

# Data Evaluation with Consecutive Censuses: Adult Mortality and Census Coverage

**United Nations Statistics Division** 



#### Outline

- **1.** The Population Balancing Equation
- 2. Adult Mortality (Death Distribution Methods)
- 3. Intercensal Cohort Survival Rates
- 4. Cohort Component Method



# **Population Balancing Equation**

Census coverage



- If a country has:
- A relatively complete system of vital registration
- □ A fairly reliable estimate of the degree of under-registration
- Information on the number of intercensal births, deaths and net international migrants can be used in conjunction with the results of a previous census to evaluate the coverage of a subsequent or current census.

$$P_1 = P_0 + B - D + M$$

Where:

 $P_1$ =the population enumerated in the census being evaluated

 $P_0$  = The population enumerated in a previous census

B = the number of births in the period between the two censuses

D= the number of deaths in the period between two censuses

M= the number of net international migrants in the period

M = I (Immigrants) – E (Emigrants)



The population balancing equation is the most fundamental equation in demographic analysis and is also used to estimate population growth.

It is based on the logic that:

The population of a country can increase or decrease between any two points in time only as a result of births, deaths and movement of population across national boundaries

- > Births and immigration add to the population
- > Deaths and emigration reduce the population

- For census evaluation purposes, there is a residual (e) needed to make the equation balance exactly
- "e" in the equation is referred to as the "error of closure" and represents the balance of errors in the data on births, deaths, net migration, and the coverage of the two censuses:

# $P_1 = P_0 + B - D + M + e$

- If a negative residual quantity e, P<sub>1</sub> is under-enumerated relative to P<sub>0</sub>
- If a positive residual is required to balance the equation, P<sub>1</sub> is over-enumerated relative to P<sub>0</sub>



#### Population balancing equation – Data required

- □ The population enumerated in two consecutive censuses
  - > P<sub>1</sub>: the census under evaluation
  - > P<sub>0</sub>: previous census
- The number of births, deaths and net international migration (immigrants-emigrants) during the intercensal period, adjusted for under-registration (to the extent possible)

#### Population balancing equation – United Nations Statistics Division Computational Procedure

- Compile registered numbers of intercensal births, deaths and migrants
- Vital registration system
- □ Immigration record system (residence permit, border records, etc.)
  - Adjustment based on under-coverage of these systems including indirect estimates
- 2. Calculation of the "expected" census population (E(P1)) E(P1) = P0 + B - D + M
- 3. Calculation of the residual error or error of closure  $e = P_1 - E(P_1)$

#### Population balancing equation – United Nations Statistics Division Interpretation of "e"

- □ If P<sub>0</sub> has been adjusted for net coverage error, the estimated residual error (e) will represent an estimate of net coverage error in P<sub>1</sub>
  - > If "e'' is positive, P<sub>1</sub> is overenumerated
  - > If "e'' is negative, P<sub>1</sub> is underenumerated
- □ If P<sub>0</sub> is not adjusted, "e" will represent an estimate of the relative level of net coverage error in P<sub>1</sub> in comparison with P<sub>0</sub>



Population balancing equation – Example Sri Lanka, 1971 and 1981 Censuses (1)

#### For an unadjusted census:

 $E(P_1) = P_0 \text{ (unadjusted)} + B_{adj} - D_{adj} + M_{adj}$ = 12,689,897 + 3,716,878 - 1,002,108 + (-446,911) = 14,957,756

$$e = P_1 - E(P_1)$$
  
=14,848,364 - 14,957,756  
=-109,392 *0.7% of E(P\_1)*

 $P_1$  is under-enumerated relative to  $P_0$ 

Source: U.S. Census Bureau (1985)



Population balancing equation – Example Sri Lanka, 1971 and 1981 Censuses (2)

For an adjusted census count:

 $E(P_1) = P0 \text{ (adjusted)} + B_{adj} - D_{adj} + M_{adj}$ = 12,849,796 + 3,716,878 - 1,002,108 + (-446,911) = 15,117,655

 $e = P_1 - E(P_1) = 14,848,364 - 15,117,655$ = -269,291 1.8% of  $E(P_1)$ 

*P*<sub>1</sub> is underenumerated

Source: U.S. Census Bureau (1985)



# Population balancing equation – Limitations

- Incomplete and defective data on the components of population change are very common
  - Applicability of the method is limited to countries with good vital registration coverage and migration data
- It is generally not useful for obtaining estimates of net census coverage error for sub-national populations (for example regions, provinces).
  - In addition to the components of population change considered, internal migration has to be considered.
  - For most practical purposes, the use of the population balancing equation is limited to analysis of net coverage error at the national level.



# Death Distribution Methods

Completeness of reporting of adult mortality



# Death distribution methods

- Death distribution methods" apply the logic of the population balancing equation to different age groups in the population
  - E.g. for the age group 40 50, the only way to enter the age group in a country is through aging or immigration, the only way to exit is through death or emigration
  - By comparing our expectation for the size of an age group at the time of the census to its actual enumerated size, we can get a sense of whether we have "missing" or "extra" people in the enumeration



# Death Distribution Methods - Advantages

- Can provide timely estimates of age-specific period mortality rates – here we will use the method to check estimates of completeness of death reporting
- Data requirements:
  - Population by sex and 5-year age groups
  - Deaths by sex and 5-year age groups
  - Can be computed with data from two consecutive censuses with an estimate of the number of deaths between the two censuses

Source: Moultrie et al. (2013)



# Death Distribution Methods – <sup>U</sup> Assumptions and Violations (1)

Completeness of deaths reporting is the same across ages

- Generally does not hold for the oldest and youngest age groups
- To avoid, usually truncate analysis to middle age ranges
- (Two-census variant) Coverage of both censuses is the same for all age groups
  - Census coverage evaluation will be discussed later in this session
- □ Age reporting (by 5-year age groups) is accurate
  - Can be checked through age-sex distribution techniques discussed in previous sessions

Source: IUSSP Tools for Demographic Estimation <u>http://demographicestimation.iussp.org/</u>

Death Distribution Methods – Assumptions and Violations (2)

- Net in-migration is limited
  - Will depend on country context
- (One-census variant) population is stable (constant growth rate over past several decades)
  - Will depend on country context in contexts with recent fertility decline, will not hold



Common errors in data on recent deaths by age

- Under-reporting, especially for child deaths and older age deaths
- Reference period errors in reporting of deaths (i.e. reporting deaths that occurred prior to the usual 12-month reference period)
- Death question omitted by interviewers
- Household breaking up due to the death of a senior household member

▶ In this case, any deaths in household will not be captured

- Age-heaping and age exaggeration
- In addition to age-sex distribution checks discussed in previous sessions, the age and sex structure of reported deaths should be examined prior to conducting any analysis

#### Data quality checks: Schedules of death rates by age and sex





Source: Graph produced based on IPUMS-International and DHS country report

#### General Growth Balance Method (GGB)

Basis: The Balancing Equation of Population Change

$$P_2 = P_1 + B - D + G$$

Assumptions:

- a) population is closed to migration, G=0;
- b) completeness of first census,  $k_1$ , is independent of age;
- c) completeness of second census,  $k_2$ , is independent of age;
- d) completeness of intercensal deaths, c, is independent both of age and year;



# GGB regression: $b(x+) - r(x+) = \beta_0 + \beta_1 d(x+)$



GGB regression with migration:

$$b(x+) - r(x+) + g(x+) = \beta_0 + \beta_1 d(x+)$$

g(x+) = net migration rate, age x+

A common case >> significant emigration If migration is not accounted for (g(x)=0), estimate of the slope will be less than one, the regression line will be increasing less steep and the completeness of deaths will be overestimated (as emigration reduces the population)



#### GGB Method – Application

|        |                   | - 1 1/2A   | A 1 489 10   |            | (99)             | 1.00    | Dr 1       | <b>S</b> - A | 1 21 10         | the arts of |                  | 22 - OF | al Narrow  |             | - 12    |                |    |
|--------|-------------------|------------|--------------|------------|------------------|---------|------------|--------------|-----------------|-------------|------------------|---------|------------|-------------|---------|----------------|----|
| 1      | 27 <b>-</b><br>C1 | -          |              | uth Africa |                  |         |            | 2 . 2        | + A+ 1 <u>1</u> |             |                  |         | arnanon    |             |         |                |    |
| •      | GB_2ce            | nsus_m     | ales.xlsx    |            |                  |         |            |              |                 |             |                  |         |            |             |         |                | 5  |
|        | A                 | в          | C            | D          | E                | F       | G          | н            | 1               | J           | к                | L       | м          | N           | 0       | P              |    |
|        | Country:          |            | South Africa |            |                  |         | 42.00.0004 |              | Age range       | over which  | line to be fitte | d       |            |             |         |                | -  |
| 2      | Midpoint of 1     | he deaths: | 2004.45      |            | Mid-point of cer | nsuses: | 6 2470902  |              | Lower age:      |             |                  | C       |            | 1           | 96      |                | -  |
|        | JEX               |            | Ingles       |            | mercensal pen    | 0u =    | 3.3473003  |              | opper age       | ē           |                  | 04      | ~- must be | iess mah    | 60      |                | -  |
|        | Dates of cer      | nsuses =   | 10/10/2001   | 15/02/2007 |                  |         |            |              |                 |             |                  |         |            |             | ×       | v              |    |
| 2      | Age               | x          | sH.(t.)      | sH. (t 2)  | sD,              | 5HM .   | P1(x+)     | P2(x+)       | D(x+)           | NM(x+)      | PYL(x+)          | N(s)    | n(x+)      | r(x+)-i(x+) | d(x+)   | =n(x+)-r(x     | a+ |
| 8      | 1                 | 2          | 3            | 4          | 5                | 6       | i          | 8            | 9               | 10          | 11               | 12      | 13         | 14          | 15      | 16             |    |
| 3      | 0.4               | 0          | 2,223,006    | 2,505,744  | 197,912          | 7,110   | 21434045   | 23348679     | 1568404         | 27153       | 119639203        |         |            | #N/A        | 0.00000 |                |    |
| 3      | 5-9               | 5          | 2,425,066    | 2,560,642  | 15,566           | 1,042   | 19211039   | 20842935     | 1370492         | 20043       | 107015123        | 2551908 | 0.02385    | 0.01506     | 0.01281 | 0.00878        |    |
|        | 10-14             | 10         | 2,518,985    | 2,452,339  | 11,207           | 893     | 16785973   | 18282293     | 1354926         | 19001       | 93686904         | 2608389 | 0.02784    | 0.01577     | 0.01446 | 0.01207        |    |
|        | 15-19             | 15         | 2,453,156    | 2,553,293  | 25,473           | 12,800  | 14266988   | 15829955     | 1343719         | 18108       | 80370426         | 2712585 | 0.03375    | 0.01922     | 0.01672 | 0.01453        |    |
|        | 20-24             | 20         | 2,099,417    | 2,362,519  | 54,960           | 21,982  | 11813832   | 132/6662     | 1318246         | 5308        | 66967066         | 2574960 | 0.03845    | 0.02176     | 0.01968 | 0.01668        | -  |
| -      | 23-29             | 20         | 1,699,279    | 1 075 400  | 145 599          | -12,172 | 9714415    | 0000077      | 1263266         | -16674      | 00067200         | 2203815 | 0.04013    | 0.02209     | 0.02294 | 0.01804        | -  |
| -      | 30-34             | 36         | 1,334,024    | 1,073,403  | 145,500          | 263     | 6220516    | 7005495      | 101494          | -4,302      | 36303919         | 1680587 | 0.04551    | 0.02402     | 0.02805 | 0.02123        | -  |
| -      | 40.44             | 40         | 1 233 813    | 1 306 900  | 135,936          | -4 373  | 4778859    | 5457310      | 3668388         | -12058      | 27311257         | 1468157 | 0.04700    | 0.02231     | 0.02013 | 0.02303        |    |
| -      | 45.49             | 45         | 967.744      | 1,104,294  | 121.010          | -7,883  | 3545046    | 4150410      | 733060          | -7685       | 20513828         | 1248496 | 0.06086    | 0.02988     | 0.03573 | 0.03098        |    |
|        | 50-54             | 50         | 769,627      | 888.042    | 111.157          | -5,958  | 2577302    | 3046116      | 612050          | 198         | 14984635         | 991556  | 0.06617    | 0.03127     | 0.04085 | 0.03490        |    |
|        | 55-59             | 55         | 552,402      | 708,812    | 96,854           | -2,407  | 1807675    | 2158074      | 500893          | 6156        | 10562911         | 789998  | 0.07479    | 0.03259     | 0.04742 | 0.04220        |    |
| )      | 60-64             | 60         | 444,592      | 491,871    | 89,930           | 52      | 1255273    | 1449261      | 404039          | 8563        | 7213279          | 557537  | 0.07729    | 0.02571     | 0.05601 | 0.05159        |    |
|        | 65-69             | 65         | 304,835      | 394,305    | 82,843           | 1,897   | 810681     | 957391       | 314108          | 8511        | 4711508          | 447834  | 0.09505    | 0.02933     | 0.06667 | 0.06572        |    |
| :      | 70-74             | 70         | 232,604      | 241,976    | 73,036           | 2,717   | 505846     | 563086       | 231266          | 6614        | 2854216          | 290495  | 0.10178    | 0.01774     | 0.08103 | 0.08404        |    |
| :      | 75-79             | 75         | 136,466      | 163,112    | 63,871           | 1,688   | 273242     | 321110       | 158229          | 3897        | 1584130          | 208340  | 0.13152    | 0.02776     | 0.09988 | 0.10376        |    |
| ŀ      | 80-84             | 80         | 90,856       | 87,698     | 48,163           | 1,801   | 136776     | 15/998       | 94359           | 2209        | /861//           | 117011  | 0.14884    | 0.02418     | 0.12002 | 0.12465        | -  |
|        | 80+               |            | 45,920       | 70,299     | 46,196           | 408     | 45920      | 70299        | 46196           | 408         | 303855           |         |            |             |         |                | -  |
|        | Tatal             |            | 21 //3/ 0//5 | 23 348 679 | 1 568 404        | 27 163  |            |              |                 |             |                  |         |            |             |         |                | -0 |
|        | Total             |            | 21,404,040   | 23,340,013 | 1,300,404        | 21,133  |            |              |                 |             |                  |         |            |             |         | $k_{1}k_{2} =$ | 0  |
|        |                   |            |              |            |                  |         |            |              |                 |             |                  |         |            |             |         | k1 =           | 0  |
|        |                   |            |              |            |                  |         |            |              |                 |             |                  |         |            |             |         | k2 =           | Ē  |
|        |                   |            |              |            |                  |         |            |              |                 |             |                  |         |            |             |         | k1*k2 =        | 0  |
| 2      |                   |            |              |            |                  |         |            |              |                 |             |                  |         |            |             |         | c =            |    |
| 3      |                   |            |              |            |                  |         |            |              |                 |             |                  |         |            |             |         | b =            | 1  |
| +      |                   |            |              |            |                  |         |            |              |                 |             |                  |         |            |             |         |                | -  |
| ;      |                   |            |              |            |                  |         |            |              |                 |             |                  |         |            |             |         |                |    |
| ,      |                   |            |              |            |                  |         |            |              |                 |             |                  |         |            |             |         |                |    |
| 3      |                   |            |              |            |                  |         |            |              |                 |             |                  |         |            |             |         |                | -  |
| 9<br>D |                   |            |              |            |                  |         |            |              |                 |             |                  |         |            |             |         |                | -  |
| 1      |                   |            |              |            |                  |         |            |              |                 |             |                  |         |            |             |         |                |    |
| 2      |                   |            |              |            |                  |         |            |              |                 |             |                  |         |            |             |         |                |    |

Source: Moultrie et al. (2013)

#### GGB Method – Estimating intercensal deaths

If accurate data for intercensal deaths is not available, they can be estimated if deaths for two other well-defined periods are available – e.g., deaths in the year prior to two different censuses

Worksheet will compute growth rates and deaths for the intercensal period

|      | Micr       | osoft Excel               | ¥2            |                             |                    |              |       |
|------|------------|---------------------------|---------------|-----------------------------|--------------------|--------------|-------|
| ÷ E  | ile        | <u>E</u> dit <u>V</u> iew | Insert Forma  | at <u>T</u> ools <u>D</u> e | ata <u>W</u> indow | Help Adobe   | PDF   |
| E    | 1 🖂        |                           |               | ia 🙉 - 1 - 1                | -   🔍 Σ            | - 41 🛍 🎯     |       |
|      |            |                           |               |                             |                    |              |       |
| 2 12 | 1 전        |                           | ÷             |                             |                    |              |       |
| -    | E S        | 52                        | /×            |                             |                    |              |       |
|      | <b>N</b> ( | GGB_estima                | ting_btwnce   | nsus_death                  | s.XLSX             |              |       |
|      |            | A                         | В             | С                           | D                  | E            | F 😾   |
|      | 1          |                           |               |                             |                    |              |       |
|      | 2          | First period              | d of deaths   |                             |                    |              |       |
|      | 3          | Start date                | 18/08/1991    |                             |                    |              |       |
|      | 4          | End date                  | 18/08/1992    | mid-point                   | 17/02/1992         |              |       |
|      | 5          |                           |               |                             |                    |              |       |
|      | 6          | Second per                | riod of death | ıS                          |                    |              |       |
|      | 7          | Start date                | 18/08/2001    |                             |                    |              |       |
|      | 8          | End date                  | 18/08/2002    | mid-point                   | 16/02/2002         |              |       |
|      | 9          |                           |               |                             |                    |              |       |
|      | 10         | Period for                | which death   | s to be estin               | nated              |              |       |
|      | 11         | Start date                | 18/08/1992    |                             |                    |              |       |
|      | 12         | End date                  | 18/08/2002    |                             |                    |              |       |
|      | 13         |                           |               |                             |                    |              |       |
|      | 14         |                           | 1st period    | 2nd period                  |                    | Estimated    |       |
|      | 15         |                           | deaths        | deaths                      | r                  | deaths for p | eriod |
|      | 16         | 0-4                       | 18720         | 21575                       | 0.014              | 202552       |       |
|      | 17         | 5-9                       | 1548          | 2793                        | 0.059              | 21727        |       |
|      | 18         | 10-14                     | 1119          | 1946                        | 0.055              | 15364        |       |
|      | 19         | 15-19                     | 1227          | 1802                        | 0.038              | 15250        |       |
|      | 20         | 20-24                     | 1843          | 3440                        | 0.062              | 26399        |       |
|      | 21         | 25-29                     | 2591          | 6930                        | 0.098              | 46326        |       |
|      | 22         | 30-34                     | 2.868         | 10286                       | 0.128              | 61911        |       |
|      | 23         | 35-39                     | 2531          | 10176                       | 0.139              | 58903        |       |
|      | 24         | 40-44                     | 2210          | 8608                        | 0.136              | 50365        |       |
|      | 25         | 45-49                     | 2053          | 6907                        | 0.121              | 42510        |       |
|      | 26         | 50-54                     | 2045          | 5029                        | 0.090              | 34687        |       |
|      | 27         | 55-59                     | 1789          | 3857                        | 0.077              | 27972        |       |
|      | 28         | 60-64                     | 2361          | 3649                        | 0.044              | 30233        |       |
|      | 29         | 65-69                     | 1900          | 2682                        | 0.034              | 23078        |       |
|      | 30         | 70-74                     | 2436          | 2810                        | 0.014              | 26371        |       |
|      | 31         | 75-79                     | 5053          | 6066                        | 0.018              | 55945        |       |
|      | 32         | 80-84                     |               |                             | #DIV/0!            | #DIV/0!      |       |
|      | 33         | 85+                       |               |                             | #DIV/0!            | #DIV/0!      |       |
|      | 34         |                           | AN Charles    | 104                         | 1.2                |              | ~     |
| G    | lia a      | ► ► NI\She                | et 1 / Sheet2 | : / Sheet3 /                | <                  |              |       |
| Rea  | ady        |                           |               |                             |                    | NUM          |       |



#### GGB Method –Setting the age range

|          | Edit<br>Edit       | Excel       | ert Formal<br>2 5 10 | t Iools                | Data Wind     | dow <u>H</u> e | slp Ado <u>b</u> e<br>🏱 -   📚 | ≥ PDF<br>Σ → 2 | ↓ <u>%</u> ↓   [ | <b>)</b> -0     | bou             | ınd –<br>adjust | we m<br>later      | nay          | 10      | Type<br>B   1 | a questior | i for help |
|----------|--------------------|-------------|----------------------|------------------------|---------------|----------------|-------------------------------|----------------|------------------|-----------------|-----------------|-----------------|--------------------|--------------|---------|---------------|------------|------------|
| <b>1</b> | GGB_2ce            | ensus_ma    | iles.xlsx            |                        |               |                | -                             |                |                  |                 |                 | _               |                    |              |         |               |            |            |
|          | A .                | в           | C                    | D                      | E             | °F⊘            | G                             | н              | 1                | J J             | K               |                 |                    | N            | 0       | P             | Q          | B          |
| 1        | Gountry:           | the deather | 20001 AMCa           |                        | Mid naint of  |                | 13/06/2004                    |                | Age range        | over Whici<br>- | n nne lo be mbe | su 🦷            |                    |              |         |               |            |            |
| 2        | Pose of the second | nie deams:  | 2004.43              |                        | Interconcel   | insuses.       | 5 3470902                     |                | Linner age       | <del></del>     | -               | 94              | and a second state | n loop then  | 30      |               |            |            |
| 3        | Jex                |             | initiales            |                        | mercensai pen | iou -          | J.J473063                     | -              | Opper age        |                 | -               | 04              | s= must be         | e iess tridh | 00      |               |            |            |
| 4        | Datas of a         | nouces =    | 10/10/2001           | 15/02/2007             |               |                |                               |                |                  | -               |                 | ^               |                    |              | ~       | ~             |            | Pasiduala  |
| 0        | Dates of ce        | nsuses -    | 10/10/2001           | 13/02/2007             |               |                | D41.0                         | D.04           | De a             | -               | DVI (           |                 |                    |              |         | y             | 1. The     | residuais  |
| 6        | Age                | <b>x</b>    | 51 (11)              | 514 x (22)             | 5 <b>D</b> x  | 5 MIN *        | P 1(x+)                       | P 2(X+)        | D(X+)            | 10 mm           | PTL(X+)         |                 |                    | 14           | 45      | =n(x+)-r(x    | 47         | y-(a+bx)   |
| 7        |                    | 2           | 3                    | 4                      | 5             | 5 110          | 04 42 40 45                   | 8              | 9                | 10              | 1 and 1         |                 |                    | 14           | 15      | 16            | 17         | 18         |
| 8        | U-4                |             | 2,223,006            | 2,505,744              | 197,912       | 1,110          | 21434045                      | 23348679       | 1368404          | 27153           |                 |                 |                    | -            | 0.00000 | 0.00070       | -0.006     | 0.004      |
| 9        | 3-9                | 5           | 2,423,066            | 2,360,642              | 13,366        | 1,042          | 19211039                      | 20842935       | 1370492          |                 |                 |                 |                    |              | 01440   | 0.00878       | 0.008      | 0.001      |
| 10       | 10-14              | 10          | 2,318,385            | 2,432,339              | 11,207        | 10,000         | 16/609/3                      | 10202293       | 1334926          |                 |                 |                 |                    |              | 01446   | 0.01207       | 0.009      | 0.003      |
| 11       | 10-19              | 10          | 2,493,196            | 2,003,293              | 23,473        | 12,800         | 14266988                      | 10829900       | 1343719          |                 | IInn            | or an           | o rot              | סמר          | 01072   | 0.01453       | 0.012      | 0.003      |
| 12       | 20-24              | 20          | 2,033,417            | 2,002,010              | 34,360        | 21,302         | 0714415                       | 10014142       | 1010240          | - 1             | Upp             | ci ag           | c rai              | ige          | 01366   | 0.01000       | 0.013      | 0.002      |
| 13       | 20.24              | 20          | 1,000,270            | 1 076 400              | 145 600       | 7 202          | 7016170                       | 0000077        | 1100404          | -               | 11              | U               |                    | U            | 02234   | 0.01004       | 0.013      | -0.001     |
| 14       | 30-34              | 26          | 1,004,024            | 1,073,403              | 145,000       | 7,303          | C010140                       | 7005406        | 101404           |                 | munat           | ha 1            | 1000               | thon         | 02003   | 0.02123       | 0.022      | -0.001     |
| 15       | 33-39              | 40          | 1,441,037            | 1,340,103              | 143,300       | 4 272          | 4770050                       | 6457210        | 0014030          | -               | musi            | be I            | less               | ulall        | 02073   | 0.02303       | 0.023      | 0.000      |
| 16       | 40-44              | 40          | 007 744              | 1,000,000              | 101,000       | -4,373         | 47700J3<br>2646040            | 4150410        | 722000           | -               |                 |                 |                    |              | 02672   | 0.02047       | 0.020      | 0.000      |
| 17       | 43-49              | 40          | 769 627              | 999.042                | 121,010       | -7,003         | 2677302                       | 30/6116        | 612050           | 1               | atant           | ofor            |                    | ~~~          | 0.00075 | 0.03030       | 0.033      | -0.002     |
| 10       | 55.50              |             | 105,021              | 000,042                | 954           | 2,407          | 1907676                       | 2159074        | 600993           |                 | start           | OIO             | ben a              | age          | 04742   | 0.03430       | 0.030      | 0.003      |
| 19       | 50-59<br>60.64     | _/          |                      |                        | 930           | -2,407         | 1255273                       | 1449261        | 404039           |                 |                 |                 | r ·                |              | 05601   | 0.04220       | 0.045      | -0.003     |
| 20       | 65 60              | _/          |                      |                        | 843           | 1 897          | 810681                        | 957391         | 31/108           |                 |                 |                 |                    |              | 73330   | 0.06572       | 330.0      | 0.000      |
| 22       | 70 74              | 1           |                      |                        | 036           | 2 717          | 505846                        | 380637         | 231266           |                 |                 | groi            | in in              |              | 08103   | 0.08404       | 0.000      | 0.000      |
| 22       | 75 70              | /           |                      |                        | ,030          | 1 688          | 273242                        | 321110         | 158229           |                 |                 | 8.0.            | rΡ                 |              | 09988   | 0.10376       | 0.002      | 0.002      |
| 23       | 90.94              | · ~         |                      |                        | 163           | 1,000          | 136776                        | 157998         | 94359            | 20110           | 786177          | 117011          | 0 14884            | 0.02/18      | 0.00000 | 0.10310       | 0.102      | 0.002      |
| 25       | 954                | ()          | nen a                | $\sigma \rho \sigma r$ | 01110 196     | 408            | 45920                         | 70299          | ae1at            | 408             | 303855          |                 | 0.14004            | 0.02410      | 0.12002 | 0.12405       | 0.124      | 0.001      |
| 26       | V                  |             | pen a                | SC ST                  | Jup           |                | 40020                         | 10233          | 40130            |                 | , 303033        |                 |                    |              |         |               |            |            |
| 27       | Total              | 1           |                      |                        | 404           | 27 153         |                               |                |                  |                 |                 |                 |                    |              |         | a =           | -0.006281  |            |
| 28       |                    |             |                      |                        | ,             | 21,100         |                               |                |                  |                 |                 |                 |                    |              |         | s<br>k1/k2 =  | 0.966968   |            |
| 29       |                    |             |                      |                        |               |                |                               |                |                  |                 |                 |                 |                    |              |         | k1 =          | 836336.0   |            |
| 30       |                    |             |                      |                        |               |                |                               |                |                  | 1               |                 |                 |                    |              |         | k2 =          | 1          |            |
| 31       |                    |             |                      |                        |               |                |                               |                |                  | 1               |                 |                 |                    |              |         | k1*k2 =       | 0.966968   |            |
| 32       |                    |             |                      |                        |               |                |                               |                |                  |                 |                 |                 |                    |              |         | c =           | 92%        |            |
| 33       |                    |             |                      |                        |               |                |                               |                |                  |                 |                 |                 |                    |              |         | b =           | 1.086559   |            |
| 34       |                    |             |                      |                        |               |                |                               |                |                  |                 |                 |                 |                    |              |         |               |            |            |
| 35       |                    |             |                      |                        |               |                |                               |                |                  |                 |                 |                 |                    |              |         |               |            |            |
| 36       |                    |             |                      |                        |               |                | -                             |                |                  |                 |                 |                 |                    |              |         |               |            |            |
| 37       |                    |             |                      |                        |               |                |                               |                |                  |                 |                 |                 |                    |              | ·       |               |            |            |
| 38       |                    |             |                      |                        |               |                |                               |                |                  |                 |                 |                 |                    |              |         |               |            |            |
| 40       |                    |             |                      |                        |               |                |                               |                |                  |                 |                 |                 |                    |              |         |               |            |            |
| 41       |                    |             |                      |                        |               |                |                               |                |                  |                 |                 |                 |                    |              |         |               |            |            |
| 42       |                    |             |                      |                        |               |                |                               |                |                  |                 |                 |                 |                    |              |         |               |            |            |
|          |                    |             |                      |                        |               |                |                               |                |                  |                 |                 |                 |                    |              |         |               |            |            |

|       | icrosoft     | Excel      |                   |                 |                  |                      |                |                   |             |                  |               |          |           |                                                        |
|-------|--------------|------------|-------------------|-----------------|------------------|----------------------|----------------|-------------------|-------------|------------------|---------------|----------|-----------|--------------------------------------------------------|
| Eile  | <u>E</u> dit | View Ins   | sert F <u>o</u> r | mat <u>T</u> or | ols <u>D</u> ata | a <u>W</u> indov     | v <u>H</u> elp | Ado <u>b</u> e Pl | DF          |                  |               |          |           | Type a question for help                               |
| 1D    |              | BIA        | ABC               | K L             | Co (3)           | - 3 1                | 7 - 14         | - 8 3             | E - ĝ↓ '    | <u>z</u> i   100 | 4 0           |          | Arial     | Narrow - 12 - B = = = 🔤 💩 - A - 🚆                      |
| :     |              |            | -                 |                 |                  |                      |                |                   |             |                  |               |          |           |                                                        |
| 1000  | 032          | -          | fx =              | STDEV           |                  |                      | ESS(RO)        | W(08)+I           | 2/5 (07))   |                  |               |          |           | H 3/5 O7))//STDEV/INDIRECT(ADDRESS(RO)//(P8)+L2/5 P7)) |
| ENE:  |              |            |                   | NDIREC          | TADDR            | ESS(RO)              | √(P8)+L        | .3/5,P7)))        | 15,57)      | INDINE           | CIGOD         | REDUK    | 0,,,(00)  |                                                        |
|       | GGB_2C       | ensus_ma   | ales, xian        |                 |                  |                      |                |                   | DI L        |                  | B             | 0        |           |                                                        |
| 1     |              | 4          |                   | Age range       | over which       | line to be fitt      | ed             | 191               | N IN        | 0                |               | U.       |           |                                                        |
| 2     | insuses:     | 13/06/2004 |                   | Lower age:      | =                |                      | 5              |                   |             |                  |               |          |           | 0.140                                                  |
| 3     | iod =        | 5.3479863  |                   | Upper age       | <u> </u>         |                      | 84             | <- must be        | e less than | 85               |               |          |           | 0.120                                                  |
| 4     |              | -          |                   |                 |                  |                      |                | -                 |             | x                | v             |          | Residuals | 0.100                                                  |
| 6     | 5 MM .       | P1(x+)     | P2(x+)            | D(x+)           | NM(x+)           | PYL(x+)              | N(x)           | n(x+)             | r(x+)-i(x+) | d(x+)            | =n(x+)-r(x    | a+bx     | y-(a+bx)  | T 0.080                                                |
| 7     | 6            | 7          | 8                 | 9               | 10               | 11                   | 12             | 13                | 14          | 15               | 16            | 17       | 18        | 1 ÷ 0.060                                              |
| 8     | 7,110        | 21434045   | 23348679          | 1568404         | 27153            | 119639203            | 3661000        | 0.00006           | #N/A        | 0.00000          | 0.00070       | -0.006   | 0.001     | 1 × 1000                                               |
| 9     | 893          | 16785973   | 18282293          | 1370432         | 19001            | 93686904             | 2551908        | 0.02363           | 0.01506     | 0.01201          | 0.00076       | 0.008    | 0.001     |                                                        |
| 11    | 12,800       | 14266988   | 15829955          | 1343719         | 18108            | 80370426             | 2712585        | 0.03375           | 0.01922     | 0.01672          | 0.01453       | 0.012    | 0.003     | - 0.020                                                |
| 12    | 21,982       | 11813832   | 13276662          | 1318246         | 5308             | 66977684             | 2574960        | 0.03845           | 0.02176     | 0.01968          | 0.01668       | 0.015    | 0.002     |                                                        |
| 13    | -12,172      | 9714415    | 10914143          | 1263286         | -16674<br>-4502  | 55067255<br>44554241 | 2209815        | 0.04013           | 0.02209     | 0.02294          | 0.01804       | 0.019    | -0.001    | -0.020 😤 😤 🗧 🦉 🦉 🦉 🖉                                   |
| 15    | 253          | 6220516    | 7005495           | 1014896         | -11805           | 35303918             | 1680587        | 0.04760           | 0.02257     | 0.02875          | 0.02503       | 0.025    | 0.000     | d(z+)                                                  |
| 16    | -4,373       | 4778859    | 5457310           | 868996          | -12058           | 27311257             | 1468157        | 0.05376           | 0.02528     | 0.03182          | 0.02847       | 0.028    | 0.000     |                                                        |
| 17    | -7,883       | 3545046    | 4150410           | 733060          | -7685            | 20513828             | 1248496        | 0.06086           | 0.02988     | 0.03573          | 0.03098       | 0.033    | -0.002    | Obr — Fitted                                           |
| 18    | -0,908       | 2577302    | 2158074           | 500893          | 6156             | 10562911             | 789998         | 0.06617           | 0.03127     | 0.04085          | 0.03490       | 0.038    | -0.003    |                                                        |
| 20    | 52           | 1255273    | 1449261           | 404039          | 8563             | 7213279              | 557537         | 0.07729           | 0.02571     | 0.05601          | 0.05159       | 0.055    | -0.003    | Residuals                                              |
| 21    | 1,897        | 810681     | 957391            | 314108          | 8511             | 4711508              | 447834         | 0.09505           | 0.02933     | 0.06667          | 0.06572       | 0.066    | 0.000     | 0.003 -                                                |
| 22    | 2,717        | 505846     | 563086            | 231266          | 6614             | 2854216              | 290495         | 0.10178           | 0.01774     | 0.08103          | 0.08404       | 0.082    | 0.002     |                                                        |
| 23    | 1,800        | 136776     | 157998            | 94359           | 2209             | 786177               | 117011         | 0.13132           | 0.02418     | 0.03300          | 0.10376       | 0.102    | 0.002     |                                                        |
| 25    | 408          | 45920      | 70299             | 46196           | 408              | 303855               |                |                   |             |                  |               |          |           | 0.001                                                  |
| 26    | 07.450       |            |                   |                 |                  |                      |                |                   |             |                  |               |          |           |                                                        |
| 27    | 27,153       |            |                   |                 | <u> </u> '       |                      |                |                   |             |                  | a =<br>k1&2 = | 0.006281 |           | -0.001                                                 |
| 29    |              |            |                   |                 |                  |                      |                |                   |             |                  | k1 =          | 0.966968 | •         | -0.002                                                 |
| 30    |              |            |                   |                 |                  |                      |                |                   |             |                  | k2 =          | 1        |           |                                                        |
| 31    |              |            |                   |                 | '                |                      |                |                   |             |                  | k1*k2 =       | 0.966968 |           |                                                        |
| 33    |              |            |                   |                 | <u> </u>         |                      |                |                   |             |                  | b =           | 1.086559 | •         | -0.004 J                                               |
| 34    |              |            |                   |                 |                  |                      |                |                   |             |                  |               |          |           |                                                        |
| 35    |              |            |                   |                 | <u> </u>         |                      |                |                   |             |                  |               |          |           |                                                        |
| 37    |              |            |                   |                 |                  |                      |                |                   |             |                  |               |          |           |                                                        |
| 38    |              |            |                   |                 | '                | 1                    |                |                   |             |                  |               |          |           |                                                        |
| 40    |              |            |                   |                 |                  |                      |                |                   |             |                  |               |          |           |                                                        |
| 41 42 |              |            |                   |                 |                  |                      |                |                   |             |                  |               |          |           |                                                        |
| 43    |              |            |                   |                 |                  | <u> </u>             |                |                   |             |                  |               |          |           |                                                        |
|       | • • • • •    | Introduc   | tion ∖M           | iethod <u>/</u> | Graphs           | /                    |                |                   |             |                  |               |          | <         |                                                        |
| Read  | У            |            |                   |                 |                  |                      |                |                   |             |                  |               |          |           | NUM                                                    |



- 1)Ideally we want all points to fall on the line.
- 2)If, right-hand points (for older age groups) are falling below the line → age exaggeration. >We must then lower the upper age limit so to exclude these points. Should do this progressively, by 5-year age groups, until all points are on line.
- 3)Recommended not to select a last age group ending in '0'



4) If left-hand points (younger age groups), particularly ages 15–30 are deviating from the line this likely indicates that our migration data are insufficient (or, if they are missing entirely, that there is indeed significant migration that we have missed). We should then raise the lower limit to age 30 or 35





Residuals should not exceed 0.01



#### GGB Method – Two census (6) Interpretation

Check the estimate of completeness of death reporting and reasonableness of the analysis

- Compare with the results for the opposite sex unless we have reason to believe that completeness will vary significantly by sex, should be fairly close
- Compare with results of Synthetic Extinct Generations approach (worksheets also available through IUSSP)

#### Synthetic Extinct Generations method (Bennett & Horiuchi)

- Used for estimating completeness of death registration, with different inputs
- Population at exact age, *N*, can be computed from registered deaths, *D*, and intercensal rates of increase *r*:

$$N(a) = \int_{a}^{\infty} D(x) e^{\int_{a}^{x} r(u) du} dx$$

• Software:

Ken Hill's spreadsheet, Death\_dist\_method all template.xls IUSSP Tools for Demographic Estimation's spreadsheet, AM\_SEG\_... .xls



# Cohort Survival Ratios Mortality and census coverage



# Cohort survival ratios

- This technique is based on a comparison of the size of birth cohorts enumerated in successive censuses
- In the absence of census errors, the ratio of the number of persons in a cohort enumerated in the second census to the number enumerated in the first census should approximate the survival rate that would be expected on the basis of mortality conditions
  - E.g. we have a cohort of males aged 40 44 at the time of the first census, say in 2000
  - If the next census is held exactly 10 years later, in 2010, this cohort will be aged 50 54
  - In the absence of other factors, we expect their numbers to have been reduced only by the life table quantity  $_{10}d_x = l_x l_{x+n}$ , the number of deaths to those aged x over the subsequent 10 years

Source: U.S. Census Bureau (1985); Moultrie et al. (2013)



# Cohort Survival Ratios: Caveats

The method is less useful when other factors make it difficult to determine whether deviations from the expected CSR are due to census error or something else

Substantial net migration (unless there are accurate estimates of net migration by age)

Changes in country borders between censuses

Changes in the population groups included in the two censuses (e.g. active military, nomadic groups) if the size of these groups is substantial



## Cohort Survival Ratios: DPR Korea



# Calculating CSRs (1)

Intercensal cohort survival rates are defined as:

$${}_{n}\text{CSR}_{x}(a) = \frac{{}_{n}P_{x+a}(t+a)}{{}_{n}P_{x}(t)}$$

Where:

- t = time of first census
- a = number of years between censuses
- $_{n}P_{x}(t) = size of the cohort at the time of the first census$
- $_{n}P_{x+a}$  (t+a) = size of the cohort at the time of the second census



# Calculating CSRs (2)

The ratio of the observed intercensal cohort survival rate to the corresponding life-table survival rate

$${}_{n}R_{x} = \frac{{}_{n}P_{x+a} (t+a) / {}_{n}P_{x} (t)}{{}_{n}L_{x+a} / {}_{n}L_{x}}$$

Where:

- $_{n}P_{x+a}$  (t+a) = size of the cohort at time of the second census
- $_{n}P_{x}(t) = size of the cohort at the time of the first census$
- ${}_{n}L_{x+a}$  = the life table number of person-years lived in the age interval x+a to x+a+n years
- ${}_{n}L_{x}$  = the life table number of person-years lived in the age interval x to x+n years



# Cohort Survival Ratio - Interpretation

In the <u>absence of census error</u>, the expected value of the ratio  $(\underline{nR_x})$  would be 1.0

Ratio values for any particular cohort which <u>exceed 1.0</u> would indicate <u>over-enumeration</u> of the cohort in the second census relative to the first census

Ratio values of <u>less than 1.0</u> would indicate <u>under-enumeration</u> of the cohort in the second census relative the first census



# Cohort survival ratios – Example (1)

#### Step 1: Adjustment for migration (if appropriate)

- In countries experiencing significant levels of net intercensal immigration, the number of net immigrants in each cohort may either added to the cohort enumerated in the first census or subtracted from the cohort enumerated in the second census
- In cohorts experiencing net intercensal emigration, the number of net intercensal emigrants can either added to the second census or subtracted from the first census
- Should be confident that migration data is reasonably accurate before making any adjustments



# Cohort survival ratios – Example (2)

# **Step 2:** Calculation of census survival rates using two consecutive censuses $_{n}P_{x+a}(t+a) / _{n}P_{x}(t)$

|             | icrosoft l            | xcel                 |                     |     |                   |                   |                     |             | E                  |         |
|-------------|-----------------------|----------------------|---------------------|-----|-------------------|-------------------|---------------------|-------------|--------------------|---------|
| Eile        | <u>E</u> dit <u>V</u> | jew <u>I</u> nsert F | ormat <u>T</u> ools | Da  | ta <u>W</u> indow | Help Ad           | b <u>b</u> e PDF    | T)          | ype a question for | help 💌  |
|             |                       | 2 3 3 3              | 8 11 X ID           |     | 🥑 🖂               | 7 - 04 - 16       | 2 - 31              | 31 I III 43 | 0                  | I A - 1 |
|             |                       |                      |                     |     |                   | 1/3               | 2 21                | A           |                    |         |
|             | 725 -                 |                      |                     |     |                   |                   |                     |             |                    |         |
|             | L15                   | ▼ fx                 |                     | _   |                   |                   |                     |             |                    |         |
| <u></u> 역 ( | SR.xls                |                      |                     |     |                   |                   |                     |             |                    |         |
|             | A                     | B                    | С                   | D   | E                 | F                 | G                   | Н           | 1                  |         |
| 1           | Brazi                 |                      |                     |     |                   |                   |                     |             |                    |         |
| 2           | B07 E                 | Populatio            | n hy age            |     | ex and            | Lurban/           | rural re            | sidence     |                    |         |
| <u> </u>    | 507.1                 | opulation            | i by age            | , 3 |                   |                   | rurai i c           | Sidefiee    |                    |         |
| 3           |                       |                      |                     |     |                   |                   |                     |             |                    |         |
|             |                       |                      | 0000                |     |                   | 0010              |                     | Cohort Su   | vival Ratio        |         |
| 4           |                       | I AUG                | ZUUU                |     | I AUG             |                   | Female              | 2000        | - 2010             |         |
| 5           | 0 4                   | Male<br>9.326.026    | Pennale             |     | 0 4               | Male<br>7.014.097 | Female<br>4 770 172 | Male        | remale             |         |
| 5           | 5 - 9                 | 9 402 252            | 8 1 20 0 7 4        |     | 5 - 9             | 7,010,907         | 7 245 221           |             |                    |         |
|             | 10.14                 | 8 777 639            | 8 570 428           |     | 10 14             | 8 725 413         | 8 441 348           | 1.0470      | 1.0499             |         |
|             | 15 - 19               | 9.019.130            | 8 920 685           |     | 15 - 19           | 8 558 868         | 8 432 002           | 1.0479      | 1.0466             |         |
| 10          | 20 - 24               | 8.048.218            | 8,093,297           |     | 20 - 24           | 8.630.227         | 8,614,963           | 0.0932      | 1.0359             |         |
| 11          | 25 - 29               | 6.814.328            | 7.035.337           |     | 25 - 29           | 8,460,995         | 8,643,418           | 0.9032      | 0.0680             |         |
| 12          | 30 - 34               | 6.363.983            | 6.664.961           |     | 30 - 34           | 7.717.657         | 8.026.855           | 0.9589      | 0.9009             |         |
| 13          | 35 - 39               | 5,955,875            | 6,305,654           |     | 35 - 39           | 6,766,665         | 7,121,916           | 0.9930      | 1.0123             |         |
| 14          | 40 - 44               | 5,116,439            | 5,430,255           |     | 40 - 44           | 6,320,570         | 6,688,797           | 0.9932      | 1.0036             |         |
| 15          | 45 - 49               | 4,216,418            | 4,505,123           |     | 45 - 49           | 5,692,013         | 6,141,338           | 0.9557      | 0.9739             |         |
| 16          | 50 - 54               | 3,415,678            | 3,646,923           |     | 50 - 54           | 4,834,995         | 5,305,407           | 0.9450      | 0.9770             |         |
| 17          | 55 - 59               | 2,585,244            | 2,859,471           |     | 55 - 59           | 3,902,344         | 4,373,875           | 0.9255      | 0.9709             |         |
| 18          | 60 - 64               | 2,153,209            | 2,447,720           |     | 60 - 64           | 3,041,034         | 3,468,085           | 0.8903      | 0.9510             |         |
| 19          | 65 - 69               | 1,639,325            | 1,941,781           |     | 65 - 69           | 2,224,065         | 2,616,745           | 0.8603      | 0.9151             |         |
| 20          | 70 - 74               | 1,229,329            | 1,512,973           |     | 70 - 74           | 1,667,373         | 2,074,264           | 0.7744      | 0.8474             |         |
| 21          | 75 - 79               | 780,571              | 999,016             |     | 75 - 79           | 1,090,518         | 1,472,930           | 0.6652      | 0.7585             |         |
| 22          | 80 - 84               | 428,501              | 607,533             |     | 80 - 84           | 668,623           | 998,349             | 0.5439      | 0.6599             |         |
| 23          | 85 - 89               | 208,088              | 326,783             |     | 85 - 89           | 310,759           | 508,724             | 0.3981      | 0.5092             |         |
| 24          | 90 - 94               | 65,117               | 115,309             |     | 90 - 94           | 114,964           | 211,595             | 0.2683      | 0.3483             |         |
| 25          | 95 - 99               | 19,221               | 36,977              |     | 95 - 99           | 31,529            | 66,806              | 0.1515      | 0.2044             |         |
| 26          | 100 +                 | 10,423               | 14,153              |     | 100 +             | 7,247             | 16,989              |             |                    |         |
| 27          |                       |                      |                     |     |                   |                   |                     |             |                    |         |
| 28          |                       | Sheet1 / Sheet       | 2 / Sheet3 /        |     |                   | I                 | <                   |             |                    |         |
|             |                       | A DIRECT & DIRECT    | 2 / 01/00/00 /      | _   |                   |                   |                     |             | 1                  |         |

# Cohort survival ratios – Example (3)

**Step 3:** Calculation of life table survival rates based on the expected level of mortality

nSx = (nLx + a / nLx)

**Step 4:** Calculation of cohort survival ratios (nRx)

| M    | crosoft Ex        | cel           |                     |                |                    |           |           |              |              |              |        |              |
|------|-------------------|---------------|---------------------|----------------|--------------------|-----------|-----------|--------------|--------------|--------------|--------|--------------|
| Eile | <u>E</u> dit ⊻iev | w Insert Fg   | ermat <u>T</u> ools | Data Window    | w <u>H</u> elp Add | bbe PDF   |           |              |              |              | Type a | question for |
| 1    | 2 🗐 🔁             | 13 3 49       | 11 × D              | 12-31          | 9 - 14 - 16        | Σ - 21    | XI   🛄 🛷  | 0 2          | Arial        | <b>~</b> 10  |        | 3 - A        |
|      |                   |               |                     |                |                    |           |           |              | 3/2          | Takes Inc.   |        |              |
|      | 4 -               |               |                     |                |                    |           |           |              |              |              |        |              |
| _    | 1.52              | • <i>j</i> ×  |                     |                |                    |           |           |              |              |              |        |              |
|      | en al-            |               |                     |                |                    |           |           |              |              |              |        |              |
| 38 ( | .SR.XIS           |               |                     |                |                    | -         |           |              |              |              |        |              |
|      | A                 | В             | C                   | DE             | F                  | G         | н         |              | J            | K            | L      | M            |
| 1    | Brazil            |               |                     |                |                    |           |           |              |              |              |        |              |
| 2    | B07 P             | opulation     | n by age            | sex an         | d urban            | rural re  | sidence   |              |              |              |        |              |
| 4    | 5011              | opulation     | i by uge            | , JUX UII      |                    | rururre   | Sideffee  |              |              |              |        |              |
| 3    |                   |               |                     |                |                    |           |           |              |              |              |        |              |
|      |                   |               |                     |                |                    |           | Cohort Su | rvival Ratio |              |              |        |              |
| 4    |                   | 1 Aug         | 2000                | 1 Aug          | 2010               |           | 2000      | - 2010       | Life Table S | urvival Rate | nF     | Rx .         |
| 5    |                   | Male          | Female              |                | Male               | Female    | Male      | Female       | Male         | Female       | Male   | Female       |
| 6    | 0 - 4             | 8,326,926     | 8,048,802           | 0 - 4          | 7,016,987          | 6,779,172 |           |              |              |              |        |              |
| 7    | 5 - 9             | 8,402,353     | 8,139,974           | 5 - 9          | 7,624,144          | 7,345,231 |           |              |              |              |        |              |
| 8    | 10.14             | 8,777,639     | 8,570,428           | 10.14          | 8,725,413          | 8,441,348 | 1.0479    | 1.0488       | 0.9623       | 0.9722       | 1.0889 | 1.0788       |
| 9    | 15 - 19           | 9,019,130     | 8,920,685           | 15 - 19        | 8,558,868          | 8,432,002 | 1.0186    | 1.0359       | 0.9954       | 0.9970       | 1.0234 | 1.0389       |
| 10   | 20 - 24           | 8,048,218     | 8,093,297           | 20 - 24        | 8,630,227          | 8,614,963 | 0.9832    | 1.0052       | 0.9887       | 0.9960       | 0.9944 | 1.0092       |
| 11   | 25 - 29           | 6,814,328     | 7,035,337           | 25 - 29        | 8,460,995          | 8,643,418 | 0.9381    | 0.9689       | 0.9771       | 0.9940       | 0.9601 | 0.9748       |
| 12   | 30 - 34           | 6,363,983     | 6,664,961           | 30 - 34        | 7,717,657          | 8,026,855 | 0.9589    | 0.9918       | 0.9703       | 0.9920       | 0.9883 | 0.9998       |
| 13   | 35 - 39           | 5,955,875     | 6,305,654           | 35 - 39        | 6,766,665          | 7,121,916 | 0.9930    | 1.0123       | 0.9668       | 0.9892       | 1.0271 | 1.0233       |
| 14   | 40 - 44           | 5,116,439     | 5,430,255           | 40 - 44        | 6,320,570          | 6,688,797 | 0.9932    | 1.0036       | 0.9611       | 0.9850       | 1.0334 | 1.0188       |
| 15   | 45 - 49           | 4,216,418     | 4,505,123           | 45 - 49        | 5,692,013          | 6,141,338 | 0.9557    | 0.9739       | 0.9511       | 0.9780       | 1.0048 | 0.9959       |
| 16   | 50 - 54           | 3,415,678     | 3,646,923           | 50 - 54        | 4,834,995          | 5,305,407 | 0.9450    | 0.9770       | 0.9352       | 0.9672       | 1.0105 | 1.0102       |
| 17   | 55 - 59           | 2,585,244     | 2,859,471           | 55 - 59        | 3,902,344          | 4,373,875 | 0.9255    | 0.9709       | 0.9133       | 0.9521       | 1.0134 | 1.0198       |
| 18   | 60 - 64           | 2,153,209     | 2,447,720           | 60 - 64        | 3,041,034          | 3,468,085 | 0.8903    | 0.9510       | 0.8810       | 0.9304       | 1.0105 | 1.0221       |
| 19   | 65 - 69           | 1,639,325     | 1,941,781           | 65 - 69        | 2,224,065          | 2,616,745 | 0.8603    | 0.9151       | 0.8367       | 0.8982       | 1.0282 | 1.0188       |
| 20   | 70 - 74           | 1,229,329     | 1,512,973           | 70 - 74        | 1,667,373          | 2,074,264 | 0.7744    | 0.8474       | 0.7778       | 0.8520       | 0.9956 | 0.9947       |
| 21   | 75 - 79           | /80,5/1       | 999,016             | 75 - 79        | 1,090,518          | 1,472,930 | 0.6652    | 0.7585       | 0.6930       | 0.7835       | 0.9600 | 0.9681       |
| 22   | 00 - 04           | 428,501       | 007,533             | 00 - 04        | 210 750            | 998,349   | 0.5439    | 0.6599       | 0.5844       | 0.6843       | 0.9307 | 0.9643       |
| 20   | 00 - 04           | 65 117        | 115 309             | 90 - 94        | 114 964            | 211 505   | 0.3981    | 0.5092       |              |              |        |              |
| 24   | 90 - 94           | 10 221        | 36 077              | 90 - 94        | 31 520             | 66 904    | 0.2683    | 0.3483       |              |              |        |              |
| 20   | 100 +             | 10.423        | 14,153              | 100 +          | 7.247              | 16,989    | 0.1515    | 0.2044       |              |              |        |              |
| 20   | 200 1             | 10,420        | 1-100               | 100 1          | 1,247              | 10,509    |           |              |              |              |        |              |
| 28   |                   |               |                     |                |                    |           |           |              |              |              |        |              |
| 29   |                   |               |                     |                |                    |           |           |              |              |              |        |              |
| 30   |                   |               |                     |                |                    |           |           |              |              |              |        |              |
| 31   |                   |               |                     |                |                    |           |           |              |              |              |        |              |
| 32   |                   |               |                     |                |                    |           |           |              |              |              |        |              |
| 33   |                   |               |                     |                |                    |           |           |              |              |              |        |              |
| 34   |                   |               |                     |                |                    |           |           |              |              |              |        |              |
| 35   |                   | B cotum / Dr  | onill T. / Chaori   | 12 / Chaota    | , <u> </u>         |           |           |              |              |              |        |              |
| • •  |                   | ak setup ( Br | aziini Yisheei      | iz ", sneets / |                    |           |           |              |              | ml           |        |              |



## Cohort survival ratios - Example (4)



# Cohort Survival: Uses and limitations

- It is a widely applicable approach for examining error in consecutive censuses
- Method requires relatively little information
  - Information on the level of fertility is not required since the method does not assess the coverage of the population born between two censuses
- Method is complicated by migration etc. as discussed
- When only two censuses are available, the method suffers from the limitations shared by many demographic methods, namely difficulties in separating census errors from real irregularities caused by extraordinary events
  - The utility of census survival approaches increases significantly when three or more censuses are available



# **Cohort Component Method**

Census coverage

#### Overview of cohort-component method





Smith, S., J. Tayman, and D. A. Swanson. 2001. State and Local Population Projections: Methodology and Analysis. New York: Kluwer Academic/Plenum Publishers.



# Cohort component method

- In this approach, the population enumerated in the first census is projected to the reference date of the second census based on estimated levels and age schedules of fertility, mortality and migration during the intercensal period
- The expected population from the projection is then compared with the actual population enumerated in the second census
- Data for intercensal births, deaths and migration are taken from estimates and/or assumptions regarding the level and age schedules of these parameters rather than directly available data based on registration systems

# Cohort component method – data required

- 1. The population enumerated in two censuses by age and sex
- 2. Age specific fertility rates for women aged 15 to 49 (in 5-year age groups), assumed to represent the level and age structure of fertility during the intercensal period
- 3. Life table survival rates for males and females, assumed to be representative of mortality conditions during the intercensal period
- 4. An estimate of sex ratio at birth
- 5. Estimates of the level and age pattern of net international migration during the intercensal period if the level of net migration is substantial

# Cohort component method – Unite overview of computational steps

- 1. "Survive" the age distribution at the initial census to the time of the second census
  - 1. Multiply each age group population by life table survival rates
  - 2. Open-ended interval requires special handling
- 2. Make any necessary adjustments for migration
- 3. Calculate the number of births during the period
  - Average initial and projected population for each age group between 15 – 49 to estimate mid-period female population
  - 2. Apply age-specific birth rates to these populations to generate total numbers of births during time period
  - 3. Apply sex ratio factor to get female and male births from total births
- 4. Apply life table survivorship to these births to determine number that survive to time of the second census
- 5. Compare the estimated female population by age group with the enumerated female population

#### Cohort component method – Steptel Nations Statistics Division (survive initial age distribution)

1. "Survive" the age distribution at the initial census to the time of the second census



| R N            | icrosoft E                              | ĸcel                       |                                     |                               |                   |             |           |                          |
|----------------|-----------------------------------------|----------------------------|-------------------------------------|-------------------------------|-------------------|-------------|-----------|--------------------------|
| Eile           | e <u>E</u> dit ⊻i                       | ew Insert Format           | <u>T</u> ools <u>D</u> ata <u>V</u> | <u>M</u> indow <u>H</u> elp A | do <u>b</u> e PDF |             |           | Type a question for help |
| 10             |                                         | 3 3 3 3                    | × • • • •                           | 3 9 - 14 -                    | S • 2↓ Z.         | l I 🛄 🛷 💿 🗌 | 🚆 🗄 Arial | • 10 •                   |
| :              | <del></del> -                           |                            |                                     |                               |                   |             |           | character strendly       |
| <u>• (671)</u> | 128                                     | - £                        |                                     |                               |                   |             |           |                          |
|                | 120                                     | • )x                       |                                     |                               |                   |             |           |                          |
| 8              | CSR vis                                 |                            |                                     |                               |                   |             |           |                          |
|                |                                         | D                          | C                                   | D                             | E                 | E           | C         |                          |
|                | Brazil                                  | D                          | U                                   | D                             | E.                | <u> </u>    | 6         |                          |
| 1              | Diazi                                   |                            |                                     |                               |                   |             |           |                          |
| 2              | B07 P                                   | opulation by               | / age, sex                          | and urbar                     | n/rural resi      | dence       |           |                          |
| 3              |                                         | 1                          |                                     |                               |                   |             |           |                          |
| -              |                                         |                            | meration                            | Life table (                  | احتشطت            | Evna        | cted      |                          |
|                |                                         | 1 Aug. 2000                | nner auorr                          | rates                         | sarvivar          | Dopulatio   | n in 2010 |                          |
| 4              |                                         | Male 2000                  | ,<br>Female                         | Male                          | Female            | Male        | Female    |                          |
| 6              | 0 - 4                                   | 8,326,926                  | 8,048,802                           |                               |                   |             |           |                          |
| 7              | 5 - 9                                   | 8,402,353                  | 8,139,974                           |                               |                   |             |           |                          |
| 8              | 10.14                                   | 8,777,639                  | 8,570,428                           | 0.99281                       | 0.99503           | 8.267.036   | 8.008.838 |                          |
| 9              | 15 - 19                                 | 9,019,130                  | 8,920,685                           | 0.99276                       | 0.99666           | 8,341,531   | 8,112,748 |                          |
| 10             | 20 - 24                                 | 8,048,218                  | 8,093,297                           | 0.98297                       | 0.99500           | 8,628,127   | 8,527,591 |                          |
| 11             | 25 - 29                                 | 6,814,328                  | 7,035,337                           | 0.97325                       | 0.99298           | 8,777,887   | 8,858,106 |                          |
| 12             | 30 - 34                                 | 6,363,983                  | 6,664,961                           | 0.96850                       | 0.99068           | 7,794,673   | 8,017,830 |                          |
| 13             | 35 - 39                                 | 5,955,875                  | 6,305,654                           | 0.96426                       | 0.98730           | 6,570,784   | 6,946,002 |                          |
| 14             | 40 - 44                                 | 5,116,439                  | 5,430,255                           | 0.95656                       | 0.98179           | 6,087,561   | 6,543,601 |                          |
| 15             | 45 - 49                                 | 4,216,418                  | 4,505,123                           | 0.94364                       | 0.97290           | 5,620,207   | 6,134,792 |                          |
| 16             | 50 - 54                                 | 3,415,678                  | 3,646,923                           | 0.92494                       | 0.96004           | 4,732,385   | 5,213,261 |                          |
| 17             | 55 - 59                                 | 2,585,244                  | 2,859,471                           | 0.89822                       | /                 |             | 8,528     |                          |
| 18             | 65 60                                   | 2,153,209                  | 2,447,720                           | 0.8600                        | 011               |             | 8,156     |                          |
| 19             | 70 - 74                                 | 1,039,323                  | 1,941,701                           | 0.80                          | Oldes             | st age      | 5,838     |                          |
| 20             | 75 - 79                                 | 780 571                    | 999.016                             | 0.1                           |                   | υ.          | ,940      |                          |
| 21             | 80+                                     | 731,350                    | 1 100 755                           | 1                             | group             | requir      | es ,,     |                          |
| 23             |                                         | /31,330                    | 1,100,733                           | - <                           | 0r                |             |           |                          |
| 24             |                                         |                            |                                     |                               | specia            | al          |           |                          |
| 25             |                                         |                            |                                     |                               | speen             | ~1          |           |                          |
| 26             |                                         |                            |                                     |                               | treatn            | nent        |           |                          |
| 27             |                                         |                            |                                     |                               | ucum              | iont        |           |                          |
| 28             | 4 N N V                                 | CB. cotum \ Chr+2          | Chanta / Burn                       |                               | <b></b>           | ,           |           |                          |
|                | • • • • • • • • • • • • • • • • • • • • | .sk setup χ <b>Sheet</b> 3 | A Sheet2 A Brazi                    |                               | •                 | \$          | 1111      |                          |
| Read           | y                                       |                            |                                     |                               |                   |             |           | NUM                      |

Cohort component method – Step 1 (survive initial age distribution)

2. For the oldest age category (open-ended)

$$_{w}S_{x} = \frac{_{w}T_{x+a}}{_{w}T_{x}}$$

w = the oldest age attainable in the population

a= the length of the projection interval

 $_{w}S_{x}$  = the life table survival ratio for the population aged x and above

 ${}_{w}T_{x}$  = the number of life table persons lived at ages x and above

 $_{W}T_{x+a}$  = the number of life table person-years lived at ages x+a and above

| 🗳 Mio | crosoft Ex               | cel                              |                                     |                       |                   |            |           | . 🗆 |
|-------|--------------------------|----------------------------------|-------------------------------------|-----------------------|-------------------|------------|-----------|-----|
| File  | <u>E</u> dit <u>V</u> ie | w <u>I</u> nsert F <u>o</u> rmat | <u>T</u> ools <u>D</u> ata <u>V</u> | ⊻indow <u>H</u> elp A | do <u>b</u> e PDF | Still n    | leed to   |     |
| 0     | i 🖬 🔓                    | 13 3 5 13                        | × 10 18 - 4                         | 1 - 1 - 1 -           | 😓 Σ 🔸 🛓           | Acti       | mata      |     |
| 2     | 2 -                      |                                  |                                     |                       |                   | CSUI       | mate      |     |
| 1     | G26                      | ▼ f×                             |                                     |                       |                   | vour       | ngest     |     |
| -     |                          |                                  |                                     |                       |                   | J =        | 1 1       |     |
| 휌 C   | SR.xls                   |                                  |                                     |                       |                   | cohort     | s based   |     |
|       | A                        | В                                | C                                   | D                     | E                 | an fanti   | liter dat | ~   |
| 1     | Brazil                   |                                  |                                     |                       |                   | on teru    | my data   | a / |
| 2     | B07 P                    | opulation by                     | age, sex                            | and urban             | /rural resi       | den        |           |     |
| 3     |                          |                                  |                                     |                       |                   |            |           |     |
| -     |                          | Conque Enu                       | moration                            | Life table (          | louin marine      | Evino      | stad      | _   |
|       |                          |                                  | nerauori                            | rates                 | Survivai          | Dopulation | nin 2010  |     |
| 4     |                          | Male                             | ,<br>Female                         | Male                  | Female            | Male       | Female    |     |
| 6     | 0 - 4                    | 8.326.926                        | 8.048.802                           | 11010                 | - onnaio          |            |           |     |
| 7     | 5 - 9                    | 8,402,353                        | 8,139,974                           |                       |                   |            |           |     |
| 8     | 10.14                    | 8,777,639                        | 8,570,428                           | 0.99281               | 0.99503           | 8,267,036  | 8,008,838 |     |
| 9     | 15 - 19                  | 9,019,130                        | 8,920,685                           | 0.99276               | 0.99666           | 8,341,531  | 8,112,748 |     |
| 10    | 20 - 24                  | 8,048,218                        | 8,093,297                           | 0.98297               | 0.99500           | 8,628,127  | 8,527,591 |     |
| 11    | 25 - 29                  | 6,814,328                        | 7,035,337                           | 0.97325               | 0.99298           | 8,777,887  | 8,858,106 |     |
| 12    | 30 - 34                  | 6,363,983                        | 6,664,961                           | 0.96850               | 0.99068           | 7,794,673  | 8,017,830 |     |
| 13    | 35 - 39                  | 5,955,875                        | 6,305,654                           | 0.96426               | 0.98730           | 6,570,784  | 6,946,002 |     |
| 14    | 40 - 44                  | 5,116,439                        | 5,430,255                           | 0.95656               | 0.98179           | 6,087,561  | 6,543,601 |     |
| 15    | 45 - 49                  | 4,216,418                        | 4,505,123                           | 0.94364               | 0.97290           | 5,620,207  | 6,134,792 |     |
| 16    | 50 - 54                  | 3,415,678                        | 3,646,923                           | 0.92494               | 0.96004           | 4,732,385  | 5,213,261 |     |
| 17    | 55 - 59                  | 2,585,244                        | 2,859,471                           | 0.89822               | 0.94193           | 3,787,266  | 4,243,528 |     |
| 18    | 60 - 64                  | 2,153,209                        | 2,447,720                           | 0.86007               | 0.91534           | 2,937,715  | 3,338,156 |     |
| 19    | 65 - 69                  | 1,639,325                        | 1,941,781                           | 0.80924               | 0.87668           | 2,092,085  | 2,506,838 |     |
| 20    | 70 - 74                  | 1,229,329                        | 1,512,973                           | 0.73828               | 0.82033           | 1,589,662  | 2,007,940 |     |
| 21    | 75 - 79                  | 780,571                          | 999,016                             | 0.64175               | 0.73737           | 1,052,036  | 1,431,809 |     |
| 22    | 80+                      | 731,350                          | 1,100,755                           | 0.39246               | 0.43807           | 482,460    | 662,789   |     |
| 23    |                          |                                  |                                     |                       |                   |            |           |     |
| 1     |                          |                                  |                                     |                       |                   |            |           |     |
| 24    |                          |                                  |                                     |                       |                   |            |           |     |

#### Cohort component method – Step 2 (adjust for migration)

- If net international migration is substantial, the "survived" cohort population must be adjusted to reflect the effects of migration
- The introduction of net migrants by age group at the mid-point of the projection period and the survival of net migrants to the end of the period:

$$_{n}\hat{M}_{x+i} = \frac{1}{4} M_{x} (1 + N_{x}) + \frac{1}{4} M_{x+i} (1 + N_{x+i})$$

**Assumptions:** i) An equal distribution of net migrants across years of the intercensal period, ii) Migrants have the same fertility and mortality level as the enumerated population



 Calculate the average number of women in each childbearing age group (15 – 49) during the intercensal period in order to estimate the number of births during the projection period

$$_{n}\overline{P}_{x} = \frac{_{n}P^{0}_{x} + _{n}P^{1}_{x}}{2}$$

 $_{n}P_{x}$  = average number of females aged x to x+n in the projection period  $_{n}P_{x}^{0}$  = number of females aged x to x+n at the beginning of the projection period  $_{n}P_{x}^{1}$  = projected number of females aged x to x+n at the end of the projection period

#### Cohort component method – Step 3 (calculate births)

- 2. Calculate total births during the period
  - $B = \sum_{x=1}^{49} (n P_x * n f_x) \text{ for 1-year projection}$
  - $B = 5 * \sum_{x=15}^{\infty} (n P_x * n f_x)$  for 5-year projection period
  - B = the estimated number of births during the projection period
- $n P_x$  = the average number of women in the age group x to x+n years during the projection period
- $n_x = the age specific fertility rate (per woman) for women age x to x+n years during the projection period$

| Mio   | crosoft Ex               | cel                |                               |                          |                  |                        |         |    |
|-------|--------------------------|--------------------|-------------------------------|--------------------------|------------------|------------------------|---------|----|
| File  | <u>E</u> dit <u>V</u> ie | w <u>I</u> nsert I | F <u>o</u> rmat <u>T</u> ools | <u>D</u> ata <u>W</u> in | dow <u>H</u> elp | Adobe PDF              |         |    |
| Σ.    | 🔛 🗄 Arial                |                    | • 10 • 1                      | B I U                    | EII              |                        | · 3 · 1 | γ. |
|       |                          |                    | local local local             | _                        |                  | ويعتبر المعالي المتيار |         |    |
| 시 1   | -                        |                    |                               |                          |                  |                        |         |    |
| 1     | -115                     | ▼ fx               |                               |                          |                  |                        |         | _  |
| 16. / | 'CD sele                 |                    |                               |                          |                  |                        |         |    |
|       | JR. XIS                  | 1 - 2              |                               |                          | -                |                        |         |    |
|       | A                        | В                  | C                             | 0                        | E                | F                      | G       |    |
| 1     | Brazil Co                | hort Comp          | onent Metho                   | 1 - Fertilit             | y Calculati      | ons                    |         |    |
| 4     | -                        | 1.                 | ц. — И                        | Mid-                     |                  |                        |         |    |
|       |                          | Female             | Female pop                    | period                   |                  |                        |         |    |
|       |                          | pop 2000           | 2005                          | female                   |                  | -                      |         |    |
| 3     | 15 10                    | (actual)           | (projected)                   | рор                      | ASER             | Births                 |         |    |
| 4     | 15 - 19                  | 8,920,685          | 8,553,526                     | 8,737,106                | 0.0860           | 3,756,999              |         |    |
| 5     | 20 - 24                  | 8,093,297          | 8,893,637                     | 8,493,467                | 0.1311           | 5,567,468              |         |    |
| 6     | 25 - 29                  | 7,035,337          | 8,060,964                     | 7,548,150                | 0.1109           | 4,185,449              |         |    |
| 7     | 30 - 34                  | 6,664,961          | 6,997,692                     | 6,831,326                | 0.0690           | 2,356,842              |         |    |
| 8     | 35 - 39                  | 6,305,654          | 6,615,729                     | 6,460,692                | 0.0375           | 1,211,315              |         |    |
| 9     | 40 - 44                  | 5,430,255          | 6,236,906                     | 5,833,581                | 0.0130           | 379,124                |         |    |
| 10    | 45 - 49                  | 4,505,123          | 5,341,348                     | 4,923,236                | 0.0026           | 64,051                 |         |    |
| 11    |                          |                    |                               |                          |                  | 17,521,248             |         |    |
| 12    |                          |                    |                               |                          |                  |                        |         |    |
| 13    |                          |                    |                               |                          |                  |                        |         |    |
| 14    |                          |                    |                               |                          |                  |                        |         |    |
| 15    |                          |                    |                               |                          |                  |                        |         |    |
| •     | • • • <u>K</u> _         | Brazil mid-pro     | jection / Moi                 | rtPak Outpu              | t / <            |                        |         | >  |
| adv   |                          |                    |                               |                          |                  | NI                     | M       |    |



3. Calculate proportion of male and female births



#### Cohort component method – Step 4 (survive intercensal births)

 Apply life table survivorship to these births to determine number that survive to time of the second census

$${}_{5}P_{0}^{f} = B_{5}^{f} * {}_{5}S_{0}$$
  
 ${}_{5}S_{0} = 484,129/500,000 = .968$   
 ${}_{5}P_{0}^{f} = .968 * 8,550,369 = 8,276,757$   
 ${}_{5}S_{0} = \frac{{}_{5}L_{0}}{5 * I_{0}}$ 



Final step in procedure is to compare the enumerated population by age and sex in the second population with the expected population





# Cohort component method in MortPak (1)

| 50 MORTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AK FOR            | WINI                    | o w s              |                                                                                                                    |                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------|----------------------|
| Eile Edit Vier                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | w Application     | n <u>R</u> un ⊆         | hart Window        | telo                                                                                                               |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 😼 🍻 👗             |                         | s 🦧 📊 🖉            | <b>a</b>                                                                                                           |                      |
| Selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | application       | is PROJC                | T (Brazil_PROJ     | CT.mpl)                                                                                                            |                      |
| Input File Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e: C:\Docu        | uments and !            | Settings\Maia.Siev | arding\My_Documents\Census Eval                                                                                    | Data Entry Help      |
| When last upd                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ated: 01 Augu     | ust 2012                |                    |                                                                                                                    | Show Document Output |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                         |                    | Single-year population projection based on cohort-component technique.                                             |                      |
| TITLE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Brazil 2000 - 2   | 010                     |                    | B MORTPAK for Windows (version 4.0)                                                                                |                      |
| Year of B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ase Population    | (4 digits):             | 2000               |                                                                                                                    | ~                    |
| M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | onth of Base Po   | opulation:              | August             | Data required for PROJC1                                                                                           | Migration            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Day of Base Po    | opulation:              | 01                 | Tiste A day devices a function of the second second second distributed in the bandling second second second second | Females              |
| Display/Print P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Projection Resul  | rojection:<br>Its Every | 2010<br>1 Ve       | The. A data description of up to 40 characters, to be included in the heading at the top of the page of output.    |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                         |                    | Year of base population: Indicates the year for the starting date of the projection; for example, 1985             | 0                    |
| Open Age Gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | oup of Base Po    | opulation:              | 80+                |                                                                                                                    |                      |
| Sex F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Ratio at Birth (e | .g. 1.05):              | 1.05               | Month of base population: Indicates the month for the starting date of the projection.                             |                      |
| Title                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | for User Define   | e Pattern:<br>ed Model: | Brazil LT          |                                                                                                                    | 0                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                         |                    | Day of base population: Indicates the day of the month for the starting date of the projection. Value must be b    | etween 1             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                         |                    | and 31.                                                                                                            |                      |
| Enter data bel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ow only if "Use   | er-Defined M            | odel"              |                                                                                                                    |                      |
| was selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | as the model in   | re table path           | ern.               | End year of projection: indicates the ending year of the projection, for example 2000.                             |                      |
| User Defin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ed Model q(x,n)   | ) Values                |                    | Display/print projection results every x years. Indicates the print cycle for the projection results. For examp    | le if a              |
| Age Group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Males             | Females                 |                    | value of 5 is given, projections results are printed every fifth projection year.                                  |                      |
| 0 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.02957           | 0.02183                 |                    |                                                                                                                    |                      |
| 1 - 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00625           | 0.00460                 | ,                  | Final open-age group of base population: Indicates the final open-age group for the male and female populat        | tion. The            |
| 10-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00246           | 0.00145                 | 5                  | population open-age group must be at a minimum of 65+ and at a maximum of 85+.                                     |                      |
| 15 - 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.00882           | 0.00256                 | 6                  |                                                                                                                    |                      |
| 20 - 25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01422           | 0.00347                 |                    |                                                                                                                    |                      |
| 25 - 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01571           | 0.00458                 | 3                  | Sex ratio at birth: Sex ratio at birth (e.g., 1.05). The sex ratio at birth must be between 0.75 and 1.5.          |                      |
| 30 - 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.01776           | 0.00623                 |                    |                                                                                                                    |                      |
| 40 - 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.02796           | 0.01334                 |                    | Model life-table pattern: Indicates the model life-table pattern to be used. The choices are:                      |                      |
| 45 - 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.03793           | 0.01975                 | 5                  |                                                                                                                    |                      |
| 50 - 55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.05068           | 0.02876                 | 5                  | User-defined model                                                                                                 |                      |
| 55 - 60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.07192           | 0.04206                 | 5                  | United Nations Latin American model                                                                                |                      |
| 60 - 65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.09849           | 0.06237                 |                    | United Nations Chilean                                                                                             |                      |
| 70 - 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.19677           | 0.13768                 | 3                  | United Nations South Asian                                                                                         |                      |
| 75 - 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.27248           | 0.20644                 |                    | United Nations Far East Asian                                                                                      |                      |
| 80 - 85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |                         |                    | Contract Nations general                                                                                           |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                         |                    | Coale-Demeny West                                                                                                  |                      |
| Derived e(0)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 67.95000          | 75.62000                |                    | Coale – Demeny North                                                                                               |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                         |                    | Coale – Demeny East<br>Micraion Pattern by Age and Sex                                                             |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |                         |                    |                                                                                                                    |                      |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                         | - 100              |                                                                                                                    |                      |
| Status                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                   |                         |                    | 01                                                                                                                 | /08/2012 10:59 AM    |
| and the second se |                   |                         |                    |                                                                                                                    |                      |



# Cohort component method in MortPak (2)

| 2 🖬 🧔           | 3 📾 🕺 🕻         | ) <b>B B</b> .   | & III #               |                   |             |                  |                |            |                  |        |          |           |               |          |
|-----------------|-----------------|------------------|-----------------------|-------------------|-------------|------------------|----------------|------------|------------------|--------|----------|-----------|---------------|----------|
| Selected a      | pplication i    | is PROJCT (B     | razil_PROJCT.mp       | 1)                |             |                  |                |            |                  |        |          |           |               |          |
| ut File Name:   | C:\Docu         | ments and Settir | ngs\Maia.Sieverding\M | y Documents\Censu | s Eval      |                  |                |            |                  |        |          |           | Data Entry    | Help     |
| en last upda    | ted: 01 Augu    | st 2012          |                       |                   |             |                  |                |            |                  |        |          | s         | how Documer   | nt Outpu |
|                 |                 |                  |                       | Single-ye         | ar populati | on projectio     | h based on     | cohort-com | ponent tech      | nique. |          |           |               |          |
| 3               |                 |                  |                       | St. Contract      |             |                  |                |            |                  |        |          | 3         |               |          |
|                 |                 |                  |                       |                   |             |                  |                |            |                  |        |          |           |               |          |
| LECT YEAR       | TO DISPLAY:     | 2010             |                       |                   |             |                  |                |            |                  |        |          |           |               |          |
| Population b    | v single vear d | 2000             | 010                   |                   | Popula      | ation in five-ve | ar age groups: | 1 Aug 2010 | 1                |        |          | Vital Sta | istics Summar | rv: 1 A  |
| r openation i b | , on gio your i | 2002             |                       |                   | , open      |                  | ar ago groapo. | ,          |                  |        |          | The Creat | .ouoo oummu   | a. eus   |
| Age             | Males           | 2003             | Total                 |                   | Ab          | solute Number:   | 5              | Per        | cent Distributio | n      |          | Abs       | olute Number: | s        |
| 0               | 1565532         | 2004             | 3064476               | Age               | Males       | Females          | Total          | Males      | Females          | Total  |          | Males     | Females       | Tota     |
| 1               | 1584282         | 2006             | 3103533               |                   |             |                  |                |            |                  |        |          |           |               |          |
| 2               | 1605520         | 2007             | 3146146               | 0                 | 8023614     | 7696333          | 15719947       | 8.56       | 7.92             | 8.23   | Births   | 1604739   | 1528323       | 31330    |
| 3               | 1625500         | 2009             | 3185772               | 5                 | 8357924     | 8029750          | 16387673       | 8.91       | 8.26             | 8.58   | Deaths   | 720370    | 567093        | 12874    |
| 4               | 1642779         | 2010             | 3220021               | 10                | 8268591     | 8006239          | 16274830       | 8.82       | 8.24             | 8.52   | Migrants | 0         | 0             |          |
| 5               | 1656938         | 1591187          | 3248125               | 15                | 8344680     | 8111077          | 16455757       | 8.90       | 8.34             | 8.62   | Growth   | 884368    | 961230        | 18455    |
| 7               | 1667571         | 1601720          | 3259291               | 20                | 0542999     | 0524049          | 17167646       | 9.22       | 0.77             | 0.33   |          |           |               |          |
| , 8             | 1678745         | 1613172          | 3291916               | 20                | 7780340     | 8012890          | 15793231       | 8.30       | 8.24             | 3.23   |          |           |               |          |
| 9               | 1679918         | 1614710          | 3294629               | 35                | 6569571     | 6941450          | 13511021       | 7.01       | 7.14             | 7.07   |          |           |               |          |
| 10              | 1684197         | 1635607          | 3319803               | 40                | 6107912     | 6538418          | 12646330       | 6.51       | 6.73             | 6.62   |          |           |               |          |
| 11              | 1661670         | 1608936          | 3270606               | 45                | 5655145     | 6130654          | 11785798       | 6.03       | 6.31             | 6.17   |          |           |               |          |
| 12              | 1645464         | 1591492          | 3236956               | 50                | 4764478     | 5208109          | 9972587        | 5.08       | 5.36             | 5.22   |          |           |               |          |
| 13              | 1638228         | 1584303          | 3222531               | 55                | 3807072     | 4233113          | 8040185        | 4.06       | 4.35             | 4.21   |          |           |               |          |
| 14              | 1639033         | 1585902          | 3224934               | 60                | 2945144     | 3323514          | 6268658        | 3.14       | 3.42             | 3.28   |          |           |               |          |
| 15              | 1645799         | 1594045          | 3239844               | 65                | 2082686     | 2489215          | 4571901        | 2.22       | 2.56             | 2.39   |          |           |               |          |
| 16              | 1656482         | 1606666          | 3263148               | 70                | 1570776     | 1990428          | 3561204        | 1.67       | 2.05             | 1.86   |          |           |               |          |
| 17              | 1668859         | 1621545          | 3290403               | 75                | 1037225     | 1428460          | 2465685        | 1.11       | 1.47             | 1.29   |          |           |               |          |
| 18              | 1607/18         | 1636893          | 3318011               | 80+               | 1040648     | 1693633          | 2734281        | 1.11       | 1.74             | 1.43   |          |           |               |          |
| 20              | 1702988         | 1666946          | 3369935               | Total             | 93778618    | 97211031         | 190989649      | 100.00     | 100.00           | 100.00 |          |           |               |          |
| 21              | 1713949         | 1683188          | 3397136               | .0.01             |             | 2.211001         |                | .00.00     | .00.00           |        |          |           |               |          |
| 22              | 1726848         | 1702295          | 3429144               |                   |             |                  |                |            |                  |        |          |           |               |          |
| 23              | 1742078         | 1724737          | 3466816               |                   |             |                  |                |            |                  |        |          |           |               |          |
| 24              | 1757136         | 1747683          | 3504818               |                   |             |                  |                |            |                  |        |          |           |               |          |
| 25              | 1772688         | 1771566          | 3544254               |                   |             |                  |                |            |                  |        |          |           |               |          |
| 26              | 1781731         | 1788976          | 3570707               |                   |             |                  |                |            |                  |        |          |           |               |          |
| 27              | 1774798         | 1790055          | 3564853               |                   |             |                  |                |            |                  |        |          |           |               |          |
| 28              | 1747069         | 1769632          | 3516701               |                   |             |                  |                |            |                  |        |          |           |               |          |
| 29              | 1/03527         | 1732670          | 3436196               |                   |             |                  |                |            |                  |        |          |           |               |          |
| 30              | 1608504         | 1690529          | 3346113               |                   |             |                  |                |            |                  |        |          |           |               |          |
| 32              | 1558184         | 1604283          | 3162468               |                   |             |                  |                |            |                  |        |          |           |               |          |
| 33              | 1505567         | 1557876          | 3063443               |                   |             |                  |                |            |                  |        |          |           |               |          |
| 0.0             | 1450444         |                  |                       |                   |             |                  |                |            |                  |        |          |           |               |          |



#### Brazil Example with MortPak - Results

| 3 Mi | crosoft Ex | ccel                              |                                             |                                 |                       |                     |            |                                         |                       |      |
|------|------------|-----------------------------------|---------------------------------------------|---------------------------------|-----------------------|---------------------|------------|-----------------------------------------|-----------------------|------|
| File | Edit Vie   | ew <u>I</u> nsert F <u>o</u> rmat | <u>T</u> ools <u>D</u> ata <u>W</u> indov   | w <u>H</u> elp Ado <u>b</u> e F | PDF                   |                     |            |                                         | Type a question for h | nelp |
| D    |            | 1 2 3 1 49 13                     | X 🗈 🙉 - 🛷 🗆                                 | 9 - (4 - 1 9.)                  | Σ - \$1 ₹1   ∰ .      | al (a) 📲            | Verdana    | • 9 • <b>B</b>                          | ≡ ≡   <u></u>         | •    |
|      |            |                                   |                                             |                                 |                       |                     |            | ALL |                       |      |
| Ð    | © M        | 🖞 🛛 🏠 🔍 Favorites                 | *   <u>G</u> o *   📰   <mark>C:\Doci</mark> | uments and Settings             | \Maia.Sieverding\My D | ocuments\Censu: 💌 🗧 | 8          |                                         |                       |      |
| 7    | 17 -       |                                   |                                             |                                 |                       |                     |            |                                         |                       |      |
|      | 122        | ✓ fx =(G22                        | VE22)*100                                   |                                 |                       |                     |            |                                         |                       |      |
|      |            | - <u></u>                         |                                             |                                 |                       |                     |            |                                         |                       |      |
| li C | SR.xls     |                                   |                                             |                                 |                       |                     |            |                                         |                       |      |
| 1    | A          | В                                 | C                                           | D                               | E                     | F                   | G          | н                                       | 1                     | G.   |
|      |            |                                   |                                             |                                 |                       | Ab a sluta D        |            | Beweent Differen                        | an (Abraluta          | -    |
| 1    |            | Acutal Enumorat                   | ion 10 Aug 2010                             | MortDak D                       | Projections           | (Enumerated -       | Expected)  | Difference / Evo                        | acted *100)           |      |
| -    |            | Male                              | Female                                      | Male                            | Female                | (Enginerated        | Expected)  | Difference/Lxp                          | ected 100)            |      |
| 2    | Age        | Enumerated                        | Enumerated                                  | Projected                       | Projected             | Male                | Female     | Male                                    | Female                |      |
| 3    | 0-4        | 7,016,987                         | 6,779,172                                   | 8,023,614                       | 7,696,333             | -1,006,627          | -917,161   | -12.5                                   | -11.9                 |      |
| 4    | 5-9        | 7,624,144                         | 7,345,231                                   | 8,357,924                       | 8,029,750             | -733,780            | -684,519   | -8.8                                    | -8.5                  |      |
| 5    | 10.14      | 8,725,413                         | 8,441,348                                   | 8,268,591                       | 8,006,239             | 456,822             | 435,109    | 5.5                                     | 5.4                   |      |
| 6    | 15 - 19    | 8,558,868                         | 8,432,002                                   | 8,344,680                       | 8,111,077             | 214,188             | 320,925    | 2.6                                     | 4.0                   |      |
| 7    | 20 - 24    | 8,630,227                         | 8,614,963                                   | 8,642,999                       | 8,524,849             | -12,772             | 90,114     | -0.1                                    | 1.1                   |      |
| 8    | 25 - 29    | 8,460,995                         | 8,643,418                                   | 8,779,813                       | 8,852,899             | -318,818            | -209,481   | -3.6                                    | -2.4                  |      |
| 9    | 30 - 34    | 7,717,657                         | 8,026,855                                   | 7,780,340                       | 8,012,890             | -62,683             | 13,965     | -0.8                                    | 0.2                   |      |
| 10   | 35 - 39    | 6,766,665                         | 7,121,916                                   | 6,569,571                       | 6,941,450             | 197,094             | 180,466    | 3.0                                     | 2.6                   |      |
| 11   | 40 - 44    | 6,320,570                         | 6,688,797                                   | 6,107,912                       | 6,538,418             | 212,658             | 150,379    | 3.5                                     | 2.3                   |      |
| 12   | 45 - 49    | 5,692,013                         | 6,141,338                                   | 5,655,145                       | 6,130,654             | 36,868              | 10,684     | 0.7                                     | 0.2                   |      |
| 3    | 50 - 54    | 4,834,995                         | 5,305,407                                   | 4,764,478                       | 5,208,109             | 70,517              | 97,298     | 1.5                                     | 1.9                   |      |
| 4    | 55 - 59    | 3,902,344                         | 4,373,875                                   | 3,807,072                       | 4,233,113             | 95,272              | 140,762    | 2.5                                     | 3.3                   |      |
| 15   | 60 - 64    | 3,041,034                         | 3,468,085                                   | 2,945,144                       | 3,323,514             | 95,890              | 144,571    | 3.3                                     | 4.3                   |      |
| 16   | 65 - 69    | 2,224,065                         | 2,616,745                                   | 2,082,686                       | 2,489,215             | 141,379             | 127,530    | 6.8                                     | 5.1                   |      |
| 17   | 70 - 74    | 1,667,373                         | 2,074,264                                   | 1,570,776                       | 1,990,428             | 96,597              | 83,836     | 6.1                                     | 4.2                   |      |
| 18   | 75 - 79    | 1,090,518                         | 1,472,930                                   | 1,037,225                       | 1,428,460             | 53,293              | 44,470     | 5.1                                     | 3.1                   |      |
| 19   | 80+        | 668,623                           | 998,349                                     | 1,040,648                       | 1,693,633             | -372,025            | -695,284   | -35.7                                   | -41.1                 |      |
| 20   | Total      | 92,942,491                        | 96,544,695                                  | 93,778,618                      | 97,211,031            | -836,127            | -666,336   | -0.9                                    | -0.7                  |      |
| 21   |            |                                   |                                             |                                 |                       |                     |            |                                         |                       |      |
| 22   | Combine    | d Sex                             |                                             |                                 | 190,989,649           |                     | -1,502,463 | L                                       | -0.8                  |      |
| 23   |            |                                   |                                             |                                 |                       |                     |            |                                         |                       | _    |
| 24   |            |                                   |                                             |                                 |                       |                     |            |                                         |                       |      |
| 20   |            | CD anti un / Duc-4 Co             |                                             | dentDali Dutront                | ( Fautility Calco /   |                     |            |                                         |                       |      |
| •    |            | ok setup y Brazil Co              | norr component <u></u> Xr                   | чогсеак оссрот                  | . A Hertility calos ( |                     |            |                                         |                       |      |
| adv  |            |                                   |                                             |                                 |                       |                     |            |                                         | NUM                   |      |



# Brazil Example with MortPak - Results



# Main findings from Brazil example

- Suggests underenumeration by about 1.5 million people, or 0.8% of the population
- Significant underenumeration of youngest two age groups, particularly children 0 - 4
- Some overenumeration of 10 14 year olds could be a result of the underenumeration of this group (as 0 4 year olds) in the original census in 2000
- Seeing same under-enumeration of 25 29 year olds of both sexes as when we calculated by hand needs to be explored
- Consistent but fairly low level of overenumeration of adults age 35 – 39 to 75 – 79

Could potentially indicate in-migration, ideally want to incorporate migration data

Significant overenumeration of older people

Very likely that there is age exaggeration

Also might consider that our life table is not accurate for these ages

# Kenya (1) – 2009 census

| e <u>E</u> dit <u>V</u> | jew <u>I</u> nsert | Format <u>T</u> o | iols <u>⊂</u> hart <u>y</u> | <u>W</u> indow <u>H</u> elp | Ado <u>b</u> e PDF |              |                     |               |                    | Type a questi | ion for help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------|--------------------|-------------------|-----------------------------|-----------------------------|--------------------|--------------|---------------------|---------------|--------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                         |                    | ABS 69 1 X        |                             | s - c+ -                    | 1 @ Σ - Å          | 1 31 1 40 23 |                     | : Arial       | + 11.5 +           |               | - A -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                         |                    | 4 139 04          |                             |                             | 1,500 - 1          |              |                     |               |                    |               | and the second s |
| - 25                    | -                  |                   |                             |                             |                    |              |                     |               |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| hart Area               | ▼ f:               | *                 |                             |                             |                    |              |                     |               |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Cohort_co               | mponent.xl         | 5                 |                             |                             |                    |              |                     |               |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A                       | В                  | С                 | D                           | E                           | F                  | G            | Н                   | 1             | J                  | K             | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Kenya C                 | ohort Comp         | onent Ana         | lysis 1999 -                | 2009                        |                    |              |                     |               |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 91                      |                    |                   | 1. million 1                | 1                           |                    |              |                     |               |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -                       | 4                  |                   |                             |                             |                    |              |                     |               |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Enumerated Dan 1 From   |                    |                   | Enumerated                  | Dep 24 Aug                  |                    |              | Abcoluto Difforence |               | Percent Difference |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Ade                     | Ind 1              | 999               | 20                          | 1 POP 24 AUG<br>109         | MortPak P          | Projections  | (Enumerated         | I - Expected) | Difference/Ex      | merted *100)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Age                     |                    |                   |                             |                             | Thore on T         | rejections   | (Lindinor dece      | . Enported,   | Difference, E      | pottod 100/   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Group                   | Male               | Female            | Male                        | Female                      | Male               | Female       | Male                | Female        | Male               | Female        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0-4                     | 2,342,576          | 2,366,559         | 3,617,282                   | 3,543,961                   | 3,516,567          | 3,362,901    | 100,715             | 181,060       | 2.9                | 5.4           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5-9                     | 1,987,900          | 2,028,015         | 2,832,669                   | 2,765,047                   | 3,010,305          | 2,863,182    | -177,636            | -98,135       | -5.9               | -3.4          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 10.14                   | 1,995,510          | 2,034,447         | 2,565,313                   | 2,469,542                   | 2,272,991          | 2,287,239    | 292,322             | 182,303       | 12.9               | 8.0           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15 - 19                 | 1,740,730          | 1,020,019         | 2,123,053                   | 2,045,690                   | 1,956,541          | 2,000,494    | 167,112             | 45,396        | 8.5                | 2.3           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 20 - 24                 | 1,124,732          | 1,280,910         | 1,529,116                   | 1.672.110                   | 1,957,961          | 1,997,245    | -203,050            | - 23,753      | -10,4              | -5.2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 30 - 34                 | 885.768            | 940.088           | 1,257,035                   | 1,262,471                   | 1,320,253          | 1 491 082    | -63,218             | -228.611      | -4.8               | -15.3         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 35 - 39                 | 703,401            | 728,140           | 1,004,361                   | 1,004,271                   | 1.059.470          | 1,212,626    | -55.109             | -208,355      | -5.2               | -17.2         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 40 - 44                 | 534,186            | 551,737           | 743,594                     | 732,575                     | 821,909            | 886,654      | -78,315             | -154,079      | -9.5               | -17.4         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 45 - 49                 | 418,546            | 431,630           | 635,276                     | 637,469                     | 642,699            | 685,708      | -7,423              | -48,239       | -1.2               | -7.0          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 50 - 54                 | 322,763            | 334,748           | 478,346                     | 477,860                     | 478,976            | 517,700      | -630                | -39,840       | -0.1               | -7.7          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 55 - 59                 | 254,342            | 270,412           | 359,466                     | 352,487                     | 364,886            | 400,689      | -5,420              | -48,202       | -1.5               | -12.0         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 60 - 64                 | 199,299            | 227,383           | 295,197                     | 298,581                     | 268,479            | 303,404      | 26,718              | -4,823        | 10.0               | -1.6          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 65 - 69                 | 155,091            | 180,878           | 183,151                     | 207,612                     | 194,901            | 233,991      | -11,750             | -26,379       | -6.0               | -11.3         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 70 - 74                 | 82 970             | 90.346            | 100,301                     | 118 675                     | 132,320            | 181,158      | 27,981              | -2,158        | 21.1               | -1.2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 80 +                    | 96,925             | 126,616           | 159,125                     | 224.576                     | 61 616             | 125,127      | 97 509              | -0,452        | 24.2               | -5.2          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Total                   | + ,0,520           | 120,010           | 19.797.823                  | 20.013.125                  | 19.830.190         | 20.439.582   | -32.367             | -426.457      | -0.2               | -2.1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| . otal                  |                    |                   |                             |                             |                    |              | 52,507              |               | 0.2                |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Combine                 | d Sex Tota         | 1                 |                             | 39,810,948                  |                    | 40,269,773   |                     | -458,825      |                    | -1.1          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         |                    |                   |                             |                             |                    |              |                     |               |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         |                    |                   |                             |                             |                    |              |                     |               |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         |                    |                   |                             |                             |                    |              |                     |               |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (                       |                    |                   |                             |                             |                    |              |                     |               |                    |               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# Kenya (2)



# Kenya (3)

Overall suggests net undercount of 1.1%, about 460,000 people

#### Most of undercount is coming from males aged 20-45 and females aged 25–59

Migration may account for some of this difference

The lifetable used (based on Kenya 1999) census may not accurately represent changing mortality conditions over the 10 year period due to the HIV/AIDS epidemic

There may be a 'true' undercount of these age-sex groups

# Cohort component method – uses and limitations

- It is applicable when registration data are not-existent or deficient to such an extent that satisfactory adjustment is not possible
- Sufficient information to derive estimates of fertility and mortality levels should be available
  - Mortality estimates can be complicated by HIV/AIDS with a generalized epidemic, one life table is generally not sufficient to model mortality patterns over a 10 year period
- Lack of information on international migration is often a problematic issue when applying this method
- In case where sufficient information exists to derive reliable estimates of demographic parameters, the method is perhaps the most powerful among the alternative demographic approaches for the evaluation of censuses, since it provides age and sex specific estimates of net census error

# Tools

- In addition to MortPak, the DemProj module of Spectrum can be used for population projections
- http://www.futuresinstitute.org/spectrum.aspx
  - DemProj is recommended for projection in contexts in which HIV/AIDS prevalence exceeds a few percent – better modeling of mortality conditions
  - Requires more data input, including prevalence and treatment estimates for HIV/AIDS
  - Data input options somewhat less flexible than MortPak

#### References

- Moultrie, T. et al. (2013), *Tools for Demographic Estimation*, Paris: IUSSP, available online at: <u>http://demographicestimation.iussp.org/</u>
- United Nations (1982), *Model Life Tables for Developing Countries*, New York: United Nations, available online at: <a href="http://www.un.org/esa/population/publications/Model\_Life\_Tables/Model\_Life\_Tables.htm">http://www.un.org/esa/population/publications/Model\_Life\_Tables/Model\_Life\_Tables.htm</a>
- United Nations (1983), *Manual X: Indirect Techniques for Demographic Estimation*, New York: United Nations, available online at: <a href="http://www.un.org/esa/population/publications/Manual\_X/Manual\_X.htm">http://www.un.org/esa/population/publications/Manual\_X/Manual\_X.htm</a>
- United Nations (1990), *Step-by-step Guide to the Estimation of Child Mortality*, New York: United Nations, available online at: <u>http://www.un.org/esa/population/techcoop/DemEst/stepguide\_childmort/stepguide\_childmort.html</u>
- United Nations Population Division (2012) *Updated UN model life tables*, New York: United Nations, available online at: <u>http://esa.un.org/unpd/wpp/Model-Life-Tables/download-page.html</u>
- United Nations Population Division (2013) World Population Prospects: The 2012 Revision, New York: United Nations, available online at: <u>http://esa.un.org/wpp/</u>



धन्यवाद

Ташаккур

Paxmar!

terima kasih

THANK YOU ...

ขอขอบคุณคุณ

cảm ơn bạn

谢谢

Kaadinchhey La

танд баярлалаа