
Febrl – An Open Source Data Cleaning, Deduplication and
Record Linkage System with a Graphical User Interface

Peter Christen
Department of Computer Science
The Australian National University

Canberra ACT 0200, Australia
peter.christen@anu.edu.au

ABSTRACT
Matching records that refer to the same entity across data-
bases is becoming an increasingly important part of many
data mining projects, as often data from multiple sources
needs to be matched in order to enrich data or improve its
quality. Significant advances in record linkage techniques
have been made in recent years. However, many new tech-
niques are either implemented in research proof-of-concept
systems only, or they are hidden within expensive ‘black
box’ commercial software. This makes it difficult for both
researchers and practitioners to experiment with new record
linkage techniques, and to compare existing techniques with
new ones. The Febrl (Freely Extensible Biomedical Record
Linkage) system aims to fill this gap. It contains many re-
cently developed techniques for data cleaning, deduplication
and record linkage, and encapsulates them into a graphi-
cal user interface (GUI). Febrl thus allows even inexperi-
enced users to learn and experiment with both traditional
and new record linkage techniques. Because Febrl is written
in Python and its source code is available, it is fairly easy to
integrate new record linkage techniques into it. Therefore,
Febrl can be seen as a tool that allows researchers to com-
pare various existing record linkage techniques with their
own ones, enabling the record linkage research community
to conduct their work more efficiently. Additionally, Febrl is
suitable as a training tool for new record linkage users, and
it can also be used for practical linkage projects with data
sets that contain up to several hundred thousand records.

Categories and Subject Descriptors: H.2.8 [Database
applications]: Data mining

General Terms: Algorithms, Experimentation

Keywords: Data matching, data linkage, deduplication,
data cleaning, open source software, Python

1. PROJECT BACKGROUND
Febrl has been developed since 2002 as part of a collab-

orative research project conduced between the Australian
National University in Canberra and the New South Wales
Department of Health in Sydney, Australia. The objective
of this project is to develop new techniques for improved
data cleaning and standardisation, deduplication and record
linkage within the domain of health databases.

Copyright is held by the author/owner(s).
KDD’08, August 24–27, 2008, Las Vegas, Nevada, USA.
ACM 978-1-60558-193-4/08/08.

The Febrl system is written in the programming language
Python1, which is an ideal platform for rapid prototype de-
velopment, as it provides data structures such as sets, lists
and dictionaries (associative arrays) that allow efficient han-
dling of very large data sets. It also includes many modules
offering a large variety of functionalities. It has excellent
built-in string handling capabilities, and the large number
of extension modules facilitate, for example, database ac-
cess and GUI development. The Febrl GUI is based on the
PyGTK2 library and the Glade3 toolkit.

Febrl is published under an open source software licence.
Due to the availability of its source code, Febrl is suitable for
the rapid development, implementation, and testing of novel
record linkage algorithms and techniques, as well as for both
new and experienced users to learn about, and experiment
with, various record linkage techniques. Since 2002 Febrl

has been hosted on the Sourceforge.Net repository at:

https://sourceforge.net/projects/febrl/

The total number of downloads of Febrl files on 14th June
2008 has reached 9,840. To the best of the author’s knowl-
edge, Febrl is the only open source record linkage system
with a GUI that allows data cleaning and standardisation,
deduplication and record linkage. The current Febrl-0.4 ver-
sion includes the source code, several example data sets (as
available from the SecondString toolkit4), and a data set
generator. The documentation contains several papers that
describe the techniques implemented in Febrl, and a manual
that includes several step-by-step tutorials.

Compared to earlier versions, Febrl-0.4 not only contains
a GUI, but also a variety of new techniques, as described
below. Some of the screenshots following show an example
linkage of the ‘Census’ data set from SecondString.

2. STRUCTURE AND FUNCTIONALITY
The Febrl GUI has been developed with the objective to

make Febrl more accessible to non-technical record linkage
users [8]. The structure of the Febrl GUI follows the Rattle

open source data mining tool [17]. The basic idea is to have
a window that contains one tab (similar to tabs in modern
Web browsers) per major step of the record linkage process.
The start-up Febrl GUI is shown in Figure 1. First, only two
tabs are visibly, additional tabs will appear once the input
data has been initialised.

1http://www.python.org
2http://www.pygtk.org
3http://glade.gnome.org
4http://secondstring.sourceforge.net



Figure 1: Initial Febrl user interface after start-up.

On each tab, the user can select methods and their pa-
rameters, and then confirm these settings by clicking the
‘Execute’ button. Corresponding Febrl Python code will be
generated and shown in the ‘Log’ tab. Once all necessary
steps are set up, the generated Python code can be saved
and run outside of the GUI, or a project can be started and
its results can be evaluated from within the Febrl GUI. All
major tabs will be described in more detail and illustrated
with corresponding screenshots in the following sections.

2.1 Input Data Initialisation
A user first has to select the type of project to be con-

ducted: (a) cleaning and standardisation of a data set, (b)
deduplication of a data set, or (c) linkage of two data sets.
The ‘Data’ tab of the Febrl GUI will change accordingly
and either show one or two input data set selection areas.
Currently, several text based file formats are supported, in-
cluding the commonly used CSV (comma separated values)
format. Once a file has been selected, its first few lines will
be shown, as illustrated in Figure 2. This enables the user to
verify the chosen settings, or adjust them if required. When
satisfied, a click on the ‘Execute’ button will confirm the
settings, and the tabs for data exploration and, depending
upon the project type selected, standardisation, or indexing,
comparison and classification will become visible.

2.2 Data Exploration
The ‘Explore’ tab enables the user to analyse the input

data set(s) to get a better understanding of its/their content
and quality. After a click on the ‘Execute’ button, the data
set(s) will be read and all fields (or attributes, columns) will
be analysed. A report will be displayed that for each field
provides information about the number of different values in
it, the alphabetically smallest and largest values, the most
and least frequent values, the quantiles distribution of the
values, the number of records with missing values, as well
as a guess of the type of the field (if it contains only digits,
only letters, or is of mixed type). A summary table of this
analysis is then displayed, as shown in Figure 3.

2.3 Data Cleaning and Standardisation
Data cleaning and standardisation using the Febrl GUI

is currently done separately from a linkage or deduplica-
tion. A data set can be cleaned and standardised, and is

Figure 2: Febrl user interface for a linkage project af-
ter the ‘Census’ input data sets have been initialised.

Figure 3: Data exploration tab showing summary
analysis of record fields (or attributes, columns).

then written into a new data set, which in turn can then
be deduplicated or used for a linkage. Currently, Febrl con-
tains standardisers for names, addresses, dates, and tele-
phone numbers. The name standardiser uses a rule-based
approach for simple names (such as those made of one given-
and one surname only) in combination with a probabilistic
hidden Markov model (HMM) approach for more complex
names [11], while address standardisation is fully based on
a HMM approach [9]. These HMMs currently have to be
trained outside of the Febrl GUI, using separate Febrl mod-
ules. Dates are standardised using a list of format strings



Figure 4: Example date and telephone number stan-
dardisers (for a synthetic Febrl data set).

Figure 5: Example indexing definition using the
‘BlockingIndex’ method and two index definitions.

that provide the expected date formats likely to be found in
the input data set. Telephone numbers are also standardised
using a rule-based approach. Once initialised and confirmed
with a click on ‘Execute’, on the ‘Output/Run’ tab (see be-
low) the file name of the standardised output file can be
chosen, and a standardisation project can then be started
by clicking ‘Execute’ on the ‘Output/Run’ tab.

2.4 Indexing (Blocking) Definition
Blocking or indexing is used to reduce the number of de-

tailed record pair comparisons to be done [2]. On the ‘Index’
tab, a user can select one of seven possible indexing meth-
ods. Besides the ‘FullIndex’ (which will compare all record
pairs and thus has a quadratic complexity) and the stan-
dard ‘BlockingIndex’ approach [2] as implemented in many
record linkage systems, Febrl contains five recently devel-
oped indexing methods [4]: ‘SortingIndex’, which is based
on the sorted neighbourhood approach [15]; ‘QGramIndex’,
which uses sub-strings of length q to allow fuzzy blocking [2];
‘CanopyIndex’, which employs overlapping canopy cluster-

Figure 6: An example of three field comparison func-
tion definitions.

ing using TF-IDF or Jaccard similarity [12]; ‘StringMapIn-
dex’, which maps the index key values into a multi-dim-
ensional space and performs canopy clustering on these multi-
dimensional objects [16]; and ‘SuffixArrayIndex’, which gen-
erates all suffixes of the index key values and inserts them
into a sorted array to enable efficient access to the index key
values and generation of the corresponding blocks [1].

Once an index method has been chosen, the actual in-
dex keys have to be selected and their various parameters
have to be set. Index keys are made of one field value, or a
concatenation of several field values, that are often phoneti-
cally encoded to group similar sounding values into the same
block. Febrl contains nine encoding methods [3], including
Soundex, NYSIIS, Phonix, Phonex, and Double-Metaphone.

2.5 Field Comparison Functions
The similarity functions used to compare the field (at-

tribute) values of record pairs can be selected on the ‘Com-
parison’ tab, as shown in Figure 6. Febrl contains 26 simi-
larity functions, including 20 approximate string comparison
functions [3], as well as functions specialised for dates, times,
ages, or numerical values. All these similarity functions re-
turn a numerical value between 0 (total dissimilarity) and 1
(exact match). It is possible to adjust these values by set-
ting agreement and disagreement weights, as well as a special
value that will be returned if one or both of the compared
values is/are empty. The similarity weights calculated for
each compared record pair will be stored in a weight vector,
to be used for classifying record pairs in the next step.

2.6 Weight Vector Classification
Febrl contains several record pair classifiers, both super-

vised and unsupervised techniques. The traditional ‘Fel-
legiSunter’ classifier requires manual setting of two thresh-
olds [13], while with the supervised ‘OptimalThreshold’ clas-
sifier it is assumed that the true match status for all com-
pared record pairs is known, and thus an optimal thresh-
old can be calculated based on the corresponding summed
weight vectors. Another supervised classifier is ‘SuppVec-
Machine’, which implements a support vector machine.



Figure 7: Example ‘Two-Step’ unsupervised weight
vector classifier.

Both the ‘KMeans’ and ‘FarthestFirst’ [14] classifiers are
unsupervised clustering approaches, and group the weight
vectors into a match and a non-match cluster. Various cen-
troid initialisation and distance measures are implemented
in Febrl. Finally, the ‘TwoStep’ classifier, shown in Figure 7,
is an unsupervised approach which in a first step selects
weight vectors from the compared record pairs that with
high likelihood correspond to true matches and true non-
matches, and in a second step uses these vectors as training
examples for a binary classifier [5, 7, 6].

2.7 Output Files and Running a Project
On this tab (not shown due to space limitation) the user

can select various settings of how the match status and the
matched record pairs will be saved into files. With a click on
‘Execute’, the Febrl GUI will ask the user if the generated
project should be saved as a Python file, and if the project
should be started and run within the GUI. Once started, a
window will pop up showing a progress bar.

2.8 Evaluation and Clerical Review
On the ‘Evaluation’ tab, shown in Figure 8, the results

of a deduplication or linkage project are visualised as a his-
togram of the summed matching weights of all compared
record pairs. If the true match and non-match status of
record pairs is available, the quality of the conducted link-
age will be shown using the measurements of accuracy, pre-
cision, recall and F-measure. Also shown are measures that
allow the evaluation of the complexity of a deduplication or
linkage project (i.e. the number of record pairs generated by
the indexing step and their quality), these measures are the
reduction ratio, pairs completeness and pairs quality [10].

2.9 Log Tab
On this tab the Febrl Python code generated throughout

a project is shown, allowing experienced users to verify the
correctness of the generated code. It also enables copying of
this code into a user’s own Febrl Python modules.

3. ACKNOWLEDGEMENTS
This work is supported by an Australian Research Council

(ARC) Linkage Grant LP0453463 and partially funded by
the New South Wales Department of Health, Sydney.

Figure 8: Evaluation tab showing the matching
weight histogram and quality and complexity mea-
sures for a linkage.

4. REFERENCES
[1] A. Aizawa and K. Oyama. A fast linkage detection scheme for

multi-source information integration. In WIRI’05, pages 30–39,
Tokyo, 2005.

[2] R. Baxter, P. Christen, and T. Churches. A comparison of fast
blocking methods for record linkage. In ACM SIGKDD
workshop on Data Cleaning, Record Linkage and Object

Consolidation, pages 25–27, Washington DC, 2003.

[3] P. Christen. A comparison of personal name matching:
Techniques and practical issues. In MCD’06, held at IEEE
ICDM’06, Hong Kong, 2006.

[4] P. Christen. Towards parameter-free blocking for scalable
record linkage. Technical Report TR-CS-07-03, The Australian
National University, Canberra, 2007.

[5] P. Christen. A two-step classification approach to unsupervised
record linkage. In AusDM’07, pages 111–119, Gold Coast,
Australia, 2007.

[6] P. Christen. Automatic record linkage using seeded nearest
neighbour and support vector machine classification. In ACM

SIGKDD’08, Las Vegas, 2008.

[7] P. Christen. Automatic training example selection for scalable
unsupervised record linkage. In PAKDD’08, Springer LNAI
5012, pages 511–518, Osaka, Japan, 2008.

[8] P. Christen. Febrl - A freely available record linkage system
with a graphical user interface. In HDKM’08, CRPIT vol. 80,
pages 17–25, Wollongong, Australia, 2008.

[9] P. Christen and D. Belacic. Automated probabilistic address
standardisation and verification. In AusDM’05, Sydney, 2005.

[10] P. Christen and K. Goiser. Quality and complexity measures for
data linkage and deduplication. In F. Guillet and H. Hamilton,
editors, Quality Measures in Data Mining, volume 43 of
Studies in Computational Intelligence. Springer, 2007.

[11] T. Churches, P. Christen, K. Lim, and J. X. Zhu. Preparation
of name and address data for record linkage using hidden
Markov models. BioMed Central Medical Informatics and
Decision Making, 2(9), 2002.

[12] W. W. Cohen and J. Richman. Learning to match and cluster
large high-dimensional data sets for data integration. In ACM

SIGKDD’02, Edmonton, 2002.

[13] I. P. Fellegi and A. B. Sunter. A theory for record linkage.
Journal of the American Statistical Society,
64(328):1183–1210, 1969.

[14] K. Goiser and P. Christen. Towards automated record linkage.
In AusDM’06, pages 23–31, Sydney, 2006.

[15] M. A. Hernandez and S. J. Stolfo. The merge/purge problem
for large databases. In ACM SIGMOD’95, pages 127–138, San
Jose, 1995.

[16] L. Jin, C. Li, and S. Mehrotra. Efficient record linkage in large
data sets. In DASFAA’03, Tokyo, 2003.

[17] G. J. Williams. Data mining with Rattle and R. Togaware,
Canberra, 2008. Software available at:
http://datamining.togaware.com/survivor/.


