

BIODIVERSITY ACCOUNTING, 22ND MEETING OF THE LONDON GROUP, 28TH – 30TH SEPTEMBER, 2016

STEVEN KING (STEVEN.KING@UNEP-WCMC.ORG)

- **1. Biodiversity in the SEEA-EEA**
- **2. Developing Thematic Species Accounts**
- **3. Opportunities for Sustainable Development**

BIODIVERSITY IN THE SEEA-EEA

BIOLOGICAL DIVERSITY – DEFINITION

"Biological diversity means the variability among living organisms from all sources including, inter alia, terrestrial, marine and other aquatic ecosystems and the ecological complexes of which they are part; this includes diversity within species, between species and of ecosystems" (CBD, 1992)

BIODIVERSITY AND ECOSYSTEM SERVICES

LONDON GROUP MEETING, SEPTEMBER, 2016

SPECIES AND THE SEEA-EEA

UNEP-WCMC PUBLICATIONS TO DATE

2014

http://wcmc.io/Global Nat Cap

LONDON GROUP MEETING, SEPTEMBER, 2016

http://wcmc.io/SEEA_EEA_Bio Accounting EXPLORING APPROACHES FOR CONSTRUCTING SPECIES ACCOUNTS IN THE CONTEXT OF THE SEEA-EEA

2016

http://wcmc.io/Species_Acco unting

FEBRUARY 2016

PRIORITISING SPECIES FOR ACCOUNTING

Invertebrates

(% biodiversity retained)

BIODIVERSITY ACCOUNTS IN 2016

Vascular plants

(96 biodiversity retained)

Experimental Ecosystem Accounts for the Central Highlands of Victoria

Ecosystem	(70 biodiversity retained)			(70 block er any recarried)			y (70 biodi	(// bloarveroity retained)						and b	
type	2009	2011	2013	2009	2011	2013	2009 2	011 2	013			William .		新	
Palm swamps	90.3%	90.1%	90.0%	87.0%	86.9%		Table 9.3a. (threatened s				_			UCN Red	List of
Humid forest with high hills	88.3%	87.8%	87.4%	89.2%	88.8%	88.4	threatened	Extinct	Critically	Endangered	Vulnerable	Near	Least	Lower	Total
Humid forest with low hills	87.7%	87.3%	86.9%	88.6%	86.2%	87.8	1990	0	Endangere 0	0	2	Threatened 2	0	Risk 12	16
Humid							1995	1	0	6	10		0	10	27
montane	91.1%	90.8%	90.5%	91.1%	90.7%	90.5	2000	1	1	7	15	1	1	14	40
forest							2005	1	3	8	13	5	8	2	40
Lowland terra firme forest	86.5%	86.0%	85.6%	86.1%	85.5%	85.1	2010	1	4	7	10	11	8	0	42
							2015	0	8	6	9	9	12	0	44
Floodplain forest	86.7%	86.2%	85.8%	86.6%	86.1%		Net change 1990 to 2015	0	8	6	7	7	12	-12	28

Vertebrates

(% biodiversity retained

LONDON GROUP MEETING, SEPTEMBER, 2016 FEBRUARY 2016

'Bottom-up'

- 1) Fits the accounting unit of an 'Ecosystem Asset'
- 2) Only captures diversity within a location / ecosystem unit
- 3) Species-level biodiversity is not additive
- 4) Resource intensive generally requires significant direct observation data

'Top-Down'

- 1) Capture diversity between locations (ecosystems interact)
- 2) Simplify accounting where species use multiple ecosystems
- 3) Less resources intensive can employ modelling approaches to make use of sparse direct observation data

Interaction between the biodiversity and accounting community required to develop pragmatic solutions for scale and aggregation issues!

INTEGRATION CHALLENGES

Interaction between the biodiversity and accounting community required to develop pragmatic solutions for integration issues!

GENERAL CHALLENGES

- 1) Consideration of thresholds need to establish safe operating spaces for species and ecosystems
- 2) Reference condition need to establish appropriate common reference point / year to aggregate and compare across species data and (potentially) other ecosystem condition characteristics
- 3) Applying big data can we effectively use satellite remote sensing data, in-situ monitoring and citizen science

OPPORTUNITIES FOR SUSTAINABLE DEVELOPMENT

THANK YOU!

Images: Down to earth, Peter Hartl,; The production of Shea Butter, Carsten ten Brink, CC courtesy of Flickr ; Prunus Africana (Hook.f.) Kalkman (ROSACEAE), Scamperdale; Cabrero (Spindalis zena, Thraupidae), Rodrigo Medel, all CC courtesy of Flickr. Remainder reproduced under license from Shuttershock

HETEROGENEITY OF EXISTING DATA

UNEP WCMC		Species or Species Group 1	Species or Species Group 2	Species or Species Group 3	Species or Species Group 4	Species or Species Group 5				
Reference measure for a common year	Example Species	Panda	Cuckoo	Tree sparrow	Orangutan	Vertebrates	- Composite indicator			
Abundance measure at start of accounting period Additions and reduction	Unit of measurement	No. of individuals	No. of individuals	Relative abundance based on population density	Hectares of suitable habitat	Proportion of original species complement	N/A			
	Reference (1995)	2,000	100,000	Set to 1.0	1,000,000	85%	100%			
Abundance measure at	Opening (2005)	1,500	60,000	0.70	100,000	80%	N/A			
End of accounting period	Additions	100	N/A	N/A	10,000	N/A	N/A			
Net change in abundance	Reductions	200	N/A	N/A	30,000	N/A	N/A			
over accounting period	Closing (2010)	1,400	65,000	0.50	80,000	70%	N/A			
Relative Abundance measure	Net Change	-100	+5,000	-0.20	-20,000	-10%	N/A			
at start of accounting period	Opening (% of reference, 2005)	75%	60%	70%	10%	94%	49%			
Relative Abundance measure at end of accounting period	Closing (% of reference, 2010)	70%	65%	50%	8%	82%	43%			
Net change in relative	Net change (% of reference)	-5%	+5%	-20%	-2%	-12%	-6%			
period Change as % of the opening	Change (% of opening)	-6.7%	+8.3%	-29%	-20%	-13%	-13%			
relative abundance										

APPROACHES

- 1) Direct observations of species status
 - **i.** Census counts, nest counts, population estimates from surveys
 - **ii.** Requires significant investment

2) Habitat based modelling of species status

- i. Satellite-borne remote sensing data to model habitat condition for species and species groups
- **ii.** Maybe difficult to align with the ecosystem unit

3) Threat status categories

- **IUCN Red List Data soon available at National Scale**
- **ii.** Difficult to disaggregate spatially
- 4) Extent of important places for species
 - i. Important Bird and Biodiversity Areas, Alliance for Zero Extinction sites, National Parks, Wilderness Areas

INCREASING

INFORMATION

REQUIREMENTS

A PROPOSED TIERED APPROACH OF DATA NEEDS FOR BIODIVERSITY ACCOUNTS

Extent and Condition Account Ecosystem extent, weighted by species indicators

Thematic Species Account

Species richness data and / or Threat Status Data

Thematic Species Account Species abundance data

Examples of information recorded for a Montane Coniferous Forest Ecosystem Unit (EU)

Extent and Condition Account

Montane Coniferous Forest EU extent, weighted by an input species condition indicator (e.g., Simpsons Index).

Thematic Species Account

Species richness of different taxonomic groups in Montane Coniferous Forest. Supplemented with information on species Red List stats.

Thematic Species Account

Species abundance monitoring data for Montane Coniferous Forest.

LONDON GROUP MEETING, SEPTEMBER, 2016