Simple implementation of scanner data in the Canadian CPI

UN GWG on Big Data for Official Statistics
Workshop on Scanner Data and Official Statistics
Kigali, Rwanda, 29 April – 1 May 2019

Delivering insight through data for a better Canada
Outline

• Context
• Overview of scanner data acquisition
• Adopting an implementation approach
• Incremental implementation strategy
• Simple implementation
• Scanner data challenges
Context

Statistics Canada has undertaken a modernization initiative that aims to:

- Ensure more timely and responsive statistics
- Develop and release more granular statistics
- Ensure cost effective products and service delivery
Overview of scanner data acquisition

• CPI price collection relies on ~ 90 000 prices collected each month
• Need to modernize CPI program:
 • New data sources and IT developments
 • Growth in third-party data providers

• 2015: Scanner data received from one major Canadian grocery retailer
 • Weekly files: very large size (storage and # data points)

• 2017 & 2018: Two additional Canadian grocery retailers
• Advantages of scanner data for CPI
 • Reduce response burden
 • Improve CPI input data quality (prices and weights)
 • Better quality CPI data
 • Potential use of the universe of all consumer products
Adopting an implementation approach

- Key considerations
 - Timeliness of data acquisition for CPI processing
 - Continuity of data acquisition in the long term
 - New data sources required appropriate methodologies
 - Infrastructure availability
 - Integration into existing systems
 - Low risk tolerance for the CPI (non-revisable)
 - Need to develop the required skill set
Incremental implementation strategy

• **Long term: Full implementation**
 - A micro-data processing system to use with large volumes and varieties of administrative data
 - Full use of all scanner data
 - Multilateral index methods

• **Short term: Simple implementation**
 - One-for-one approach
 - Replace prices collected in the field with scanner data, in a “1-for-1” way
 - One retailer (up to now; 2 more retailers planned for July 2019)
 - Food and non-food products sold in grocery stores
Simple implementation: Motivation

• Why a “1-for-1” use of scanner data?
 • Easy to control scope of the change
 • Manual validation of final product selection
 • Integrate into existing systems and processes with as little change as possible
 • Demonstrate to the retailer that we make official use of the data set

• Benefits
 • Cost Savings: Ability to decrease field collection earlier
 • Reduced response burden: No collection burden on this retailer’s outlets
 • Accuracy: Two weeks of data being used instead of a single day price
 • Representativeness: Ability to use quantity data to initiate the product sample as well as for substitution product selection
Simple implementation: How it works

• How does the “1-for-1” approach work?
 • The existing outlet sample from the retailer is used
 • Price data are calculated from the scanner database
 • No field collection from the retailer's outlets
 • Transactions prices as opposed to list prices
 • Unit value prices calculated for sample products at the outlet level
 • Sample of products re-initiated using the universe of products and sales information
 • Represents 20% of the total CPI product sample (~ 18 000 products out of 90 000)

• Implementation timeline
 • Parallel run (experimental): Food products, January-March 2018
 • April 2018: Food scanner data from 1 retailer
 • August 2018: Non-food scanner data from 1 retailer
 • July 2019: 2 more retailers implemented, food and non-food
Simple implementation: How it works

- Monthly movements based on scanner vs field collection data differ
 - Methodological differences: price definition, products not exactly the same
Simple implementation: Product coverage

• Product coverage

<table>
<thead>
<tr>
<th>CPI major component</th>
<th>Proportion of scanner data RPs</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Food and non-alcoholic beverages</td>
<td>98.92</td>
</tr>
<tr>
<td>3. Household operations, furnishings and equipment</td>
<td>73.33</td>
</tr>
<tr>
<td>6. Health and personal care</td>
<td>33.33</td>
</tr>
<tr>
<td>8. Alcoholic beverages, tobacco products and narcotics</td>
<td>13.48</td>
</tr>
</tbody>
</table>

• Types of products not covered by scanner data

<table>
<thead>
<tr>
<th>CPI major component</th>
<th>Types of products not in scanner data</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Food and non-alcoholic beverages</td>
<td>Restaurant and fast food meals</td>
</tr>
<tr>
<td>3. Household operations, furnishings and equipment</td>
<td>Veterinary services, flowers, horticultural services, electric light bulbs</td>
</tr>
<tr>
<td>6. Health and personal care</td>
<td>Prescription drugs, eye care products, dental care products</td>
</tr>
<tr>
<td>8. Alcoholic beverages, tobacco products and narcotics</td>
<td>various types of beer, wine, whisky, liqueurs and dry gin</td>
</tr>
</tbody>
</table>
Simple implementation: Processing system

- Data processing system

Load
- Read in raw weekly scanner data files

Process
- Aggregate weeks
- Clean variables
- Manage sample

Substitution module
- System proposes candidates for substitution
- User resolves missing UPCs

Prepare output
- Load final clean scanner data into micro-data processing system
Simple implementation: Processing system

- Data processing system

Field Collected Data → CASEMAN / CMP → Phoenix Processing System → Cygnus Estimation System

Scanner Data → Scanner data processing system → Data Loader → Side door loader

Rely on Phoenix for:
- Tax treatment
- Standardization
- Micro editing
- Classification
Scanner data challenges

- **Acquisition**
 - Data is sensitive and security is important

- **“Big” nature of data**
 - More significant IT storage and processing requirements

- **Timeliness**
 - How well does the availability of the data source correspond with the monthly production calendar?

- **Methodology**
 - Integration of scanner data with data collected in stores
 - Highly specialized skills required, e.g. data scientist
 - Quality assurance needs appropriate tools
 - With multilateral indexes, analysis of index results not standard
Questions?

Thank you!