UPU postal big data and trade

UN GWG on Big Data

Use cases for data, services and applications: trade data lake

10 November 2017
Outline

Digital trade context and international postal exchanges
- International e-commerce growth through postal networks
- UPU postal tracking data capture and the adoption of digital customs declaration systems

4V postal data, international postal flows and trade
- Data on international postal shipments volumes and shifting digital trade patterns
- Data on value and categories of goods traded online and trade in low-value shipments

UPU big data platform technology
- UPU big data zoo
- Connecting to trade data lake

UPU big data governance and collaborations
- Collaborations and cooperation agreement frameworks
- Experience with UN Global Pulse
Quantitative aspects

Volume

Scale of data

Over 30 billion historical international postal tracking records by 2020, exponentially growing since 2010 – 3 billion in 2016 alone

Velocity

Analysis of streaming data

Hourly updates of millions of potential predicted delivery times and events along the international postal supply chain

Variety

Different forms of data sources

Geo-located data (GIS standards, geocoded information), EDI postal tracking data (postal data standards), customs data, and aviation/transportation data

Veracity

Uncertainty of data

Data reconciliation between all tracking data and sample-based QoS measurement system data (e.g. GMS), geographic coverage of different international postal data exchange systems

Qualitative aspects
Tonnage

<table>
<thead>
<tr>
<th>Year</th>
<th>Total (kg)</th>
<th>Letter-Post (kg)</th>
<th>Parcel-Post (kg)</th>
<th>EMS (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>457'579'770</td>
<td>163'106'100</td>
<td>168'253'513</td>
<td>126'220'157</td>
</tr>
<tr>
<td>2014</td>
<td>566'648'650</td>
<td>213'610'159</td>
<td>188'587'382</td>
<td>164'451'109</td>
</tr>
<tr>
<td>2015</td>
<td>657'681'986</td>
<td>219'095'693</td>
<td>220'296'032</td>
<td>218'338'735</td>
</tr>
<tr>
<td>2016</td>
<td>742'928'846</td>
<td>332'658'171</td>
<td>203'304'623</td>
<td>209'583'027</td>
</tr>
</tbody>
</table>

Volume

<table>
<thead>
<tr>
<th>Year</th>
<th>Total (kg)</th>
<th>Letter-Post (kg)</th>
<th>Parcel-Post (kg)</th>
<th>EMS (kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>396'747'127</td>
<td>318'548'512</td>
<td>38'290'757</td>
<td>39'907'858</td>
</tr>
<tr>
<td>2014</td>
<td>460'525'763</td>
<td>373'012'947</td>
<td>35'961'086</td>
<td>51'551'730</td>
</tr>
<tr>
<td>2015</td>
<td>569'431'727</td>
<td>461'646'446</td>
<td>41'040'849</td>
<td>67'380'432</td>
</tr>
<tr>
<td>2016</td>
<td>689'771'865</td>
<td>580'826'534</td>
<td>40'920'615</td>
<td>68'435'558</td>
</tr>
</tbody>
</table>

Change (%)

<table>
<thead>
<tr>
<th>Year</th>
<th>Tonnage Change</th>
<th>Volume Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016/15</td>
<td>13.0%</td>
<td>21.1%</td>
</tr>
<tr>
<td>2015/14</td>
<td>16.1%</td>
<td>23.6%</td>
</tr>
<tr>
<td>2014/13</td>
<td>23.8%</td>
<td>23.8%</td>
</tr>
<tr>
<td>2011 (from/to)</td>
<td>Developed countries</td>
<td>Africa</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Developed countries</td>
<td>46.3</td>
<td>2.4</td>
</tr>
<tr>
<td>Africa</td>
<td>0.7</td>
<td>0.2</td>
</tr>
<tr>
<td>Asia and Oceania</td>
<td>21.6</td>
<td>0.3</td>
</tr>
<tr>
<td>Latin America and Caribbean</td>
<td>1.7</td>
<td>0</td>
</tr>
<tr>
<td>Transition economies</td>
<td>0.5</td>
<td>0</td>
</tr>
<tr>
<td>World</td>
<td>70.8</td>
<td>2.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2016 (from/to)</th>
<th>Developed countries</th>
<th>Africa</th>
<th>Asia and Oceania</th>
<th>Latin America and Caribbean</th>
<th>Transition economies</th>
<th>World</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developed countries</td>
<td>26.3</td>
<td>0.9</td>
<td>20.8</td>
<td>2.7</td>
<td>2.4</td>
<td>53.1</td>
</tr>
<tr>
<td>Africa</td>
<td>0.7</td>
<td>0.2</td>
<td>0.2</td>
<td>0</td>
<td>0</td>
<td>1.1</td>
</tr>
<tr>
<td>Asia and Oceania</td>
<td>33.2</td>
<td>0.4</td>
<td>4.2</td>
<td>1.4</td>
<td>4.0</td>
<td>43.2</td>
</tr>
<tr>
<td>Latin America and Caribbean</td>
<td>1.0</td>
<td>0</td>
<td>0.1</td>
<td>0.2</td>
<td>0</td>
<td>1.3</td>
</tr>
<tr>
<td>Transition economies</td>
<td>0.7</td>
<td>0</td>
<td>0.1</td>
<td>0</td>
<td>0.5</td>
<td>1.3</td>
</tr>
<tr>
<td>World</td>
<td>61.9</td>
<td>1.5</td>
<td>25.4</td>
<td>4.3</td>
<td>6.9</td>
<td>100</td>
</tr>
</tbody>
</table>

International deliveries (tonnage) of small packets, parcels and packages, 2011 and 2016, distribution of regional flows as a share of global flows, percent

Source: Universal Postal Union.
From postal volumes to international trade

Currently: 379,301,707 electronic customs declarations recorded in our UPU big data platform

285,952,139 with value less 50 (in any currency), i.e. 75% of recorded declared postal shipments
UPU Big Data Platform and Systems

- Tracking messages: personal data
- Tracking messages: transactional data
- Tracking messages: operational data
- UPU postal statistics questionnaires
- Key UPU surveys

UPU surveys

UPU Big Data Platform and Systems

Key UPU surveys

UPU postal statistics questionnaires

Tracking messages: operational data

Tracking messages: transactional data

Tracking messages: personal data
Products & services
Part that is visible to the end-user

Processes, systems and technologies
Part that is visible to the producers
import org.apache.spark.sql.functions.explode
val nm = testTriniti.select(testTriniti.col("id"), explode(testTriniti.col("value")))
nm.createOrReplaceTempView("nm")

import org.apache.spark.sql.functions.explode
me: org.apache.spark.sql.DataFrame = [id: string, key: string ... 1 more field]

spark2

ns.printSchema

root
|-- id: string (nullable = true)
|-- key: string (nullable = false)
|-- value: string (nullable = true)

Filtering the exploded DataFrame for a specific key

df2 = sqlContext.sql("select cast(value as double) from nm where key = 'cp/d.val/amt'")
df2.count

df2: org.apache.spark.sql.DataFrame = [values: double]
res11: long = 379301727

spark2

val df2 = sqlContext.sql("select cast(value as double) from nm where key = 'cp/d.val/amt'")
df2.count

df2: org.apache.spark.sql.DataFrame = [values: double]
res11: long = 379301727

spark2

val df2 = sqlContext.sql("select cast(value as double) from nm where key = 'cp/d.val/amt'")
df2.count

df2: org.apache.spark.sql.DataFrame = [values: double]
res11: long = 379301727

spark2

val df2 = sqlContext.sql("select cast(value as double) from nm where key = 'cp/d.val/amt'")
df2.count

df2: org.apache.spark.sql.DataFrame = [values: double]
res11: long = 379301727

spark2

val df2 = sqlContext.sql("select cast(value as double) from nm where key = 'cp/d.val/amt'")
df2.count

df2: org.apache.spark.sql.DataFrame = [values: double]
res11: long = 379301727
Thank you