A NEED TO GO BEYOND THE ENERGY BALANCES FOR BUILDING RELEVANT ENERGY EFFICIENCY INDICATORS:

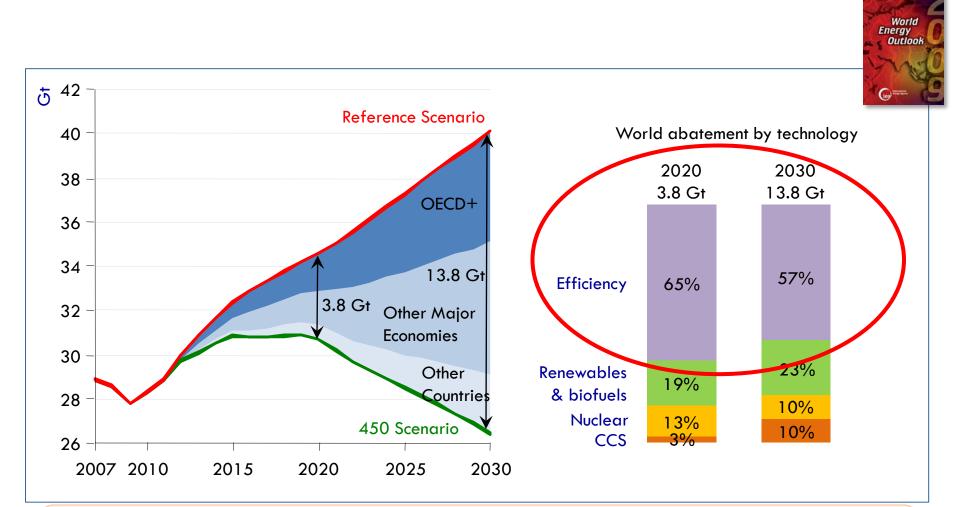
THE IEA ENERGY EFFICIENCY TEMPLATE

UN Energy Statistics Workshop Bàku, Azerbaijan 26 - 30 September, 2011

Pierre Boileau

Head, non-OECD Country Energy Statistics
Energy Statistics Division

International Energy Agency



Why such a high interest in efficiency

- Saving energy in all sectors:
 - Residential
 - Transports
 - Industry
 - Services
 - Electricity generation
- Increasing exports reducing imports
- Increasing domestic (and global) energy security
- Strengthening RD&D
- Creating jobs
- Reducing green house gas (mainly CO₂) emissions

InterrEFFICIENCY'S ROLE IN CO2 EMISSIONS ABATEMENT

→ More than 50% of the reduction of CO₂ emissions should come from energy efficiency

Energy Agen Countries are adopting ambitious targets

- China Reduce CO₂ intensity of the economy by 40-45% between 2005 and 2020
- India Reduce CO₂ intensity of the economy by 20% between 2005 and 2020
- The European Union: the 20-20-20 programme by 2020
 - Contribution of energy efficiency to reduce the energy consumption by 20%
- Russia: Reduce the energy intensity of GDP of the

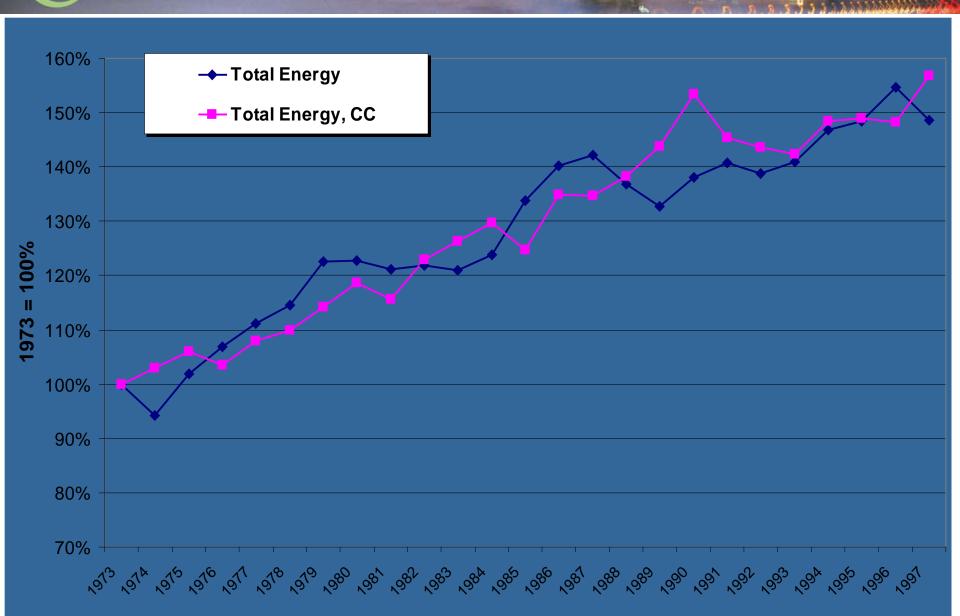
How to verify if countries meet their targets?

Identify priorities for energy efficiency policies

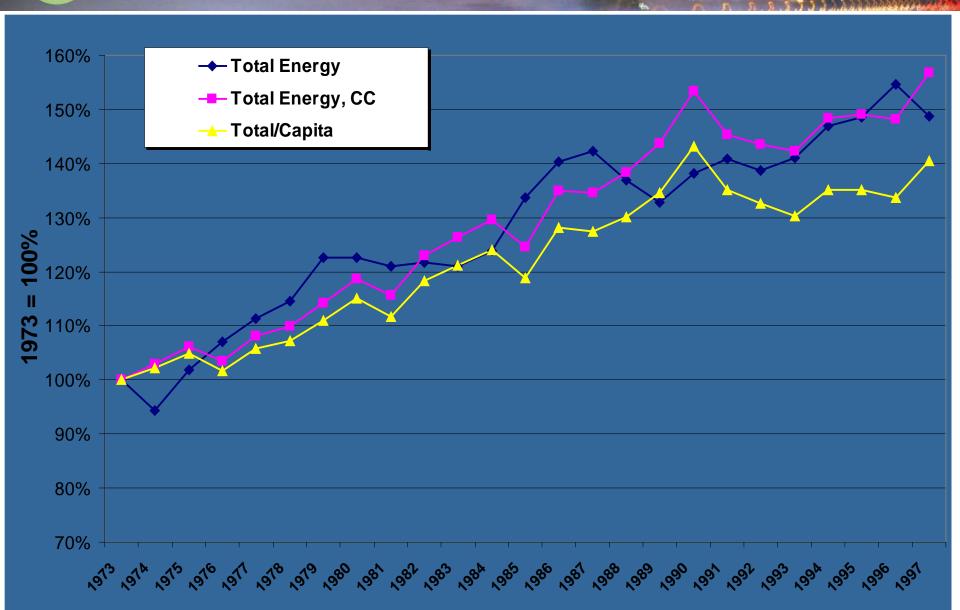

Assess progresses and failures of policies

OECD/IEA 2010

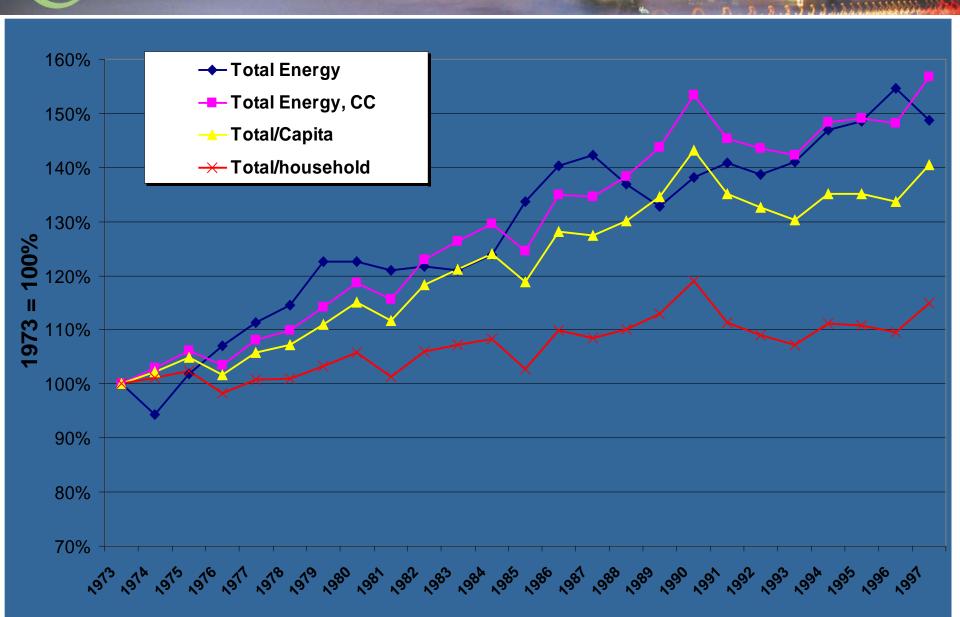
els.



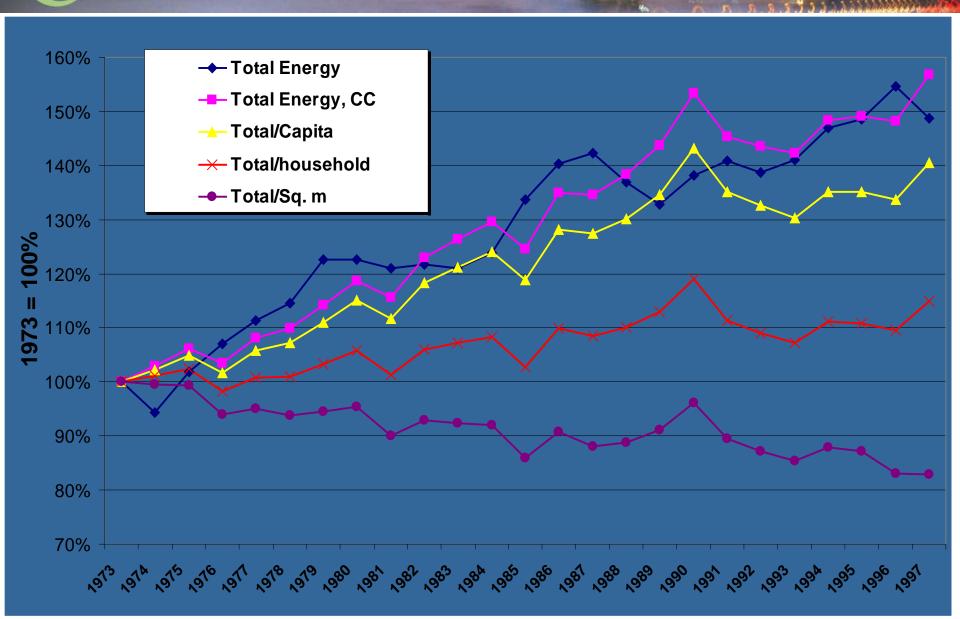
Entropy Go Beyond Aggregate Energy Consumption Data?



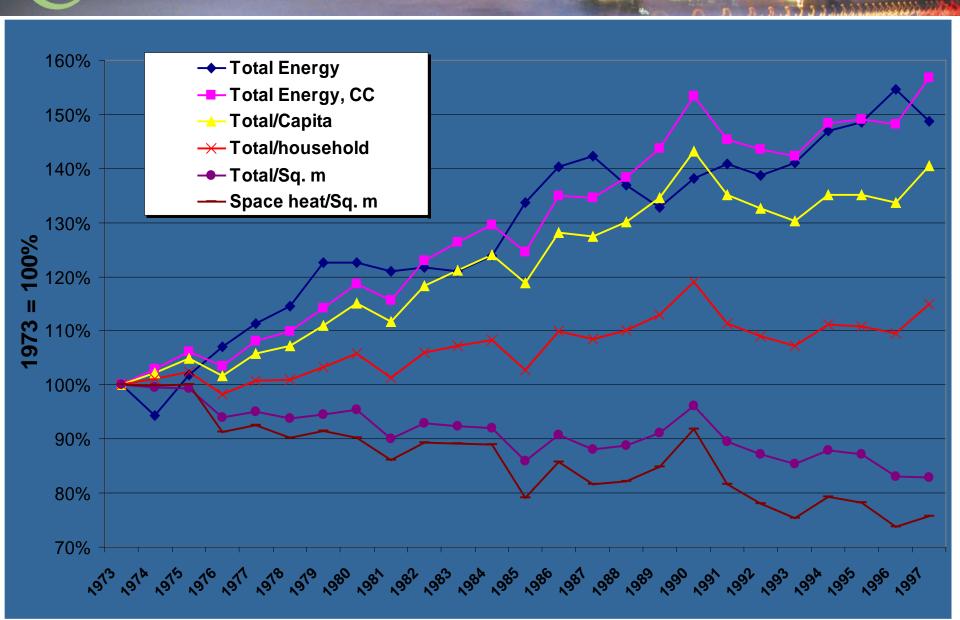
International Aggregate Energy Consumption Data?



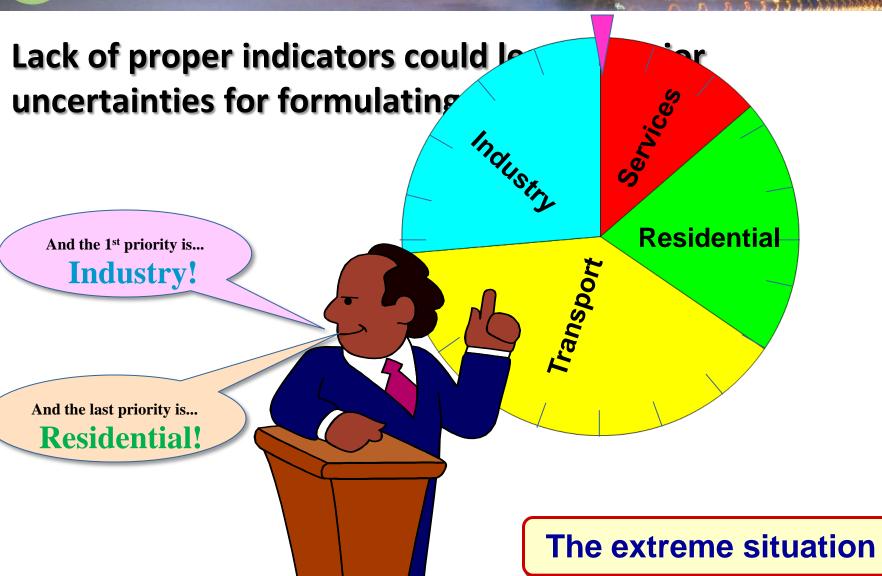
En What Go Beyond Aggregate Energy Consumption Data?



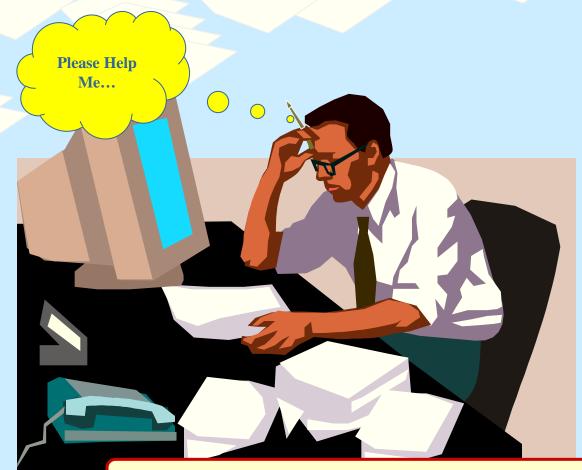
International En Whaty Go Beyond Aggregate Energy Consumption Data?



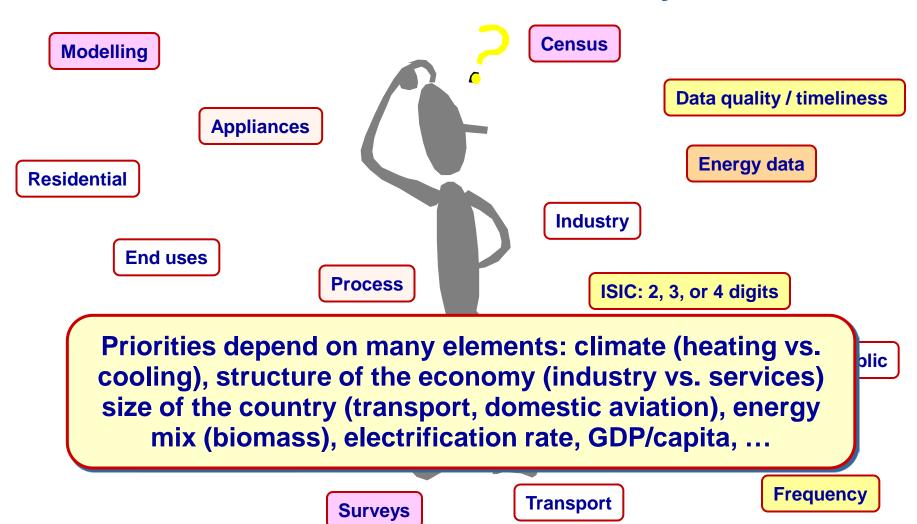
International International Beyond Aggregate Energy Consumption Data?

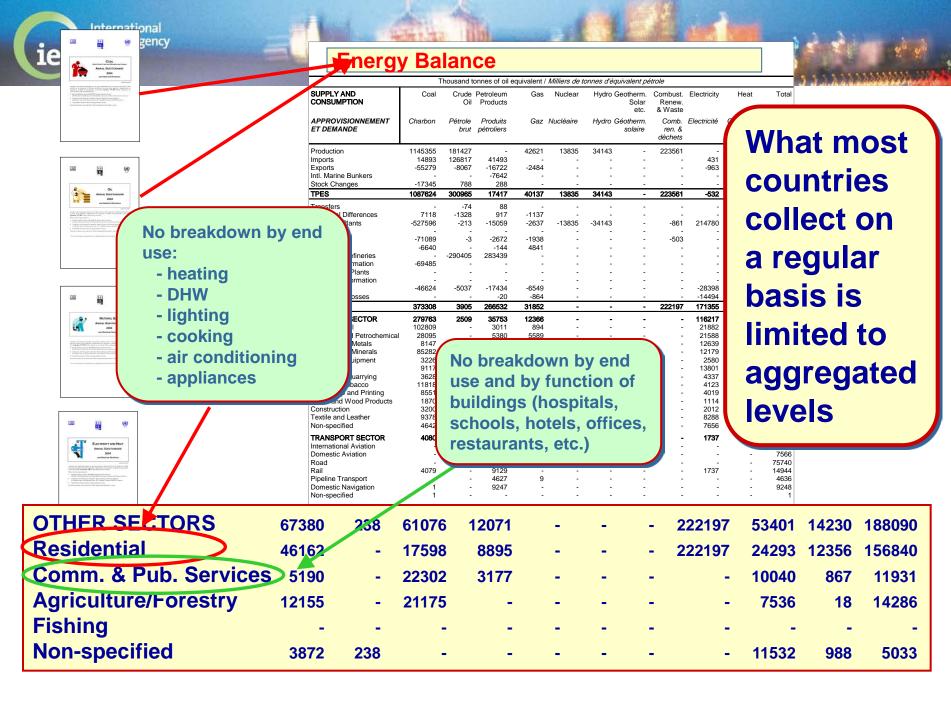


International Environment on Data?



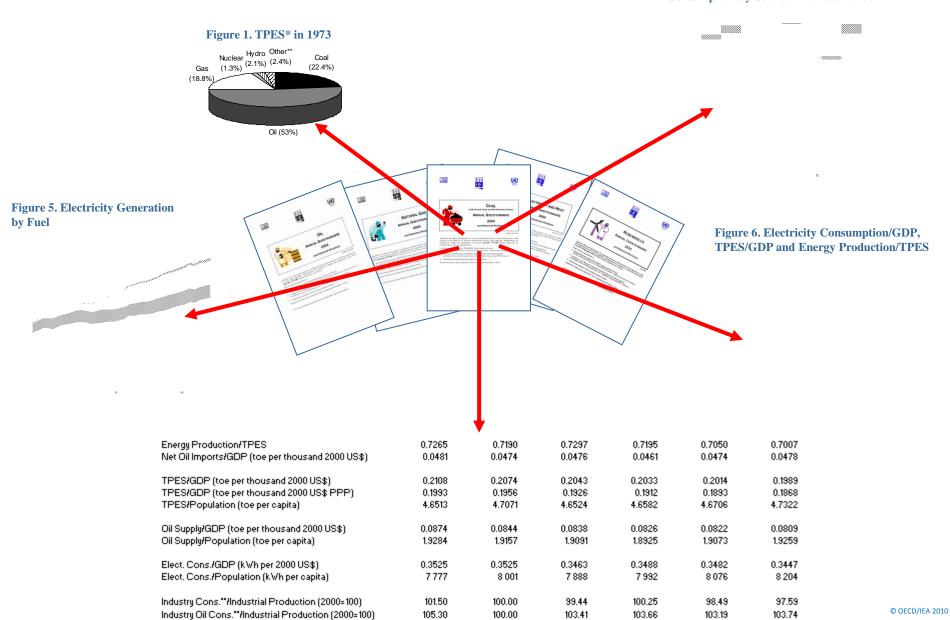
The other extreme would be to have too much data...



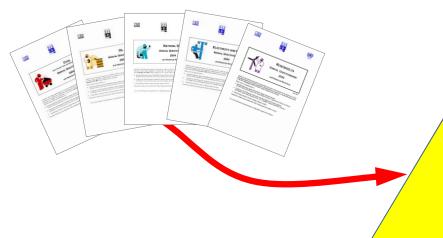

... but it would be a much easier situation!

What should be collected: Collecting any statistics has a cost. As a consequence, one should limit the collecting to what is necessary.

But what is necessary?



What indicators can be built from the annual ougstions an


Figure 4. Breakdown of Sectorial Final Consumption by Source in 1973 and 2004

What data for what indicators

TPES/GDP

TPES/Production

Electricity Cons./Population

CO2/GDP PPP

Efficiency Elec. Prod.

Disaggregated **Indicators**

Aggregated

Indicators

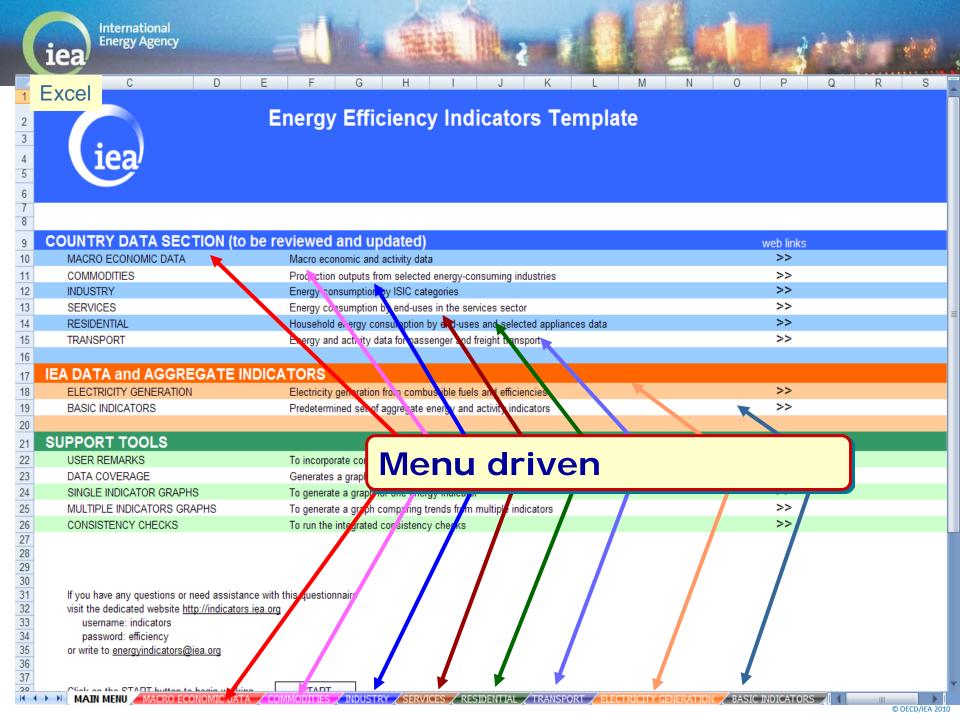
Cons./ton cement

Heating Cons./sqm/DD

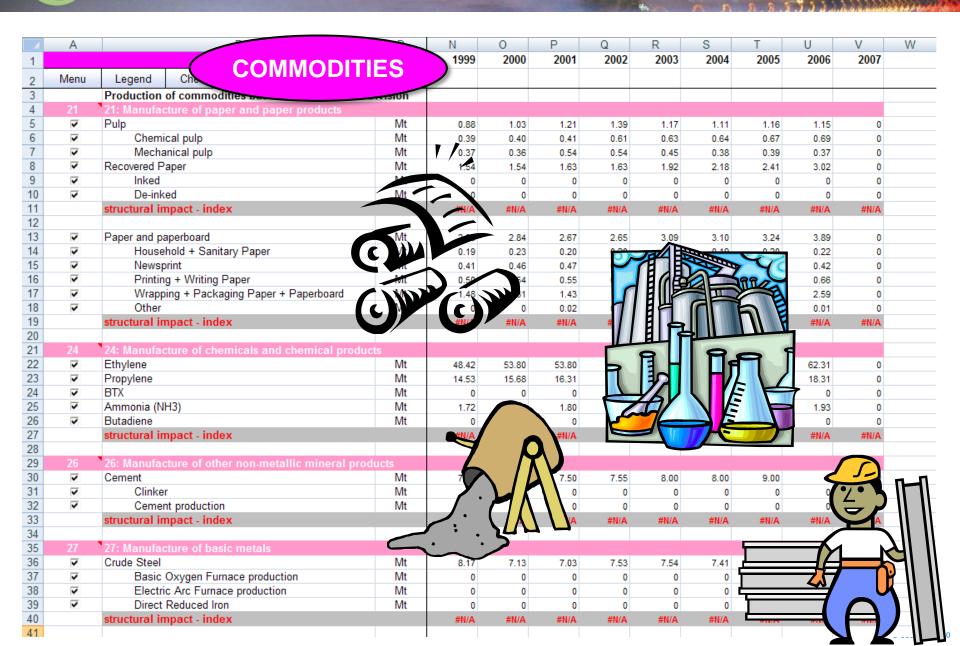
Litre/100km (stock)

The focus will be mainly limited to the data needed to build the disaggregated indicators

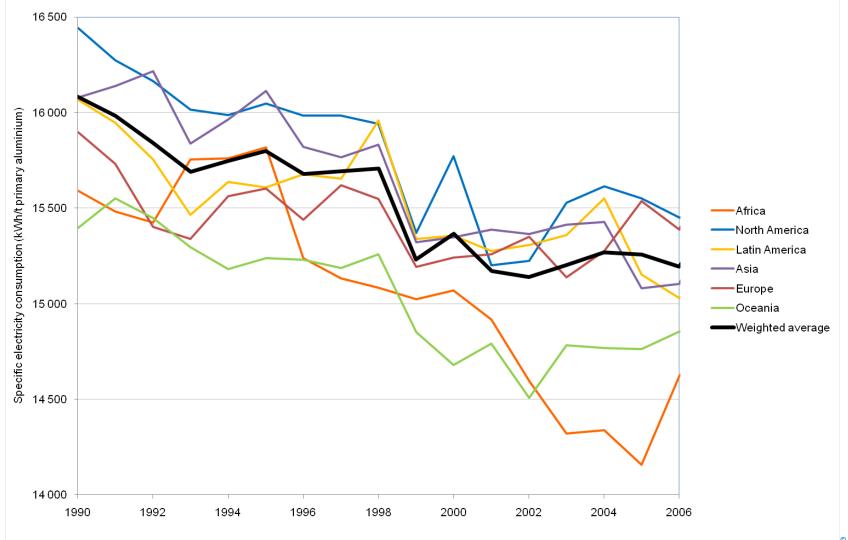
Process Efficiency **Dry process Condensing boiler**


 $Litre/100km\ (vintage)$

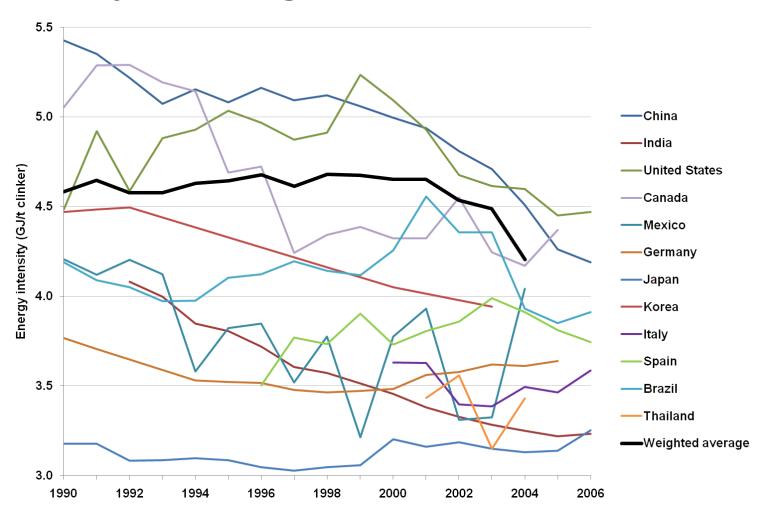
No answer to the following questions from the annual questionnaires


- How much energy is consumed to produce a ton of cement, steel, etc?
- How much energy is used for heating/cooling a square metre of floor in residential?
- What is the average consumption of gasoline per passenger-km in a car?
- What is the consumption of electricity in street lighting?

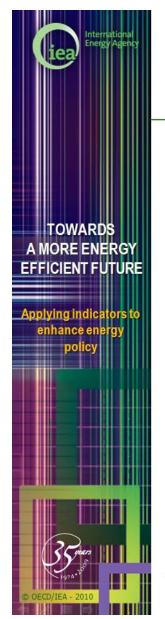
The lack of detailed data on energy consumption was one of the starting points for the indicators programme



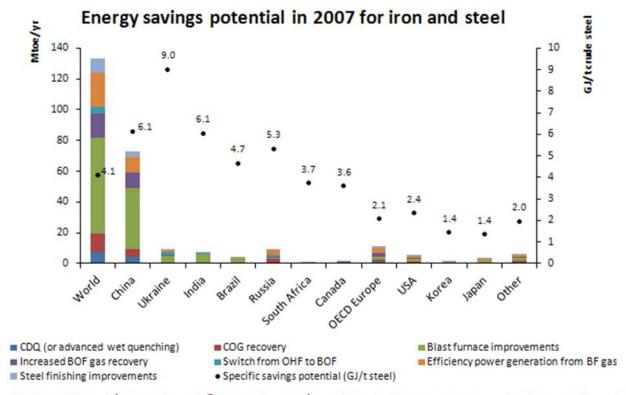
PRODUCTION OF COMMODITIES



Regional Specific Power Consumption in Aluminium Smelting Reported Electrical Power Used per Metric Ton of Primary Aluminium Produced

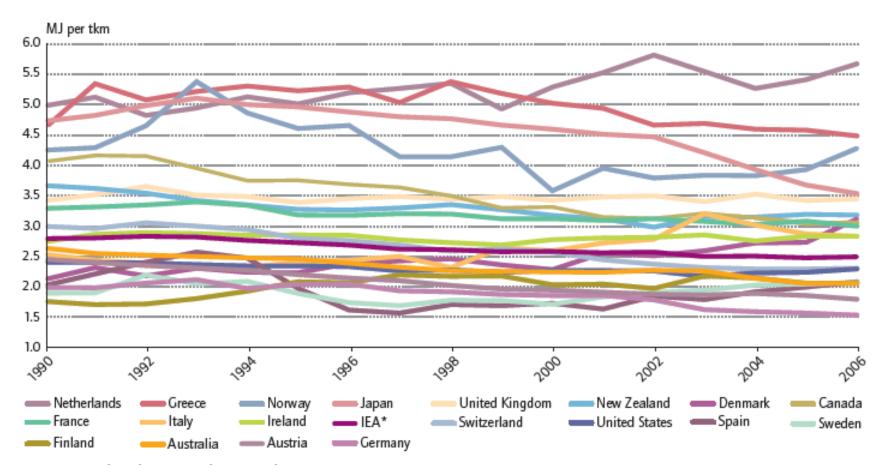


Thermal Energy Requirement per tonne of Clinker by Country including Alternate Fuels

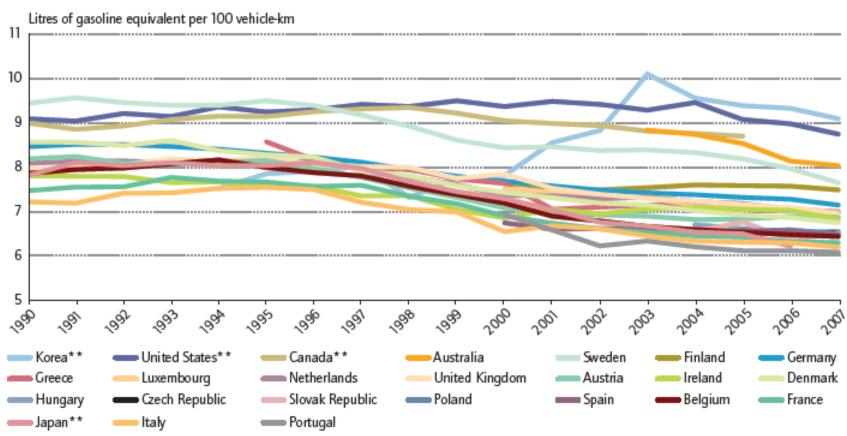


Data can be used to estimate potential savings

Potential for reducing energy consumption


Despite the significant reduction in energy intensity in recent years, there is still large energy savings potentials in manufacturing sectors

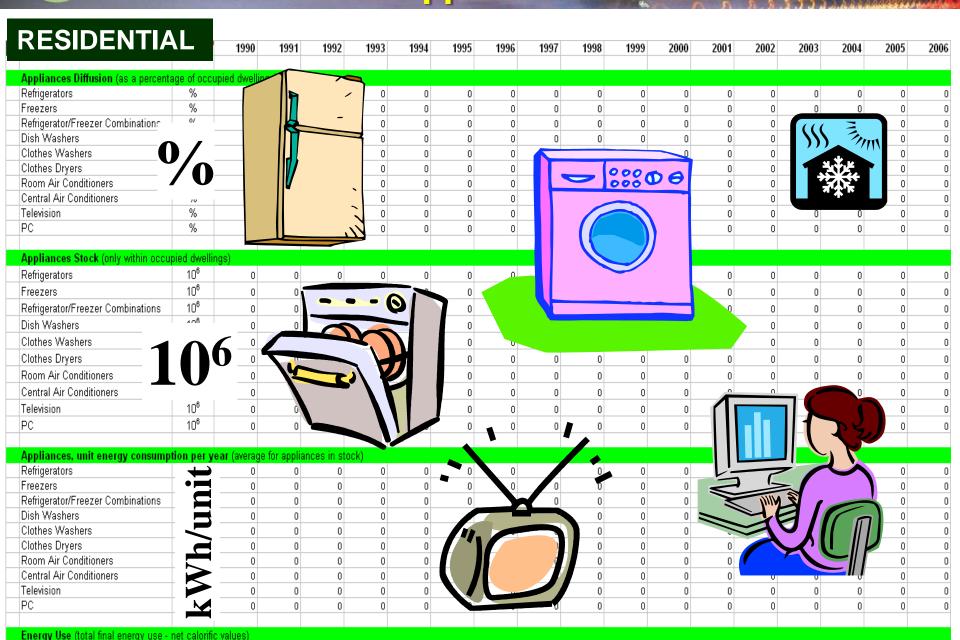
TRANSPORT	units	1990	1991	1992	1993	1994	1995	1996	1997	1998	1999	2000	2001	2002	2003	2004	2005	2006
Passenger transport [passenger-kilometres]	10° £ :-km			Lite														
Cars, SUV and personal light trucks	10 ⁹ 🚣 ⊱km	1 0			J/P	0	0	0	0	0	0	0	0	0	0	0	0	0
- gasoline (spark ignition) engine	10 ⁹ 🕠 3-km	n o k			0	0	0	0	0	0	0	0	0	0	0	0	0	0
- diesel (compression ignition) engine	10° 00 :- km	1 0			0	0	0	0	0	0	0	0	0	0	0	0	0	0
Motorcycles (2 wheelers) & 3 wheelers	10° (75 ;-km	1 0			0	0	0	0	0	0	0	0	0	0	0	0	0	0
Buses	10 ⁹ 🔼 :- km	1 0			0	0	0	0	0	0	0	0	0	0	0	0	0	0
Passenger Trains	10 ⁹ 3-km				0 0	0	0	0	0	0	0	0	0	0	0	0	0	0
Domestic passenger airplanes	10 ⁹ s-km	1 0	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
Domestic passenger ships	10 ⁹ km	1 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Freight transport [tonne-kilometres]	ے ب																	
Freight & Commercial road transport	10° = km		0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
- gasoline (spark ignition) engine	10° 🕇 ₃-km		0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- diesel (compression ignition) engine	10° (7) ∋-km		0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
Freight trains	10° ⊉ ₃-km		0					0	0	0	0	0	0	0	0	0	0	0
Domestic freight airplanes	10 ⁹ ⊆ ₃-km		0			~	~	0	0	0	0	0	0	0	0	0	0	0
Domestic freight ships	109 ⊆ ₃-km	n 0	0	0					0	0	0	0	0	0	0	0	0	0
Freight transport [tonnes]	<u> </u>																	
Freight & Commercial road transport	10 nes	0	0	0				0	0	0	0	0	0	0	0	0	0	0
- gasoline (spark ignition) engine	10 nes	0	0			4		0	0	0	0	0	0	0	0	0	0	0
- diesel (compression ignition) engine	10 () nes	0	0	0			1	0	0	0	0	0	0	0	0	0	0	0
Freight trains	10 O nes	0	0	0				0	0	0	0	0	0	0	0	0	0	0
Domestic freight airplanes	10 ⊆ nes	0	0			-		0	0	0	0	0	0	0	0	0	0	0
Domestic freight ships	10 C 1es	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Vehicle kilometres	= _ =_																	
Cars, SUV and personal light trucks	1 m	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- gasoline (spark ignition) engine	10 ⁹ vkm	0	0		0	0	0	0	0	0		<u> </u>	. 0	0	0	0	0	0
- diesel (compression ignition) engine	10 ⁹ vkm	0	0		0	0	0	0	0	T.	0	(>	0	0	0	0	0	0
Motorcycles (2 wheelers) & 3 wheelers	1 m	0	0		0	0	0	0	0		1 Dam		1 0	0	0	0	0	0
Buses		0	0		0	0	0	0	0		13 14 V		ő	0	0	0	0	0
Passenger Trains		0	0		0	0	0	0	0		MAN		0	0	0	0	0	0
Domestic passenger airplanes	1 ¥ m	0	0		0	0	0	0	0) (0	0	0	0	0	0
Domestic passenger ships	1 m	0	0		0	0	0	0	0			\supset	0	0	0	0	0	0
											Mala		H					
Freight & Commercial road transport	1 > m	0	0	0	0	0	0	0	0	- A	E CONTRACTOR		/ h	0	0	0	0	0
- gasoline (spark ignition) engine	1 m	0	0	0	0	0	0	0	0	H	1	0	0	0	0	0	0	0
- diesel (compression ignition) engine	1∪* vkm	0	0	0	0	0	0	0	0	1/1/1/1	30			0	0	0	0	0
Freight trains	10 ⁹ vkm	0	0	0	0	0	0	0	0				y 0	0	0	0	0	0
Domestic freight airplanes	10 ⁹ vkm	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Domestic freight ships	10 ⁹ vkm	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Vehicle stocks (number of vehicles in use)																		
Cars, SUV and personal light trucks	10 ⁶	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- gasoline (spark ignition) engine	10 ⁶	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0	0
- diesel (compression ignition) engine	10 ⁶	0	0	0	0	0			0	0	0	0	0	0	0	0	0	0
Motorcycles (2 wheelers) & 3 wheelers	106	0		0	0		_		0	0	0	0	0	0	0	0	0	0
Buses		Q			0				0	0	0	0	0	0	0	0	0	0
Passenger Trains		9		_	0	d	0		0	0	0	0	0	0	0	0	0	0
Domestic passenger airplanes	9	4 ,			0	0	0	0	0	0	0	0	0	0	0	0	0	0
Domestic passenger ships	<u>°</u>	0			0	0		0	0		0	0	0	0	0	0	0	0
Freight & Commercial road transport		0	0				-					0	0	0	0	0	0	0
- gasoline (spark ignition) engine		0	0		-							0	0	0	0	0	0	0
- diesel (compression ignition) engine		0	o d			0	J 0			0		0	0	0	0	0	0	0
Freight trains	10 ⁶	0	0	0		0	0	0	0	0	0	0	0	0	0	0	0	0
Domestic freight airplanes	10 ⁶	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Domestic freight ships	10 ⁶	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0



Truck Freight Energy Intensity

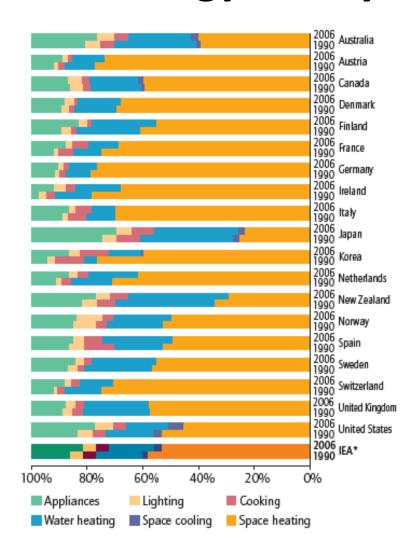
^{*} IEA average is limited to countries shown in graph.

Trends in new car fuel intensity

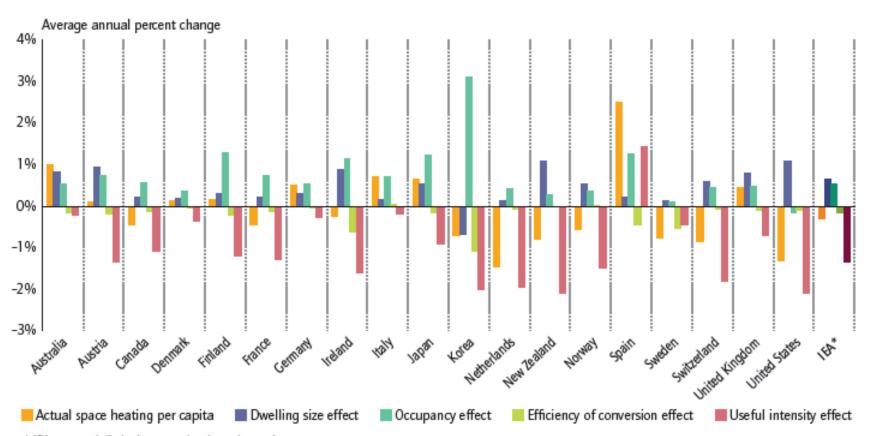


^{*} IEA average is limited to countries shown in graph.

^{**} Data for Canada, Japan, Korea and the United States are not directly comparable with the other countries.



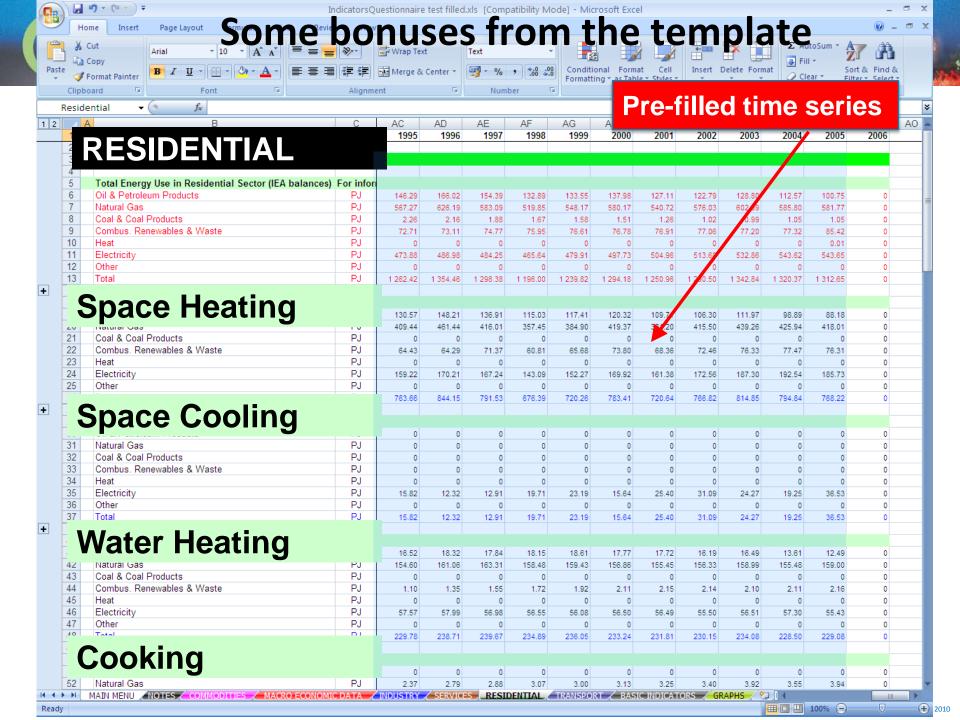
Diffusion, stocks and average consumption of selected appliances



Household energy use by end use

Decomposition of changes in space heating per capita, 1990-2006

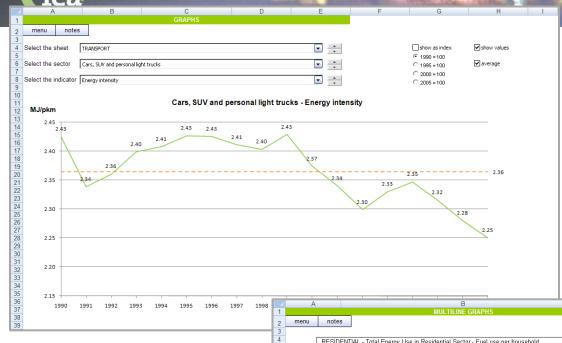
^{*} IEA average is limited to countries shown in graph.



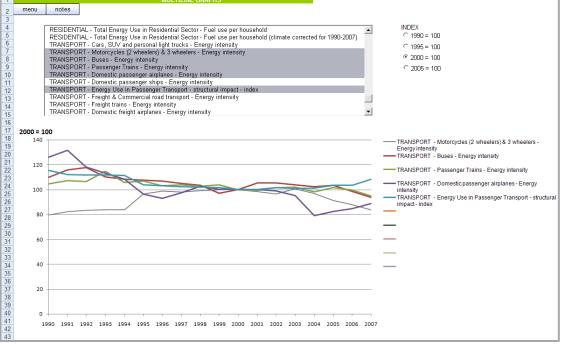
	Α	055)//05	-0	N	0	Р	Q	R	N.A.	A.	U	V	W
1		SERVICE	:5	1999	2000	2001	2002	2/			2006	2007	
2	Menu	Legend Check all/none						a	YYI	YY	7		
18		203						-14	11111	1111			
19		Space Heating						- 644		1111			
20		Oil & Petroleum Products	PJ	0	0	0	0	111	1111	1111	0	0	
21		Natural Gas	PJ	0	0	0	0		11111	1111		0	
22		Coal & Coal Products	PJ	0	0	0	0				6	0	
23		Combus. Renewables & Waste	PJ	0	0	0	0	10	0	0	0	0	
24		Heat	PJ	0	0	0	0	0	0	0	0	0	
25		Electricity	PJ	0	0	0	0	0	0	0	U	0	
26		Other	PJ	0	0	0	0	0	0	0	0	0	
27	~	Total	PJ	0	0	0	0	0	0	0	0	0	
28		Total (climate corrected for 1990-2007)	PJ	#N			A	#N/A	#N/A	#N/A	#N/A	#N/A	
29													
30		Space Cooling					AL.						
31		Oil & Petroleum Products	PJ				0	0	0	0	0	0	
32		Natural Gas	PJ				0	0	0	0	0	0	
33		Coal & Coal Products	PJ				0	0	0	0	0	0	
34		Combus. Renewables & Waste	PJ				0	0	0	0	0	0	
35		Heat	PJ				0	0	0	0	0	0	
36		Electricity	PJ				0	0	0	0	0	0	
37		Other	PJ				0	0	0	0	0	0	
38	~	Total	PJ				0	0	0	0	0	0	
39		Total (climate corrected for 1990-2007)	PJ	#			A	#N/A	#N/A	#N/A	#N/A	#N/A	
40													
41		Lighting						-					
42		Electricity	PJ	0	0	0	0	(0	
43	_	Other	PJ	0	0	0	0			ATTA		0	
44	V	Total	PJ	0	0	0	0					0	
45													
46		Other Building Energy Use in Services Sector	D.										
47		Oil & Petroleum Products	PJ	19.33	19.40	18.23	19.48	19.21				0	
48		Natural Gas	PJ PJ	44.22	44.76	38.61	39.15	39.41		711		0	
49		Coal & Coal Products		1.92	2.85	3.82	3.70	3.75				0	
50		Combus. Renewables & Waste		0.42	0.42	0.42	0.42	0.43	0.43	0.43	0.30	0	
51		Heat	PJ	0	0	0	0	0	0	0	0	0	
52		Electricity	PJ	139.42	144.19	159.93	166.55	166.41	165.98	168.11	168.10	0	
53 54	V	Other	PJ	0	0	0	0	0	0	0	0	0	
55	8	Total	PJ	205.31	211.62	221.01	229.30	229.22	230.21	233.45	239.00	0	
33													

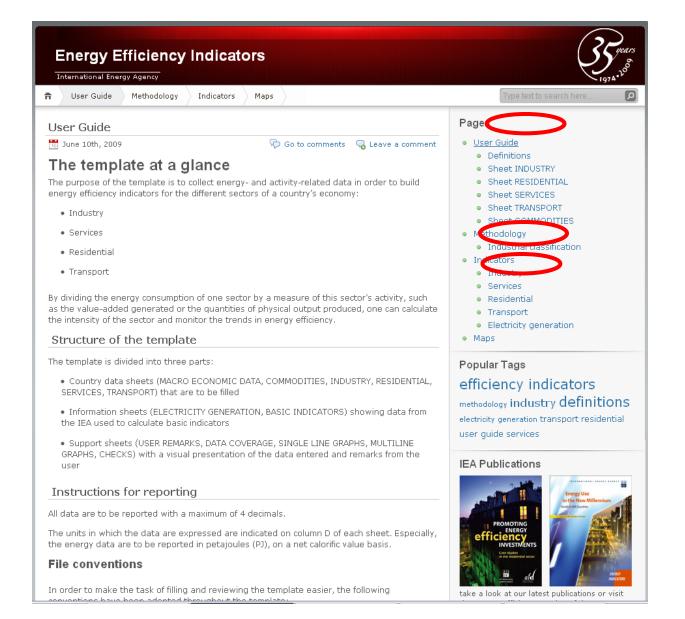
End-Use Coverage

Freight Passenger Other **Manufacturing** Residential **Services Transport Travel Industry Total** Food, beverages Car &light **Space heating** services Agriculture, & tobacco **Trucks** duty vehicles forestry Water heating Paper, pulp & Freight rail &fishing **Motorcycles** printing Cooking **Domestic** Mining **Buses Industrial** Lighting shipping Construction chemicals **Passenger Appliances Domestic** rail Electricity, air freight Non-metallic gas & water minerals **Passenger** ships **Primary metals Domestic** Metal products & planes equipment Other



A report on the coverage status is automatically updated when new data are entered.




Some bonuses from the template

Various options offered for plotting indicators

Including possibility of comparing indicators

A fast growing interest

- Data for 22 IEA countries, up from only 11
- Reduced lag in data availability
- Significant country involvement
- Strong co-operation with ODYSSEE
- Key IEA activity many reports
- Significant political support at highest levels
- Official commitment by IEA Ministers to report data

What's next

- Update with 2008 data
- Preparation for a Manual on Energy
 Statistics for Energy Efficiency Indicators
- Workshop planned for November 2010
- A new publication in 3rd Quarter 2011
- Strengthening cooperation with many key partners: ODYSSEE, APEC, etc.

- IEA Statistics www.iea.org/stats/index.asp
- Energy Efficiency Indicators www.iea.org/subjectqueries/keyresult.asp ?KEYWORD_ID=4122
- Energy Efficiency Home Page www.iea.org/efficiency/index.asp

Thank you