Evaluation of Age and Sex Distribution Data

United Nations Statistics Division

Evaluation method of

- Basic tools
- Graphical analysis
- Population pyramids
- Graphical cohort analysis
- Age and sex ratios
- Summary indices of error in age-sex data
- Whipple's index
- Myers' Blended Method
- The use of stable population theory
- Uses of consecutive censuses

[^0]
Importance of age-sex structures

- Planning purposes - health services, sales programs, school, voting, labour supply
\square Social science, economist, gender studies
- Studying population dynamics - fertility, mortality, migration
\square Insight on quality of census enumeration
\square Having strong effect on other characteristics of a population
> Determined by fertility, mortality and migration, and follows fairly recognizable patterns

What to look for at the evaluation

\square Possible data errors in the age-sex structure, including
\square Age misreporting (age heaping and/or age exaggeration)
aCoverage errors - net underenumeration(by age or sex)
\square Significant discrepancies in age-sex structure due to extraordinary events
aHigh migration, war, famine, HIV/AIDS epidemic etc.

Approaches to collecting age ${ }_{\text {nitied Nations Stalisicics }}$ Division and its impact on quality

a Age - the interval of time between the date of birth and the date of the census, expressed in completed solar years

- Two approaches
\square The date of birth (year, month and day) - more precise information and is preferred
\square Completed age (age at the individual's last birthday) less accurate
$>$ Misunderstanding: the last, the next or the nearest birthday?
$>$ Rounding to nearest age ending in 0 or 5 (age heaping)
$>$ Children under 1 - may be reported as 1 year of age
$>$ Use of different calendars in the same country- western, Islamic or Lunar

Básic graphical methods - Population Pyramid

\square Basic procedure for assessing the quality of census data on age and sex
\square Displays the size of population enumerated in each age group (or cohort) by sex
\square The base of the pyramid is mainly determined by the level of fertility in the population, while how fast it converges to peak is determined by previous levels of mortality and fertility
\square The levels of migration by age and sex also affect the shape of the pyramid

Population pyramid (1)

- high population growth

United Nations Workshop on Census Data Evaluation for English Speaking African Countries
Source: Tabulated using data from United Nations Kamala, Uganda Yearbook
12-16 November 2012

Population pyramid (2)

- low population growth

Population pyramid (3) - detecting errors

- Under enumeration of young children (< age 2)
- Age misreporting errors (heaping) among adults
- High fertility level
- Smaller population in 20-24 age group - extraordinary events in 1950-55?
- Smaller males relative to females in 20-44-labor out-migration?

Source: Tabulated using data from U.S. Census Bureau, Evaluating Censuses of Population and Housing
United Nations Workshop on Census Data Evaluation for English Speaking African Countries

Population pyramid (4)

- detecting errors

Population pyramid (5)
 - line instead of bars

Data source: Tabulated using data from United Nations Demographic Yearbook

Básic graphical methods - Graphical cohort analysis

\square Tracking actual cohorts over multiple censuses
a The size of each cohort should decline over each census due to mortality, with no significant international migration
\square The age structure (the lines) for censuses should follow the same pattern in the absence of census errors
\square An important advantage - possible to evaluate the effects of extraordinary events and other distorting factors by following actual cohorts over time

Graphical cohort analysis - Example (1)

[^1]
Graphical cohort analysis - Example (2)

Graphical cohort analysis, Male, Zimbabwe

United Nations Workshop on Census Data Evaluation for English Speaking African Countries
Kampala, Uganda
12-16 November 2012

Age ratios (1)

\square In the absence of sharp changes in fertility or mortality, significant levels of migration or other distorting factors, the enumerated size of a particular cohort should be approximately equal to the average size of the immediately preceding and following cohorts
\square The age ratio for a particular cohort to the average of the counts for the adjacent cohorts should be approximately equal to 1 (or 100 if multiplied by a constant of 100)
\square Significant departures from this "expected" ratio indicate either the presence of census error in the census enumeration or of other factors

Age ratios (2)

\square Age ratio for the age category x to $x+4$
${ }_{5} \mathrm{AR}_{\mathrm{x}}=$ The age ratio for the age group x to $x+4$
${ }_{5} P_{x}=$ The enumerated population in the age category x to $\mathrm{x}+4$
${ }_{5} P_{x-5}=$ The enumerated population in the adjacent lower age category
${ }_{5} \mathrm{P}_{\mathrm{x}+5}=$ The enumerated population in the adjacent higher age category

$$
{ }_{5} \mathrm{AR}_{\mathrm{x}}=\frac{2 *{ }_{5} \mathrm{P}_{\mathrm{x}}}{{ }_{5} \mathrm{P}_{\mathrm{x}-\mathrm{n}}+{ }_{5} \mathrm{P}_{\mathrm{x}+\mathrm{n}}}
$$

United Nations Workshop on Census Data Evaluation for English Speaking African Countries

Age ratios (3) - example

United Nations Workshop on Census Data Evaluation for English Speaking African Countries
Kampala, Uganda
12-16 November 2012

Age ratios (4) - example

Age ratios (5) - example

Age Ratios, Zimbabwe, Males

Age Ratios, Zimbabwe, Females

United Nations Workshop

Sex ratios (1) - calculation

Sex Ratio $={ }_{5} \mathrm{M}_{\mathrm{x}} /{ }_{5} \mathrm{~F}_{\mathrm{x}}$

${ }_{5} M_{x}=$ Number of males enumerated in a specific age group
${ }_{5} F_{x}=$ Number of females enumerated in the same age group

[^2]
Sex ratios (2) - plotting

Source: Tabulated using data from United Nations Demographic Yearbook

Sex ratios (3) - cohort analysis

United Nations Workshop on Census Data Evaluation for English Speaking African Countries
Kampala, Uganda
12-16 November 2012

Age \& sex ratio comparisons ${ }^{n}$ with ${ }^{\text {Suatiste onsion }}$ external sources (1)

United Nations Workshop on Census Data Evaluation for English Speaking African Countries
Kampala, Uganda
12-16 November 2012

Age \& sex ratio comparisons with suaticso onsion external sources (2)

- Figure 2. Comparison between enumerated population and total population inferred from vital records (births minus deaths), for persons aged $0-25$ born in metropolitan France (relative differences)

 Annuab Cefpsts sutrolay rarpópufationh Source : INSEE, 1990 and 1999 censuses, AR 2004-2007 and vital 'records.

United Nations Workshop on Census Data Evaluation for English Speaking African Countries
Kampala, Uganda
12-16 November 2012

Summary indices - Whipple`s Index

\square Developed to reflect preference for or avoidance of a particular terminal digit or of each terminal digit
\square Ranges between 100, representing no preference for " 0 " or " 5 " and 500 , indicating that only digits " 0 " and " 5 " were reported in the census

- If heaping on terminal digits " 0 " and " 5 " is measured;

$$
\text { Index }=\frac{\sum\left(P_{25}+P_{30}+\ldots \ldots+P_{55}+P_{60}\right)}{(1 / 5) \sum\left(P_{23}+P_{24}+\ldots \ldots . .+P_{60}+P_{61}+P_{62}\right)} \times 100
$$

Whipple`s Index (2)

-If the heaping on terminal digit " 0 " is measured;
Index $=\frac{P_{30}+P_{40}+P_{50}+P_{60}}{(1 / 10) \sum\left(P_{23}+P_{24}+\ldots \ldots .+P_{60}+P_{61}+P_{62}\right)} \times 100$
\square The choice of the range 23 to 62 is standard, but largely arbitrary. In computing indexes of heaping, ages during childhood and old age are often excluded because they are more strongly affected by other types of errors of reporting than by preference for specific terminal digits

Whipple`s Index (3)

\square The index can be summarized through the following categories:

- Highly accurate data

Value of Whipple's Index

- Fairly accurate data
- Approximate data
<= 105
105-109.9
- Rough data

110-124.9

- Very rough data

125-174.9
$>=175$

Whipple's index around the world

-Many of the countries that continue to have high Whipple's Index values are in Sub-Saharan Africa

United Nations Workshop on Census Data Evaluation for English Speaking African Countries Data source: Demographic Yearbookspaciadgisile on age heaping:

Improvement in the accuracy of faisitis onsison age reporting over time

Whipple's Index, 1950-2000, Turkey

[^3]12-16 November 2012

Summary indices Myers` Blended Index

\square It is conceptually similar to Whipple`s index, except that the index considers preference (or avoidance) of age ending in each of the digits 0 to 9 in deriving overall age accuracy score \(\square\) The theoretical range of Myers` Index is from 0 to 90, where 0 indicates no age heaping and 90 indicates the extreme case where all recorded ages end in the same digit

Myers' Blended Index: Example

	A	B	C	D	E	F	G	H	I	J	K	
1					Myers' Blended Method-Liberia Census 2008 - Males							
2	Liberia 21 Mar											
3	Aqe Male				(1)	(2)	(3)	(4)	(5)	(6)	(7)	
4					Sum of population ages ending in terminal digit		Weights (given)		Blended Population		Deviation from 10\%	
5				Terminal digit	From 10+x	From 20+x	Column 1	Column 2	(1) $\times(3)+(2) \times(4)$	Percent = row $/$ cell I16	$\mathrm{abs}($ (6) - 10)	
6	10	56118		0	197,432	141,314	1	9	1,469,258	14.45	4.45	
7	11	35473		1	105,215	69,742	2	8	768,366	7.56	2.44	
8	12	46839		2	137,505	90,666	3	7	1,047,177	10.30	0.30	
9	13	36026		3	103,187	67,161	4	6	815,714	8.02	1.98	
10	14	40403		4	110,561	70,158	5	5	903,595	8.89	1.11	
11	15	42379		5	140,744	98,365	6	4	1,237,924	12.18	2.18	
12	16	36293		6	103,303	67,010	7	3	924,151	9.09	0.91	
13	17	32750		7	91,697	58,947	8	2	851,470	8.37	1.63	
14	18	44658		8	126,683	82,025	9	1	1,222,172	12.02	2.02	
15	19	33327		9	92,754	59,427	10	0	927,540	9.12	0.88	
16	20	44382		TOTAL					10,167,367	100.00	17.89	
17	21	28639										
18	22	31848							Index of Age Pr	reference $=$ K16/2	8.95	
19	23	27822										
20	24	29260										
21	25	33589										
22	26	25717										
23	27	25187										
24	28	32784										
25	29	23729										
26	30	34119										
27	31	17253										
28	32	23432										

United Nations Workshop on Census Data Evaluation for English Speaking African Countries
Kampala, Uganda
12-16 November 2012

Conclusion: Uses and limitations

\square Assessment of the age and sex structure of the population enumerated in a census is typically the first step taken in evaluating a census by means of demographic methods
\square Demographic methods provide:
A quick and inexpensive indication of the general quality of data
\square Evidence on the specific segments of the population in which the presence of error is likely

- "Historical" information which may be useful for interpreting the results of evaluation studies based on other methods, and in determining how the census data should be adjusted for use in demographic analyses

Conclusion: Uses and limitations

\square The major limitation of age and sex structure analysis is that it is not possible to derive separate numerical estimates of the magnitude of coverage and content error on the basis of such analyses alone
\square It is often possible to assess particular types of errors which are likely to have affected the census counts for particular segments of the population. Estimates of coverage error from other sources often are required to verify these observations.

References

- Shryock and Siegel, 1976, Methods and Materials of Demography
- IUSSP Tools for Demographic Estimation (in progress) http://demographicestimation.iussp.org/

[^0]: United Nations Workshop on Census Data Evaluation for English Speaking African Countries
 Kampala, Uganda
 12-16 November 2012

[^1]: United Nations Workshop on Census Data Evaluation for English Speaking African Countries
 Kampala, Uganda
 12-16 November 2012

[^2]: United Nations Workshop on Census Data Evaluation for English Speaking African Countries
 Kampala, Uganda
 12-16 November 2012

[^3]: - Male aFemale

