Survey of Disability
Overview of Surveys and their design considerations

By
Rajendra Singh

UN Headquarters, New York
Survey of Disability

- Goals of the survey
- Population of interest (target population) and sampling frame
- Type of disability surveys
- Approaches of sampling
- Estimation of sample size
- Documentation
- Summary
- Issues for discussion
Survey of Disability

• Goals – important to design a survey
 – Prevalence rate – could be defined as:
 • At least one of the disabilities or by type of disability such as hearing, seeing walking, bathing, etc.
 • By demographic or socio-economic characteristics such as sex, age, employment status or income level, etc.
 • By level of geography – states, urban/non-urban, etc.
 • By any combination of above
 • Concepts of disability characteristics should be practical and could be implemented correctly

 – Precision – two options:
 • Coefficient of variation (CV)
 • Margin of error
Survey of Disability

• Population of interest (target population) and sampling Frame:
 – Objectives identify target population, for example,
 • Any disability in the population – entire population
 • Disability rate for a province – population of province
 • Disability rate for school children – population of school children
 • Type of disability of persons living in long-term care centers – population living in long term care centers
• Sampling Frame – data source(s) from which a sample is selected
• Sampling Frame should
 – Represent population of interest
 – Be complete
 – Be recent or current
 – Be accurate
 – If above conditions not satisfied, take steps to meet above conditions
Survey of Disability

• Approaches for sampling
 – Three main approaching for sampling:
 a) Standalone disability sample of HHs
 • A sample of enumeration areas (EAs)
 • Stratify EAs to form strata
 • Select EAs within stratum proportional to their population size
 • Select a sample of households (HHs) within selected EAs
 • Identify HHs with at least one person with disability
 • Partitions sampled HHs into two strata
 – One with HHs with at least one identified disabled person
 – Second with HHs with no identified disabled person
 • Select sample of HHs from both strata
 – Select a large sample of HHs from strata with disabled person
 – Select a small sample of HHs from strata with no disabled person
Survey of Disability

• Standalone sample of HHs (Continued ….)

• Advantages:
 • More complete in terms of target population
 • Would collect detailed data on disability as its primary goal
 • Would collect demographic and/or economic characteristics of disabled persons as needed
 • Provide more insight about the disabled persons’ conditions
 • Greater flexibility

• Disadvantages:
 • It is expensive

• Limitation:
 • Budget
Survey of Disability

• Main sampling approaches (continued …)

B) Incorporate a disability topical module in a survey

• Before using the survey to attach a topical module one must:
 – Understand the sample design of the survey to be used for topical module (target population, oversample, etc.)
 – Understand the limitation for using the survey (sample size, number of disability questions for topical module, etc.)
 – Understand the effect on main survey
 – Understand the implication on disability data (precision, limitations on amount of data)
Survey of Disability

Incorporate a topical module (continued ...)

Advantages:
- Allows comparison of disabled persons with general population
- It is economical

Disadvantages:
- Respondent burden may adversely affect primary survey response rate
- May provides fewer details on disability questions since it’s not a primary disability survey
- Sample size constraint due to main survey sample size
- Less flexibility

Limitations:
- Sample size
- Amount of data on disability
Survey of Disability

• Main sampling approaches (continued …)
 C) Standalone sample using administrative list(s)
 Two types of lists – a list of persons and a list of institutions
 1) List of Persons
 • Use organizations (stakeholders) with knowledge of lists with disabled persons to obtain all lists to form complete target population
 • Combine multiple lists together into one list
 • Stratify the disabled persons on list(s)
 – By geographical location (province, urban, rural, etc.)
 – By type of disability even if rates are not needed by type of disability
 • Select random sample from each stratum
Survey of Disability

• Standalone sample using list (continued …)

 2) List of institutions
 • Use organizations with knowledge of lists of institutions
 • Create a combined list of persons for each type of institution
 • Stratify institutions
 – By their geographic location
 – By type of institutions (long term care center, home for assisted living or elderly, etc.)
 • Select
 – Simple random sample OR
 – Select a sample proportional to the number of disabled persons residing in each institution, and then select a random sample within the sampled institutions
Survey of Disability

• Standalone sample using list (continued…)
 • The following applies for both types of list(s)
 – Unduplicate persons that are in two or more lists or institutions to get correct selection probability to result in unbiased results
 – Bias results for disabled population if list incomplete or inaccurate
 • Correct for bias due to incomplete or inaccurate list
 – For an incomplete list
 » Supplement list sample with general population sample
 » Select a larger sample from list frame and a smaller sample from general population
 – For inaccurate list, determine the source of inaccuracy and take steps to correct the list
 – Unduplicate persons that are in two or more lists – a difficult process unless persons have unique IDs
Survey of Disability

• Standalone sample using list(s) (continued …)

• Advantages:
 – Good for target population such as persons with known disability, homes for elderly, long term care centers, home for assisted living, etc.
 – Easy to select simple random or systematic random sample
 – Possible to use stratified PPS sample to reduce cost

• Disadvantages:
 – Requires preparatory work
 » Check for list completeness
 » Check list for accuracy
 » Check list for being current
 » Check if persons on the list can be located
 » Creating frames by combing multiple lists (different formats, different order of field locations, etc.)
 » Supplement list sample with general population HH sample if list is incomplete

• Limitations:
 – Complexities may limit sharing and combining lists
 – Not always possible to get a complete and accurate list
Survey of Disability

• Sample size considerations – objectives and budget
 – Objectives
 • Disability prevalence rate
 • Precision of prevalence rate -- two types
 – Coefficient of variation (CV)
 – Margin of error
 – Budget
• Parameters needed to estimate sample size are
 • Rate of disability prevalence – if unknown, use the best guess based on the available information
 • Precision for prevalence rate
 • Estimate of design effect – if unknown, use the best guess based on available information
Survey of Disability

- Formula to calculate the sample size based on CV requirement;

\[n = \frac{q}{(CV)^2} \frac{Deff}{p} \]

Where

- \(n \) = Sample size in terms of persons
- \(p \) = Disability prevalence rate
- \(q \) = 1 - \(p \)
- \(CV \) = Coefficient of variation
- \(Deff \) = Design effect

Finite population correction (FPC) factor is assumed to be 1 when \(n \) is very small compared to total population size. The sample size formula that include FPC will multiply sample size ‘n’ by FPC factor \([(N-n)/N]\) where \(N \) population size.
Survey of Disability

• Design effect (Deff) is defined as
 – A factor by which the sampling variance for a survey is increased over that which would come about if a simple random sample was used with the same sample size.
 – Mathematically, it is defined as:
 • \(\text{Deff} = 1 + \rho (m - 1) \), where
 • \(\rho \) is the intraclass correlation and represents the clustering effect for the characteristic in question
 • \(m \) is the (average) size of the cluster
 • Deff is always \(\geq 1.0 \);
 • Deff = 1 for only simple random sample
Survey of Disability

• Design effect role in sample size computation
 – Most of the countries use personal interviews to collect survey data
 – To save cost, generally simple random sample is not used instead a multi-stage stratified cluster sample is used
 – Cluster sample increases variance over simple random sample
 – Clustering effect high if characteristics under study is highly clustered
 – Disability is not expected to be highly clustered in general population survey -- multi-stage stratified cluster sample preferred
 – Disability is expected to be highly clustered in institutional population such as long term care centers, elderly housing, etc. – simple random sample preferred
Survey of Disability

• Estimation of sample size
 – Initially estimate the sample size for each target population that meets objectives
 – Budget may not support such a sample size, therefore,
 – Determine the largest sample that can be supported by the budget
 – Consider trade-offs to use sample size supported by budget
 – Consider changing objectives (prevalence rate or precision or both) to remain in budget
 – Consider getting additional budget to support larger sample
 – Most likely it would be an iterative process to reach at final sample size
 – Discuss with sponsor(s) of the survey about the implications of insufficient budget
Survey of Disability

- Survey documentation – an important aspect
 - Document for
 - Future references, and
 - To inform data users
 - Document should include
 - Sampling methodology
 - Estimation methodology
 - Quality of survey data including its strengths and weaknesses
 - Limitations of the data
Survey of Disability

• Summary
 – Main considerations in designing a reliable and affordable survey are:
 • Objectives
 • Precision
 • Budget
 – Additional information (distribution by type, sub-national, etc.) would require larger sample
 – Increase efficiency of design by
 • Designing a stratified cluster sample
 • Using list/administrative frames when possible and disabled persons on list can be easily located
 • Screening for disability on national survey or on census of population and housing
Survey of Disability

• Summary (continued …)
 – Ensure that the frame is complete, accurate and current, if not current, take steps to bring up to date
 – Use enumeration area (EA) as first stage of sampling from general population frame
 – Reduce bias when using list frames by
 • Supplementing list frame with general population frame
 • Unduplicate persons in different frames to get correct selection probability
 – Use multi-stage stratified sample when appropriate
Survey of Disability

• Summary (continued …)
 – Use Proportion to population size (PPS) sampling scheme to select first-stage sample units
 – Reduce design effect by reducing cluster size
 – Consider adjusting objectives if insufficient budget
 – Document sampling and estimation procedures
 – Document data quality including its strength and weaknesses
 – Document limitations of data
Survey of Disability

• Issues for discussion
 – What frame should be used? Census, list or list combined with general population frames.
 – Should disability survey use a standalone design?
 – Should topical module be used in a survey to collect disability data?
 – In case of using topical module, how to increase sample for disability module if primary survey does not have sufficient sample? (ex. collect data over several different time periods – months, quarters or years subject to primary survey design)
Survey of Disability

Thank you
Rajendra Singh