costs / need for ressources to stop 1.7 - 2.30,1 the loss of biodiversity in Germany 43 - 59 € Nature Conservation expenditures ³⁾ 0,67 0.03 (fed. state, countries, communities 17€ = 0,07% of overall public spending) 0.21 4,34 Agricultural support²⁾ Per household and year ⁴⁾ Show a) real expenditures below financial needs that: b) willingness to conserve higher than conservation costs c) willingness to conserve below restoration costs d) high risk of irreversible negative effects on biodiversity and human welfare Workshop "Evaluating the Economic Valuation of Biodiversity and Ecosystem Services", Frankfurt 17 February 2011

Literature

Grossmann, M.; Hartje, V. und Meyerhoff, J. (2010): Ökonomische Bewertung naturverträglicher Hochwasservorsorge an der Elbe. Naturschutz und Biologische Vielfalt, Heft 89, Bundesamt für Naturschutz, Bonn.

Schäfer, A. (2009): Moore und Euros. Die vergessenen Millionen. Archiv für Forstwesen und Landschaftsökologie, Bd. 43, Heft 4, S. 156-160

Barthelmes, A.; Joosten, H.; Kaffke, A.; Koska, I.; Schäfer, A.; Schröder, J. und Succow, M. (2005): Erlenaufforstung auf wiedervernässten Niedermooren. Institut für dauerhaft umweltgerechte Entwicklung von Landschaften der Erde. 68 S., Greifswald.

Dehnhardt, A. (2002): Der ökonomische Wert der Elbe als Nährstoffsenke: Die indirekte Bewertung ökologischer Leistungen. In: Dehnhardt, A. & Meyerhoff, J. (Hrsg.): Nachhaltige Entwicklung der Stromlandschaft Elbe. Nutzen und Kosten der Wiedergewinnung und Renaturierung von Überschwemmungsauen. Vauk: Kiel.

A future task in good hands

Many thanks for your kind attention

Dr. Burkhard Schweppe-Kraft

Unit I 2.1: Legal Affairs, Economics and Ecologically Sound Regional Development

Additional informations

An additional ongoing study: Cost-benefit-analysis of land use-scenarios for Germany

	Land use scenarios:						
Costs and benefits:	Status Quo	Intensified land use for food and energy-biomass production	Reaching the goals of the national biodiversity strategy	focus on synergies between nature- conservation and climate gas mitigation			
Production	monetary valuation: differences between prices and prod.costs						
Restoration and management	monetary valuation: restoration and management costs						
Nature Conservation	monetary valuation on the basis of choice analysis for willingness to pay for different nature-conservation programmes						
Recreation	monetary valuation on the basis of revealed preferences for nature- related day trips (demand curve estimation on the relation between costs, frequency of trips and landscape features of the destination)						
Climate-gas mitigation	partly monetary / partly semi-quantitative ++ + o – – –						
Other ecosystem services		semi-quantitativ	/e ++ + o	_			

Workshop "Evaluating the Economic Valuation of Biodiversity and Ecosystem Services", Frankfurt 17 February 2011 8th European Week of Regions and Cites, Brussels 4 – 7 October 2010, Burkhard Schweppe-Kraft, BfN

Details: Elbe – flooded area with and without at Rogätz and Sandau

Workshop "Evaluating the Economic Valuation of Biodiversity and Ecosystem Services", Frankfurt 17 February 2011 8th European Week of Regions and Cites, Brussels 4 – 7 October 2010, Burkhard Schweppe-Kraft, BfN

Details: Elbe – denitrification at Sandau and Rogätz – problems for benefit transfer

Annual nitrogen retention for relocation sites Sandau & Rogätz – depending on the annual inundation days and the specific discharge High variability of the effects \rightarrow difficult to scale up for the 15,000 ha in total

Workshop "Evaluating the Economic Valuation of Biodiversity and Ecosystem Services", Frankfurt 17 February 2011 8th European Week of Regions and Cites, Brussels 4 – 7 October 2010, Burkhard Schweppe-Kraft, BfN

Equivaleny of "Investment Modell" and HEA

Bundesamt für Naturschutz

Recommendations

Many kinds of projects that offer the chance to combine nature conservation with other targets, like

- climate gas mitigation and adaption to climate change,
- renewable energy,
- clean water supply,
- regional development,

are planned on a local or regional level

- National policy should provide regions with
- ⇒ best practice examples,
- ⇒ methods to assess economic benefits,
- funds to pay for supra-regional benefits like climate-gasmitigation, downstream flood prevention or improved water supply

Capital Values of Ecosystems Calculated on Restoration Costs and Periods

High Nature Habitats / Ecosystems German landcover)	Area	% of German Iandcover	Euro / ha	Value (Mio. €)	
Natural and semi-natural dry grassland	S	99,720	0.27	8.06	8,037.43
Molinea meadows		14,000	0.04	18.51	2,591.40
Riparian grasslands and tall herbaceou vegetation of moist to wet sites	37,700	0.10	6.14	2,314.78	
Low intensively used meadows	80% of the	179,000	0.48	6.14	10,990.60
Fens and swamps free of woodland	Cormany's	11,100	0.03	9.80	1,087.80
Other types of agricultural grasslands species diversity	productive	447,264	1.19	2.66	11,897.22
Low intensively used ponds for fish far	technical	3,150	0.01	48.93	1,541.30
Natural woods and low intensively used forests	equipment (933.88 Bio.€)	734,438	1.96	18.44	135,430.28
Coppice and coppice with standard		182,213	0.49	4.47	8,171.72
Nature-like woodland edge communitie	3,450	0.01	22.79	786.26	
Raised bogs including less degraded re	67,489	0.19	195.46	131,914.41	
Nature-like running and standing surfa-	246,675	0.66	49 93	120,698.08	
Total		3,555,033	9.48		736,416.07

Value of (semi-) natural ecosystems in D calculated with the HEA / Investment Model approach

High variety of restoration costs and length of restoration period for the same type of ecosystem. Substantial reductions possible by changing cost assumptions.

	Present value Bio. €	Annual value Bio. €
(Semi-) natural ecosystems (3,5 Bio. ha, 9,5% of the terrestrial surface of Germany) calculated with the HEA / Investment Model	712,5	28,5
Willingness to pay to prevent biodiversity loss + use values of (semi-) natural ecosystems		3,9 – 4,8 ? 2,0 ?
Costs to prevent biodiversity loss in D		1,7 – 2,3
Federal State and "Länder" expenses for nature conservation ¹⁾		0,67
Agricultural support ¹⁾		4,34