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FOREWORD 

Variance estimation has become a priority as more and more Commission 

Regulations require that the quality of the statistics be assessed. Sampling variance is 

one of the key indicators of quality in sample surveys and estimation. Sampling 

variance helps the user to draw better conclusions about the statistics produced, and it 

is also important information for the design and estimation phases of surveys.  

However, due to the complexity of the methods used for the design and the analysis 

of the survey, like the sampling design, weighting and the type of estimators involved, 

the calculations are not straightforward. The literature on variance estimation is rich; 

however, no clear guidelines exist. This is mainly because all the methods compete, 

due to the existence of different simplifications or approximations. 

Because of the necessity to offer solutions to the methodological problems encountered in 

the very specific field of variance estimation among the members of the European 

statistical system (ESS) a Task Force was set up by the Eurostat Working Group on the 

Assessment of Quality. The Task Force, composed of specialists from European national 

institutes, met four times and discussed solutions to many of the methodological problems 

encountered for sample surveys in the ESS. The meeting documents and the final report 

of the Task Force are available on the CIRCA interest group ‘Quality in Statistics’ 

(http://forum.europa.eu.int/Public/irc/dsis/Home/main). 

This report has been produced in order to provide a large visibility to the work of the 

Task Force.  It provides a summary of the currently available variance estimation 

methods, and general recommendations and guidelines endorsed by the Working 

Group on the Assessment of Quality for the estimation of variance for the common 

sampling procedures used at the European level. Not all the issues raised by the Task 

Force are tackled in this report. Some of them are being studied in research projects 

on variance estimation issues under the fifth framework programme of the European 

Commission, and results are not yet available.  

The report aims to provide a framework for survey statisticians and methodologists 

when choosing an appropriate method for estimating sampling variability of their 

estimates.  But it aims as well to address professionals when analysing survey data. In 

order to retain its value as a source of information on ‘currently used variance 

estimation methods’, this report has to be regularly updated. 

 

 

 

Jean-Louis Mercy     Pedro Diaz Muñoz 

Head of Unit      Director 
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1. INTRODUCTION 

This report examines the issue of variance estimation of simple statistics under several 

sampling designs and estimation procedures. It especially focuses on two 

representative examples of household and business surveys, labour force survey 

(LFS) and structural business statistics (SBS) respectively. It has been produced in the 

frame of the project ‘Estimation techniques statistics’ which is Lot 4 of 2000/S 135-

088090 invitation to tender. The main objective of the present work is to provide: 

• a depository of the currently available variance estimation methods; 

• general recommendations and guidelines for the estimation of variance with 

respect to the common sampling procedures (incorporating sampling design, 

weighting procedures as well as imputation) deployed at European level. 

The compilation of the content of the reporting, its structuring and presentation has 

been performed, having in focus the aforementioned objectives as well as to address 

more effectively professionals involved in analysis of survey data. 

The report has the following structure: in the second chapter a number of factors that 

affect variance and the procedure of its estimation (such as sampling design, 

weighting etc.) are presented and their effect commented. The several alternative 

variance estimation techniques are discussed in brief in chapter 3. A theoretical 

comparison of those can be found in that chapter. The several software packages that 

have been developed for variance estimation, in recent years are described in chapter 

4. Finally, in chapter 5, some practical guidelines for the implementation of variance 

estimation under conditions common to surveys conducted in Europe (with respect to 

sampling design and weighting) are provided. The discussion on imputation is 

performed via a case study, since imputation, being survey- and variable-sensitive, 

requires ad-hoc treatment in each case. In order to illustrate the various issues that 

may arise in the context of variance estimation as well as the multiple ways for 

handling them, several topics of specific interest have, also, been included in this 

chapter. The issue of calculation of coefficients of variation is also addressed there. 

The notation used throughout the report is described in the annex. 

 

1.1 Importance of variance estimation 

The primary concern in all sample surveys is the derivation of point estimates for the 

parameters of main interest. However, equally important is the derivation of the 

variances of the above estimates. The importance of variance estimators, and 

corresponding standard errors, mainly lays on the fact that the estimated variance of 

any estimator is a main component of the quality of any estimator.  

In brief, as noted in Gagnon et al. (1997), variance estimation: 

• provides a measure of the quality of estimates; 

• is used in the computation of confidence intervals; 

• helps draw accurate conclusions; 

• allows statistical agencies to give users indications of data quality. 

9

eurostat



The sampling variance is, indeed, one of the key indicators of quality in sample 

surveys and estimation. It indicates the variability introduced by choosing a sample 

instead of enumerating the whole population, assuming that the information collected 

in the survey is otherwise exactly correct. For any given survey, an estimator of this 

sampling variance can be evaluated and used to indicate the accuracy of the estimates.  

Thus, indeed, variance estimation is a crucial issue in the assessment of the survey 

results. However, due to the complexity of the methods used for the design and the 

analysis of the survey, like the sampling design, weighting, the type of estimators 

involved etc. the respective calculations are not straightforward. The literature on 

variance estimation is rich, however no clear guidelines exist. This is mainly because 

all the methods compete, due to the existence of simplifications or approximations. 

The choice depends on experience, resources and institutional mentality. In this report 

some rough recommendations are provided. 
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2. DECISIVE FACTORS FOR VARIANCE ESTIMATION 

The choice of an appropriate variance estimator depends on: 

• type of sampling design (i.e. stratified, multi-stage, clustered etc.); 

• type of estimator (i.e. weighting); 

• type of non-response corrections (i.e. re-weighting, imputation); 

• measurement errors; 

• form of the statistics (linear: totals, means (for known population size); non-linear: 

means (for unknown population size), ratios…). 

 

The degree of complexity of the aforementioned dimensions dictates the complexity 

of any survey, with the first two factors being the main contributors. As depicted in 

Wolter (1985) (see figure below), a sample survey can be regarded as ‘complex’ when 

a complex sample design is deployed (irrelevant of the type of estimator used) or, 

even in cases of simple designs accompanied by non-linear estimators. 

 Simple design Complex design 

Linear estimators   

Non-linear estimators   

Figure 1: Graphical depiction of ‘complex sample surveys’ 

The studies where there is a need for complex sample designs, those include namely 

varying probabilities and non-independent selections are very common. For example, 

in household surveys persons may be sampled from geographically clustered 

households. In this scheme, persons within the same geographical cluster have a 

higher probability of being sampled together than do persons in different clusters. 

Similarly, in some business surveys using local business units as sampling units, the 

samples are not independent because several local units could be sampled from the 

same enterprise and each enterprise has its own practices and procedures. Another 

type of dependence occurs when data are collected at several points in time. In 

addition to the complexities due to clustering, the probability of selecting a particular 

unit may vary depending on factors such as the size or location of the unit. For 

example, in a sample of businesses the probability of selecting a business may be 

proportional to the number of employees (πps or pps) (Särndal et al., 1992). These 

types of design features make analysis of the data more difficult. 

When complex surveys are used to collect data, special techniques are needed to 

obtain meaningful and accurate analyses, since ignoring the sample design and the 

adjustment procedures imposed on data leads to biased and misleading estimates 

of the standard errors. Ignoring features such as clustering and unequal probabilities 

of selection leads to underestimation of variances, while disregarding of stratification 

usually leads to overestimation of variances. 

Additional factors such as ease of computation, bias and sampling variability of the 

variance estimators, information required for calculation (and availability of such 
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information on confidentially protected files) are important when one has to choose 

among more than one valid appropriate estimators. 

In the sequel the impact of the main factors to the variance estimation are further 

elaborated. 

 

2.1 Sampling design 

The underlying sampling design of a sample survey is one of the most important 

factors that influence the size as well as the procedure required for the estimation of 

variances. More precisely, there are several components of sample designs that are 

related to the variance estimation: 

— The number of stages of the sampling 

Each additional stage of sampling adds variability to the finally derived estimates. 

— The use or not of stratification of sampling units 

Stratification is commonly used in practice in order to give a ‘more representative’ 

sample with respect to characteristics judged to be influential. This strategy, generally 

speaking, leads to a reduction in the total variance. In a stratified sample, the total 

variance is the weighted variance of each stratum. 

— The use or not of clustering of sampling units 

Clustering is, also, a usual strategy that aims at the reduction of the cost of a sampling 

survey. However, contrary to stratification, it, generally, leads to an increase of the 

total variance. 

— The exact sample selection scheme(s) deployed 

Finally, the sampling schemes that are deployed at each stage of a sampling design 

(equal or unequal selection probabilities), stratified or not, have a serious impact on 

the variance of any estimator and the way that it is estimated. Ignoring unequal 

selection probabilities of sampling units tends to an underestimation of standard 

errors. 

The impact of these features to the process of variance estimation, of rather simple 

statistics such as totals (linear) as well as non-linear (e.g. ratios), is further discussed 

below in the current chapter. 

 

2.1.1 Number of stages 

In one-stage sample designs the situation is quite straightforward and the procedure of 

variance estimation depends only on the specific sampling scheme deployed as well 

as to whether stratification and/or clustering is used. 

In the case of sampling designs with more than one stage the situation gets 

complicated due to the fact that there are more than one source of variation. In each 

stage, the sampling of units (primary, secondary, and so on, up to ultimate) 

induces an additional component of variability. In some cases (where all the other 

components of sampling and estimation are rather simple) a closed-form formula may 

be obtained, calculating the variance at each stage. However, the common practice is 
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to approximately assess the variance by estimating the variability among primary 

sampling units, since this is the dominating component of total variance. 

For example, in two-stage sampling we have two sources of variation: variation 

induced by the selection of primary sampling units (PSU) as well as variation 

resulting from the selection of secondary sampling units (SSU). Fortunately, the 

hierarchical structure of two-stage (or, accordingly, multi-stage) sampling designs 

leads to rather straightforward formulae for estimators and corresponding standard 

errors. Generally speaking, the variance estimation of a statistic can be decomposed 

into two parts, one part of PSU variance and another part of SSU variance (Särndal, et 

al. 1992). The exact form of the two variance-components depends on the sampling 

schemes utilized at each stage of the sampling. 

 

2.1.2 Stratification 

In stratified sampling the population is subdivided into non-overlapping 

subpopulations, called strata. Strata commonly define homogenous subpopulations, 

leading, thus, to a reduction in the total variance. From each stratum, a probability 

sample is drawn, independently from the other strata. The sampling design within 

each stratum could be the same or different from other strata. This independence 

among samples in different strata implies that any estimator as well as its 

corresponding variance estimator is simply the sum of the corresponding estimators 

within each stratum.  

So, the problem of finding the most appropriate variance estimator for a single-stage 

stratified sampling reduces to the problem of the most appropriate variance estimator 

for the sampling designs deployed in each stratum. 

 

2.1.3 Clustering 

Clustering is a commonly used strategy in order to reduce the cost of a survey, with 

respect both to time and money. In a clustered sample design, the sampling unit 

consists of a group (cluster) of smaller units (elements). Sampling may be done for 

the clusters or the secondary sampling units. In most cases, there is some degree of 

correlation (homogeneity) among elements within the same cluster, leading thus 

to an increase of the variance of any statistic (compared to the case of simple 

random sampling).  

In clustered samples, the variance consists of two components: variance within 

clusters (which depends on the intra-correlation of elements) and variance among 

clusters. The total variation is dependent on the intra-correlation of elements and the 

variance of the elements if simple random sampling was deployed (for more details 

one may refer to Cochran, 1977 and Särndal et al., 1992). 

Often, the issue of clustering is ignored in practice, leading to an underestimation of 

the variance. There are two approaches in order to account for clustering effect. First 

of all, if the sampling scheme and the type of estimator are simple, one could proceed 

into the analytic estimation of the two components of variance (within and between 

clusters) based on the calculation of the intra-correlation coefficient. However, this 

task is not straightforward in real situations. In such cases one could resort to 
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appropriately adjusted resampling techniques, which will be further described in a 

later point of the report. 

 

2.1.4 Sample selection schemes 

• Simple random sampling 

The simple random sampling is, as one may expect, the simplest case, leading to 

straightforward, closed-form exact formulae for the calculation of variances of 

estimators of linear forms. In case of non-linear statistics (such as ratios) linearisation 

is needed in order to derive closed-form, though approximate, formulae for the 

variance. This is not a hard task for statistics as simple as the ratio. 

 

• Systematic sampling 

Systematic sampling is a convenient sampling design, mainly used for the effort 

reduction in sample drawing that it offers. Moreover, whenever properly applied, it 

can incorporate any obvious or hidden stratification of the population, leading thus to 

greater precision than simple random sampling. 

Unfortunately, one of the costs paid for the simplicity of the systematic sampling is 

that there is no unbiased estimator for the variance of statistics as simple as a total. So 

we have to resort to some biased estimators. Several such suggestions can be found in 

the literature. A comprehensive study is presented in Wolter (1985). The adequacy of 

these alternative estimators depends on the nature of the underlying population as well 

as to the logic followed during the compilation of the list (sorting) of the elements of 

the population. 

The most common approach, used in practice, is to ignore the effect of systematic 

sampling and apply the formulae that hold for the case of simple random sampling. 

Another approach is based on the pseudo-stratification of the sample (that is, 

considering the systematic sample as a stratified random sample with 2 units from 

each successive stratum), while the generic notion of variance estimation via 

replication techniques, such as bootstrap, could be used here as well. In practice it is 

claimed that the error introduced from assuming simple random sampling is not 

significant, not justifying, thus, the additional burden imposed by the use of pseudo-

stratification or replication methods. Moreover, according to Särndal et al. (1992), in 

multi-stage samples where systematic sampling is deployed in the final stage, the bias 

is not as serious as one might expect. 

We make special reference to stratified systematic sampling, which is a form of 

probabilistic sampling, combining elements of simple random, stratified random, and 

systematic sampling, in an effort to reduce sampling bias (Berry and Baker, 1968). 

The impact of stratified systematic sampling to the variance within each stratum is 

analogous to the impact of simple systematic sampling to the variance, as previously 

discussed. This method will be more precise than stratified random sampling if 

systematic sampling within strata is more precise than simple random sampling within 

strata. As previously mentioned, in the case of systematic sampling a compromise has 

to be made in the variance estimation procedure. Since no unbiased variance 

estimation exists for this design, the simplifying assumption of simple random (or 

stratified, in this case) sampling may be adopted as long as the ordering of the 
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sampling units before the systematic selection has been performed in such a way so as 

to lead to heterogeneous samples (as is usually the case). This restriction is imposed 

in order to prevent an underestimation of the variance. However, a more close 

approximation of the underlying sampling design can be achieved under the 

conceptual construction of a stratified two-stage clustered sampling. In this case the 

variance of a total can be estimated via the Jackknife linearisation method (Holmes 

and Skinner, 2000). This variance estimation method can also incorporate any 

weighting adjustments performed. 

 

• Probability proportional-to-size sampling 

Generally speaking, probability proportional-to-size (πpS or ppS) sample designs are 

rather complicated with complex second-order inclusion probabilities, leading, thus, 

to sophisticated formulae for variance estimation. Actually in most cases only 

approximations can be derived in practice. These are derived from corresponding 

simplifications in the sampling schemes (Särndal et al., 1992), so that one does not 

need to estimate second order probabilities. Of course, these approximations induce a 

component of bias in variance estimation. 

For example, as illustrated in Wolter (1985), under the assumption of simple random 

sampling without replacement, the bias induced to variance estimation of a total (of 

πpS sampling) is given by the formula: 
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where iπ , jπ  are the first-order inclusion probabilities of sample units i and j 

respectively, while ijπ  is the second-order inclusion probability. 

 

2.2 Calibration 

Weighting is a common statistical procedure used in most survey data in order to 

improve the quality of the estimators in terms of both precision and non-response 

bias. Weighting can be used to adjust for the particular sample design, for (unit) non-

response while it can also use additional auxiliary information in order to enhance the 

accuracy of estimates. 

In business surveys highly skewed variables may damage the accuracy of the 

produced statistics. The effective use of auxiliary information, combining data from 

business surveys and administrative record systems, produces statistics of satisfactory 

quality. The use of ratio, combined ratio or regression estimators improve the 

accuracy of business statistics (Särndal et al., 1992, Deville and Särndal, 1992). The 

classical framework for the above estimators assumes that the auxiliary population 

information is correct and that the sample source is obtained using a known 

probability-sampling scheme. Moreover, ratio estimators serve extensively to adjust 

the produced statistics reducing the biases of non-coverage and non-response. 

Note, however, that the above three estimators are biased but this bias is usually 

negligible (Kish et al., 1962). Moreover, the use of these calibration estimators may 

cause difficulties in the statistics production as the business surveys are multipurpose 
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and multivariate and as a result, the model – based estimators may be suitable for 

some statistics but not for others. 

A generic outline of a ‘complete’ weighting process is described below.  

Stage 1: The major purpose of weighting is to adjust for differential probabilities of 

selection used in the sampling process. When units in the sample are selected with 

unequal probabilities of selection, expanding the sample results by the reciprocal of 

the probability of selection, i.e., sampling weight, can produce unbiased estimates. 

This type of weighting is, essentially, incorporated in the treatment of sampling 

design discussed in the previous section. 

Stage 2: When a sample of subunits is used to get in touch with the sampling unit to 

which the sampled sub unit is associated (e.g. the members of a household or the local 

units of an enterprise), each subunit weight must be adjusted according to the number 

of subunits in the frame for that sampling unit. This is of importance for variables that 

are associated with the whole sampling unit. 

Stage 3:  Properly weighted estimates based on data obtained from a survey, would be 

asymptotically unbiased if every sampled unit agreed to participate in the survey, and 

every person responded to all items (questions) of the survey questionnaire. However, 

some non-response occurs even with the best strategies; thus adjustments are always 

necessary to minimize potential non-response bias. When there is unit non-response, 

non-response adjustments are made to the sample weights of respondents.  

The purpose of the non-response adjustment is to reduce the bias arising from the fact 

that non-respondents are different from those who responded to the survey. The 

previously mentioned weights (of stages 1 and 2) are valid under the assumption that 

all units within a stratum respond (or not) with the same probability. However, when 

there is additional information available about the non-response more complicated 

and possibly better weights can be used. 

Stage 4: If the frame contains auxiliary information about the sampling units, that is, 

variables that are correlated with at least some of the measurement variables of 

interest, this information could be used to improve the estimation. Calibration in its 

various forms has become an essential tool in surveys. Its justification is mainly based 

on the argument that calibration is a convenient way of improving the efficiency of 

estimates by exploiting external information. Other reasons for its use include the 

following (see also Mohadjer et al., 1996): 

• balance (in the sense that after calibration, the sample ‘looks like the population’); 

• target groups (if we need estimates for a specific subpopulation, we add the 

appropriate calibration variable); 

• anchoring of estimates (a variable that is correlated with a calibration variable will 

tend not to ‘drift’ too far away, providing stability over time); 

• convenience (e.g., regression-based calibration provides a simple way of getting a 

single weight per enterprise in a business survey, Lemaitre and Dufour (1987)); 

• consistency of estimates (in production systems, each sampled unit is given a 

unique final weight as part of the calibration process; as a result, estimates are 

consistent in the sense that, e.g., parts add up to totals); 
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• composite estimation (exploiting sample overlap over time to improve efficiency 

can be done via calibration). 

All of the above weighting procedures can be easily incorporated in the generalised 

regression type of estimators (GREG). 

An obvious advantage of the GREG estimator is the fact that it has been extensively 

studied in the literature. With respect to its variance estimator no analytic solution 

exists (Särndal et al., 1992). The simplest way is to approximate the variance using 

Taylor expansion. Unless the sampling design is complicated, Taylor linearisation is 

usually the preferred method. 

 

At this point, the following clarification should be made. The finally derived weights 

do contain all the information necessary to construct point estimates. However, the 

weights alone do not give the extra information required to estimate variances, which 

are needed for inference. As an extreme example, for a design where each unit has 

equal probability of selection, the weights cannot reveal anything about the stratum 

memberships of the sample units; yet, with a stratified design, it is desirable to 

estimate the variance separately within each stratum. What additional information is 

required for variance estimation depends on the actual design of the survey, suitable 

approximations to that design as well as the weighting technique used. 

 

2.3 Imputation 

Non-response of sampled units is an inherent feature of all surveys. It can impair the 

quality of survey statistics by threatening the ability to draw valid inference from the 

sample to the target population of the survey. More particularly, non-response’s 

impact on data and results is: 

• increase of the sampling variance (since the finally derived sample is smaller than 

the originally planned sample size); 

• introduction of bias to the estimates (in the case where the investigated behaviour 

of respondents deviates systematically from the corresponding behaviour of non-

respondents). 

There are two types of non-response: unit or item non-response. Each of these 

requires a different type of treatment. The knowledge of the type of ‘amendments’ 

performed is important for the proper evaluation of the variance estimators. 

Furthermore, another factor that determines the kind of variance estimator that is 

selected is the uniformity of the followed non-response approaches. If the level of 

uniformity is low then, usually, more computationally intense procedures are 

required. The most common method for dealing with unit non-response is that of 

weighting of the sample, which has been dealt with in the previous section. 

Item non-response is most often dealt with by using imputation methods, that is 

‘prediction of the missing information’. The knowledge of the imputation methods 

used is essential not only for the final estimation of variance but even for the choice of 

the proper variance estimator, since imputation affects the variance of any estimated 

statistic. Along with the imputation method, flagging of the imputed values or, at 
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least, the rate of imputation is the type of information that should always be provided 

with the data set. 

A comprehensive review of the imputation techniques that are used at European level 

is provided by Patacchia (2000).  

In the presence of imputed data, it is even more important to measure the accuracy of 

estimates, since imputation itself adds an additional process, which can be a source of 

errors. That is, the total error that we want to access consists of two components: the 

ordinary sampling error and the imputation error. Ignoring imputation and treating 

imputed values as if they were observed values may lead to valid point estimates 

(under uniform response within imputation classes) but it will unavoidably result in 

underestimation of the true variance (if the standard variance estimation methods are 

naively applied). In fact, as mentioned in Kovar and Whitridge (1995), even non-

response as low as 5% can lead to an underestimation of the variance of order of 2–

10%, while non-response rate of 30% may lead to 10–50% underestimation. This 

issue of underestimation of variance has also been illustrated in Full (1999). 

The estimation of variance, which takes into account imputation, has the following 

benefits: 

• gives better understanding of the impact of imputation; 

• improves the estimation of total variance; 

• permits better allocation of resources between a larger sample and improved 

verification and imputation procedures (according to the relative weights of 

variance due to sampling and variance due to imputation). 

The choice of the most appropriate method for the estimation of variance in the 

presence of imputation depends on two primary factors: 

• the underlying sampling design; and 

• the imputation method employed. 

Some other features that need to be taken into account are 

• the imputation rate; 

• whether more than one imputation method is used in our working data set; and 

• non-negligible sampling fractions. 

 

Generally speaking, the methods for variance estimation taking into account 

imputation, can be distinguished in the following categories: 

• Analytical methods 

Under this framework one can find the model-assisted approach of Särndal (1992) and 

Deville and Särndal (1991) and the two-phase approach of Rao (1990) and Rao and 

Sitter (1995). 

• Resampling methods 

The main replication techniques that have been developed for variance estimation are: 

jackknife technique, Rao (1991) and Rao and Shao (1992); Bootstrap, Shao and Sitter 

(1996); balanced repeated replication method (BRR), Shao et al.  (1998). These 

methods are further discussed, in a more general context, in the next chapter. 
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• Repeated imputations methods 

Some such methods are the ‘multiple imputation’ (Rubin, 1978, 1987) and the ‘all 

case imputation method’ (Montaquila and Jernigan, 1997). 

An extensive review and comparison (both theoretically and empirically, via 

simulation) of the above methods is conducted in Rancourt (1998) and Lee et al. 

(1999). A comparative study with emphasis on multiple imputation is provided in 

Luzi and Seeber (2000). 

Until recently no software existed for the calculation of variance taking into account 

the imputation deployed. Lately some attempts have been made to incorporate such a 

feature in some of the packages that are specially designed to deal with data from 

complex surveys and correctly calculating their variances. 

 

Overall the choice of the variance estimation procedure that takes into account 

imputation, requires knowledge of the following information (Lee et al., 1999): 

• indication of the response/non response status (flag); 

• imputation method used and information on the auxiliary variables; 

• information on the donor; 

• imputation classes. 

Not all the available methods for variance estimation require all the above 

information. However, flagging is necessary (Rancourt, 1996), otherwise only rough 

approximations are possible. 
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3. VARIANCE ESTIMATION METHODS 

In standard textbooks for sampling, such as Cochran (1977), one may find 

straightforward exact analytic formulae for variance estimation of (usually simple) 

statistics under several sample designs. However, as sample designs get more and 

more complicated or deployed in more stages, no closed-form expressions exist for 

the calculation of variances. Even in cases of simple sample designs the utilization of 

advanced weighting procedures makes intractable the variance estimation formula of 

simple statistics, such as totals. In such cases, where no exact method exists for the 

calculation of unbiased estimates of the standard errors of the point estimates, the only 

alternative is to approximate the required quantities. Under the framework of analytic 

techniques, this is achieved by imposing simplifying assumptions (with respect to the 

sample design or the statistic to be variance-estimated). An alternative approach is 

based on replication methods. In the sequel we provide a short description of these 

methods in their general form in order to establish the theoretical framework that is 

related to the choice of the most suitable variance estimator for each circumstance.  

 

Figure 2: Overview of alternative variance estimation methods 

 

3.1 Variance estimation under simplifying assumptions 

3.1.1 Variance estimation under simplifying assumptions of sampling 
design 

As previously mentioned, the complexities in variance estimation arise partly from the 

complicated sample design and the weighting procedure imposed. So a rough estimate 

for the variance of a statistic based on a complicated sample can be obtained either by 

ignoring the actual, complicated sample design used (unequal probabilities of 

selection, clustering, more than one stage of sampling); or proceeding to the 

estimation using the straightforward formulae of the simple random sampling or 

another similarly simple design.  
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However, generally speaking, the incorporation of sampling information is important 

for the proper assessment of the variance of a statistic. Since weighting and specific 

sample designs are particularly implemented for increasing the efficiency (and thus 

decreasing the variability) of a statistic, their incorporation in the variance estimation 

methodology is of major importance. For example, stratification tends to reduce the 

variability of a sample statistic, so if we ignore the design effect, the derived estimator 

will be upwards biased, overestimating the true variance of any statistic. Thus, the 

bias induced under this simplifying approach depends on the particular sampling 

design and should be investigated circumstantially. However, in general, this method 

is an indispensable one in common practice. 

 

3.1.2 Variance estimation under simplifying assumptions of statistics 
(Taylor linearisation method) 

The Taylor series approximation method relies on the simplicity associated with 

estimating the variance of a linear statistic, even with a complex sample design. 

By applying the Taylor linearisation method, non-linear statistics are approximated by 

linear forms of the observations (by taking the first-order terms in an appropriate 

Taylor-series expansion)(
1
). Extending the Taylor series expansion could develop 

second or even higher-order approximations. However, in practice, the first-order 

approximation usually yields satisfactory results, with the exception of highly skewed 

populations (Wolter, 1985) 

Standard variance estimation techniques can then be applied to the linearised statistic. 

This implies that Taylor linearisation is not a ‘per se’ method for variance estimation, 

it simply provides approximate linear forms of the statistics of interest (e.g. a 

weighted total) and then other methods should be deployed for the estimation of 

variance itself (either analytic or approximate ones). 

The Taylor linearisation method is a widely applied method, quite straightforward for 

any case where an estimator already exists for totals. However, the Taylor 

linearisation variance estimator is a biased estimator. Its bias stems from its tendency 

to underestimate the true value and it depends on the size of the sample and the 

complexity of the estimated statistic. Though, if the statistic is fairly simple, like the 

weighted sample mean, then the bias is negligible even for small samples, while it 

becomes nil for large samples (Särndal et al. 1992). On the other hand for a complex 

estimator like the variance, large samples are needed before the bias becomes small. 

In any case, however, it is a consistent estimator. 

For more information on Taylor linearisation variance estimation method one may 

refer to Wolter (1985) and Särndal et al. (1992). 

 

3.2 Variance estimation using replication methods 

Replicate variance estimation is a robust and flexible approach that can reflect several 

complex sampling and estimation procedures used in practice. According to many 

                   

(1) Note that Taylor series linearisation is, essentially, used in elementary cases, while influence 

function can be deployed in complex situations. 
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researchers, replication can be used with a wide range of sample designs, including 

multi-stage, stratified, and unequal probability samples. Replication variance 

estimates can reflect the effects of many types of estimation techniques, including 

among others non-response adjustment and post-stratification. Its main drawback is 

that it is computationally intensive. Especially in large-scale surveys, its cost in time 

may be prohibitively large. This will be made clearer in the sequel. Moreover, its 

theoretical validity holds only for linear statistics and asymptotics (which is a 

variation of linearisation). 

The underlying concept of the replication approach is that based on the originally 

derived sample (full sample) we take a (usually large) number of smaller samples 

(sub-samples or replicate samples). From each sub-sample we estimate the statistic of 

interest and the variability of these ‘replicate estimates’ is used in order to derive the 

variance of the statistic of interest (of the full sample). 

Let’s denote by θ  an arbitrary parameter of interest, )(ˆ dataf=θ  the statistic of 

interest (the estimate of θ  based on the full sample) and ( )θ̂v  the corresponding 

required variance. Then the replication approach assesses ( )θ̂v  by the formula 

( )∑
=

−=
G

k

kkhcv
1

2

)(
ˆˆ)ˆ(ˆ θθθ  

where 

)(
ˆ
kθ  is the estimate of θ  based on the k-th replicated sample 

G is the total number of replicates 

c is a constant that depends on the replication method, and 

hk is a stratum specific constant (required only for certain sampling schemes) 

 

There are several methods for drawing these ‘replicate samples’, leading thus to a 

large number of replication methods for variance estimation. The most commonly met 

in practice include the ‘jackknife’, ‘bootstrap’, ‘balanced repeated replication’ and 

‘random groups’ along with their variants. 

 

3.2.1 Jackknife estimator 

The central idea of jackknife is dividing the sample into disjoint parts, dropping one 

part and recalculating the statistic of interest based on that incomplete sample. The 

‘dropped part’ is re-entered in the sample and the process is repeated successively 

until all parts have been removed once from the original sample. These replicated 

statistics are used in order to calculate the corresponding variance. Disjoint parts 

mentioned above can be either single observations in a simple random sampling or 

clusters of units in multistage cluster sampling schemes. The choice of the way that 

sampling units are entered, re-entered in the sample (type and size of grouping) leads 

to a number of different expressions of jackknife variance. For example in JK1 

method (which is more appropriate for unstratified designs) one sampling unit 

(element or cluster) is excluded each time, while in JK2 (more appropriate for 

stratified samples with two PSUs per stratum) and JKn (suitable for stratified samples 
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with more than two PSUs per stratum) a single PSU is dropped from a single stratum 

in each replication.  

It should also be noted that the jackknife method for variance estimation is more 

applicable in with-replacement designs, though it can also be used in without-

replacement surveys when the sampling fraction is small (Wolter 1985). However, 

this is rarely the case when we are dealing with business surveys. The impact of its 

use in surveys with relatively large sampling fraction is illustrated, via simulation in 

Smith et al. (1998a), while, as mentioned in Shao and Tu (1995) the application of 

jackknife requires a modification — to account for the sampling fractions — only 

when the first stage sampling is without replacement. In any case, due to their nature, 

jackknife variance estimation methods seem to be more appropriate for (single or 

multistage) cluster designs, where in each replicate a single cluster is left out of the 

estimation procedure (neglecting, though, the finite population correction). 

If the number of disjoint parts (e.g. clusters) is large, the calculation of replicate 

estimates is time consuming, making the whole process rather time-demanding in the 

case of large-scale surveys (Yung and Rao, 2000). So alternative jackknife techniques 

have been developed. 

Jackknife linearised variance estimation is a modification of the standard jackknife 

estimator based on its linearisation. Its essence is that repeated recalculations of a 

statistic (practically numerical differentiation) are replaced by analytic differentiation. 

The result is a formula that it is easy to calculate. For example for stratified cluster 

sample the bias adjusted variance formula, presupposing sampling with replacement, 

is (Canty and Davison, 1999): 

( )∑∑
== −⋅
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The factor lhj is the ‘empirical influence value’ for the jth cluster in stratum h. The 

calculation of lhj is outlined in the appendix of Canty and Davison (1999). The effort 

required for calculating lhj is based on the complexity of the statistic:  

For the linear estimator in stratified cluster sampling: 

∑ ′=
jh

hjy
,

θ̂  

where  

∑ ⋅=′
k

hjkhjkhj yy ω  

is the sum of ys in every cluster j in each stratum h, and ωhjk is the design weights 

then  

∑ ′−′⋅=
j

hjhjhhj yynl  

 

For the ratio of two calibrated estimators, lhj is: 
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while y and z are the vectors of the observations in the dataset and y

hjl , z

hjl  and W are 

calculated from the data analytically. 

 

Overall we can say that its main advantage is that it is less computationally 

demanding, while it generally retains the good properties of the original jackknife 

method. However, in case of non-linear statistics, it requires the derivation of separate 

formulae, as is the case with all linearised estimators. Therefore, its usefulness for 

complex analyses of survey data or elaborate sample designs is somewhat limited. For 

more details one may refer to Canty and Davison (1998, 1999) and Rao (1997), while 

an insightful application is made by Holmes and Skinner (2000). 

 

3.2.2 Bootstrap estimator 

The bootstrap involves drawing a series of independent samples from the sampled 

observations, using the same sampling design as the one by which the initial sample 

was drawn from the population and calculating an estimate for each of the bootstrap 

samples. Its utility in complex sample surveys has been explored in some particular 

cases. However, since the bootstrap technique was not developed in the frame of 

sampling theory, there are still some issues that need to be investigated such as the 

issue of non-independence between observations in the case of sampling without 

replacement as well as other complexities. In order to ensure an unbiased result the 

variance of the bootstrap estimator is multiplied with a suitable constant. 

In the case of stratified sample designs, resampling is carried out independently in 

each stratum. Its main drawback is that it is too time consuming. 

 

3.2.3 Balanced repeated replication method 

The balanced repeated replication method (BRR) (or balanced half samples, or 

pseudoreplication) has a very specific application in cluster designs where each 

cluster has exactly two final stage units or in cases with a large number of strata and 

with only two elements per stratum. The aim of this method is to select a set of 

samples from the family of 2
k
 samples, compute an estimate for each one and then use 

them for the variance estimator in a way that the selection satisfies the ‘balance’ 

property (for a brief description see Särndal et al., 1992).  

In the cases where the clusters have variable number of units, the division of them 

into two groups is required and thus modifications have been developed. For example 

for the stratified designs one has to treat each stratum as if it were a cluster, and to use 

divisions of the elements into two groups. However, where there is an odd number of 

elements in the stratum the results are biased, and ways of reducing this bias (but not 
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eliminating it) are described in Slootbeek (1998). Recent research (Rao and Shao 

1996) shows that only by using repeated divisions (‘repeatedly grouped balanced half 

samples’) can an asymptotically correct estimator be obtained.  

Therefore the use of BRR with business surveys is typically difficult, as stratification 

is regularly used and the manipulation of both data and software becomes very 

difficult. 

According to Rao (1997) the main advantage of BRR method over the jackknife is 

that it leads to asymptotically valid inferences for both smooth and non-smooth 

functions. However, it is not easily applicable for arbitrary sample sizes nh like the 

bootstrap and the jackknife. 

 

3.2.4 Random groups method 

The random group method consists of drawing a number of samples (sub-samples) 

from the population, estimating the parameter of interest for each sub-sample and 

assessing its variance based on the deviations of these statistics from the 

corresponding statistic derived from the union of all the sub-samples. This technique 

is fully described in Wolter (1985), while it is also explored in ‘Variance calculation 

software: evaluation and improvement (Supcom 1998 project, Lot 16)’. As mentioned 

therein, this was one of the first methods developed in order to simplify variance 

estimation in complex sample surveys. 

Random groups method can be distinguished into two main variations, based on 

whether the sub-samples are independent or not. In practice, the common situation is 

that survey sample is drawn at once and random groups technique is applied in the 

sequel by drawing, essentially, sub-samples of the original sample. In such cases, we, 

almost always, have to deal with dependent random groups. 

In the case of independent random groups, this technique provides unbiased linear 

estimators, though small biases may occur in the estimation of non-linear statistics. In 

case of dependent random groups, a bias is introduced in the results, which, however, 

tends to be negligible for large-scale surveys with small sampling fraction. In such 

circumstances the uniformity of the underlying sampling design of each sub-sample is 

a prerequisite for safeguarding the acceptable statistical properties of the random 

groups variance estimator. 

 

3.2.5 Properties of replication methods 

A common component of all the replication methods is the derivation of a set of 

replicate weights. These weights are re-calculated for each of the replicates selected, 

so that each replicate appropriately represents the same population as the full sample. 

This may be considered as a disadvantage as additional computational power is 

required to carry out all these calculations. However, this requirement is balanced by 

the unified formula for calculating variance, as no statistic-related formula is needed, 

since the approximation is a function of the sample, not of the estimate. 

The primary reason for considering the use of resampling methods, which justify the 

additional computational burden they impose, is their generic applicability and 

adaptability. Indeed, these methods can be used without major changes irrespectively 
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of the sampling design used, the type of estimator whose variance one tries to 

estimate and adjustments imposed. More importantly this can be done rather easily 

(just by calculating appropriate weights) compared to the modifications that a 

standard analytic variance estimator needs in order to take into account such 

information.  

Some other appealing features of replication methods are their simplicity (its main 

essence is easily understood even among data users without special training in 

variance estimation), their sound theoretical basis (i.e. they are justified in the context 

of design-based as well as model-based approach), their easy application to domain 

estimates as well as their ability to consistently deal with missing data. The replication 

approach can also play a role in safeguarding confidentiality. 

A more thorough examination of replication methods can be found in Morganstein 

(1998) and Brick et al. (2000). 

 

3.3 Comparison of the methods 

The appropriateness of each of the aforementioned variance estimation methods 

depends on the sampling design and the adjustments that are deployed in each case. 

However some general comments may be derived for classes of sampling designs or 

weighting methods. 

Undeniably, exact formulae constitute the ‘best’ approach, but they are not available, 

or they are too difficult to be derived, in many practical cases of complex surveys. As 

long as the use of simplifying assumptions (of sample design) is concerned, we could 

mention that their ad-hoc use is, generally speaking, rather unsafe in cases that we are 

not certain that any effect of sample design or weighting does not significantly affect 

the precision of estimates. Moreover, the bias depends on the particular sampling 

design and should be investigated circumstantially. 

Replication methods, along with the Taylor linearisation one, have been compared 

both theoretically as well as empirically. Theoretical studies (Krewski and Rao, 1981, 

Rao et al., 1992) have shown that linearisation and replication approaches are 

asymptotically equivalent. Furthermore, simulation studies (Kish and Frankel, 1974, 

Kovar et al., 1988, Rao et al., 1992, Valliant, 1990) show that both methods, in 

general, lead to consistent variance estimators. In particular, jackknife methods 

(among the replication methods) have similar properties with the linearisation 

approach, while the properties of balanced repeated replications and bootstrap 

techniques (both of which belong to the replication approach) are comparable. 

The equivalence (even if it is only asymptotically) of the two approaches implies that 

criteria other than the precision of the methods should be deployed in order to choose 

a method. So in the case of rather simple situations of sample designs and estimation 

features, linearisation may be simpler to interpret and less time demanding. However, 

in case of complex survey design and estimation strategies, replication methods are 

equivalently flexible. 

As it is quoted in Wolter (1985), summarising findings from five different studies 

concludes: ‘… we feel that it may be warranted to conclude that the TS [Taylor 

series] method is good, perhaps best in some circumstances, in terms of the MSE and 

bias criteria, but the BHS [balanced half-samples] method in particular, and 
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secondarily the RG [random groups] and J [jackknife] methods are preferable from 

the point of view of confidence interval coverage probabilities’. 

Resampling-based variance estimates have been shown to be useful in certain 

specialised problems (see e.g. Canty and Davison, 1999). However, since it is 

generally unclear how to extend resampling methods beyond even stratified random 

sampling, they should be applied with extreme care and, in general, for the analysis of 

complex surveys. For example (Bell, 2000), jackknife variance estimators are usually 

justified in a context of a stratified sample and assuming probability proportional to 

size (pps) or simple random sampling of clusters within strata. For the group jackknife 

method this justification can be found in Kott (1998). In the stratified sampling setting 

with a fixed number of strata, bootstrap procedures are available that provide 

improvements over classical approaches for constructing confidence intervals based 

on the normal approximation. However, the improvements are of second order and are 

generally only noticeable when the sample sizes are small. Moreover, in the case 

where there are an increasing number of strata, replication methods are likely to loose 

their appealing features as they provide minor asymptotic improvement over the 

standard normal approximation.  
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4. SOFTWARE FOR VARIANCE ESTIMATION 

Recently, there has been a rapid growth in software market for software appropriate 

for analysing data (and so properly estimating variances) under complex survey 

designs and taking into account the adjustments (weighting, imputation) applied in 

such kind of data. These software packages are either add-on modules in already 

existing statistical packages or they may be stand-alone statistical software. A 

comprehensive review and comparison of several software for variance estimation can 

be found in ‘Model quality report in business statistics, Vol II’ (Smith et al, 1998a,b). 

In the sequel a collection of software allowing variance estimation for survey data are 

presented, while in the subsequent table their main features are summarise. 

 

• Bascula 

Bascula (currently in its version 4) is a software package, part of the Blaise System 

for computer-assisted survey processing, for weighting sample survey data and 

performing corresponding variance estimation. It supports incomplete post-

stratification and GREG weighting, while the available sampling designs include 

stratified one or two-stage sampling (multi-stage stratified sampling can be also 

hosted if replacement is used in the first stage). Variance estimation can be performed 

for totals, means and ratios based on Taylor linearisation and/or balanced repeated 

replication (BRR). 

 

• Caljack 

Caljack is an SAS macro, developed in Statistics Canada, in the framework of specific 

surveys. It is an extension of the SAS macro Calmar in order to cover the need for 

variance estimation. It covers stratified sample surveys (of elements or clusters), but 

the design weights need to be computed beforehand and introduced ready to Caljack. 

It can proceed to variance estimation of statistics such as totals, ratios (subsequently, 

means and percentages) and differences of ratios based on the jackknife technique. It 

provides all the calibration methods that are available in Calmar, that is, the family of 

calibration weights. 

 

• CLAN 

CLAN, developed in Statistics Sweden, is a program of SAS-macro commands. 

Taking into account the sampling design (stratified or clustered), it provides point 

estimates and standards errors for totals as well as for means, proportions, ratios or 

any rational function of totals (for the whole population or domains). πps sampling 

can only be approximated, while the only two-stage sampling that can be used is the 

one with simple random sampling of SSU. Incorporation of auxiliary information in 

the estimation is supported via GREG-type estimators (which also include complete 

or incomplete post-stratification). With respect to the treatment of unit non-response it 

allows for specific non-response models (by defining homogeneity response groups) 

as well as incorporation of sub-sampling of non-respondents. 
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The standard errors are calculated using the Taylor linearisation method for variance 

estimation. 

 

• Clusters 

Clusters is a command-driven stand-alone program, operating in DOS environment. It 

facilitates sample designs in the framework of stratified multistage cluster sampling, 

addressed through the ultimate cluster-sampling model. It offers sampling error 

estimates for totals, means, proportions and ratios for the whole population as well as 

for separate domains. Apart from standard errors it can also automatically compute 

coefficients of variation and design effects. However, it doesn’t allow the 

incorporation of weights other than the sampling ones. 

Standard errors are calculated using the Taylor linearisation method for variance 

estimation. 

Clusters was originally designed in the framework of World Fertility Survey and later 

updated by V. Verma and M. Price. 

 

• Generalised estimation system (GES) 

GES, developed in Statistics Canada (Estevao et al. 1995), is an SAS-based 

application, running under SAS, with a windows-type interface. It can take into 

account stratified random sampling designs, elements or clusters, but not multi-stage 

(with more than one stage) designs and provide, accordingly, variance estimators for 

totals, means, proportions or ratios (for the whole population or domains). Methods of 

variance estimation available include Taylor linearisation and jackknife techniques. 

These techniques, apart from the sampling design, can also incorporate information of 

auxiliary variables in the weighting procedure. That is, it accommodates, apart from 

H-T, GREG type estimators. 

 

• Generalized software for sampling errors (GSSE) 

GSSE is a generalized software in SAS environment, developed within ISTAT, 

mainly devoted to the calculation of statistics and corresponding standard errors of 

data from sample surveys (for the whole population or domains). This software can 

take into account the sampling features of stratification (with or without replacement), 

probability proportional to sizes sampling, clustering and multiple-stages. In the case 

of multi-stage sampling, as other software, estimated variance is based solely on PSU 

variance. Weights for non-response adjustment, complete or incomplete post-

stratification can be incorporated via the GSSW companion software. 

The standard errors are calculated using the Taylor linearisation method for variance 

estimation. 

 

• Imputation and variance estimation software (IVEware) 

Similarly to GES and GSSE, IVEware is a SAS-based application, running under 

SAS, with a windows-type interface. It accounts for stratified random sampling 

designs, elements or cluster, but not multi-stage (with more than one stage) designs. 
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Variance estimators can be obtained for means, proportions and linear combinations 

of these, using Taylor linearisation procedure as well as for the parameters of linear, 

logistic, Poisson and polytomous regression (using the jackknife technique). 

However, no special technique is available for the adjustment of weights. One may 

incorporate in the estimation previously calculated (probably in another software) 

weights. But this leads to valid variance estimations only in the case of complete post-

stratification, where the post-strata coincide with the strata themselves. IVEware may 

additionally perform imputation, but cannot incorporate this feature into variance 

estimation.  

IVEware has been developed under the Survey Methodology Program in Survey 

Research Program, Institute for Social Research, University of Michigan by 

Raghunathan, T.E., Solenberger, P.W., Van Hoewyk, J. 

 

• PC CARP 

PC CARP (Iowa State University) is a stand-alone package used to analyse survey 

data. Using Taylor linearisation method it can compute variances of totals, means, 

quantiles, ratios, difference of ratios, taking into account the sampling design (it 

supports multistage stratified samples). Its companion Postcarp can provide point 

estimates incorporating post-stratification weighting. 

 

• Poulpe 

The program Poulpe (Programme optimal et universel pour la livraison de la précision 

des enquêtes), based on SAS, has been developed by INSEE and it can incorporate 

sampling features such as stratification, clustering or multistage-sampling, while it 

can also approximate variances in case of ppS sampling. Poulpe cooperates with 

Calmar and it takes the GREG weights provided by the latter in order to estimate 

variance of totals, ratios etc. based on the Taylor linearisation technique. 

Ref: ‘Variance estimators in survey sampling’ Goga, C. (ENSAI, France) (In CIRCA: 

Quality in Statistics\SUPCOM projects\POULPE\calculation_poulpe) 

 

• SAS procedures 

Apart from the SAS macro commands that have been developed to cover specific 

needs of NSIs, such as CLAN or GSSE, the latest versions of the SAS statistical 

package (from version 7 and onwards) make provision for the valid estimation of 

standard errors of simple descriptive statistics as well as linear regression models. 

This is accomplished via the ‘Surveymeans’ and ‘Surveyreg’ SAS procedures. 

Surveymeans procedure estimates descriptive statistics and their corresponding 

standard errors taking into account the sampling design (stratification or clustering) 

and possible domain estimation, while Surveyreg performs linear regression analysis 

providing variance estimates for the regression coefficients as well as any linear 

function of the parameters of the model (taking into account the specified sampling 

design and weights). However, in the case of clustered or multi-stage sampling, the 

variances are estimated based only on the first-stage of the sampling leading to an 

underestimation of variance. Moreover, in general, variance estimation is based on the 

assumption of sampling with replacement, which usually is not the case in practice. 
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This may lead to an overestimation of variance, which is, however, deemed to be 

negligible, especially in surveys with small first-stage sampling fraction. 

No special technique is available for the adjustment of weights. However, one may 

incorporate in the estimation previously calculated (probably in another software) 

weights. This leads to valid variance estimations only in the case of complete post-

stratification, where the post-strata coincide with the strata themselves. 

Standard errors are calculated using the Taylor linearisation method for variance 

estimation. 

 

• STATA 

STATA is a complete statistical software package and the survey commands are part 

of it. STATA can correctly (i.e. taking into account the sampling design, stratified, 

clustered or multi-stage) estimate the variance of measures such as totals, means, 

proportions, ratios (either for the whole population or for different subpopulations) 

using the Taylor linearisation method. There are also commands for jackknife and 

bootstrap variance estimation, although these are not specifically oriented to survey 

data. Other analyses (such as linear, logistic or probit regression) can be performed by 

taking into account the sampling design (in the estimation of corresponding 

variances). However, STATA does not allow for variance estimation properly 

adjusted for post-stratification. (One may use in the estimation previously calculated 

weights, which leads to valid variance estimations only in the case of complete post-

stratification, where the post-strata coincide with the strata themselves.) 

 

• Sudaan 

Sudaan is a statistical software package for the analysis of data from sample surveys 

(simple or complex). Though it uses SAS-language and has similar interface, it is a 

stand-alone package. It can estimate the variance of simple quantities (such as totals, 

means, ratios in the whole population or within domains) as well as more 

sophisticated techniques (parameter estimates of linear, logistic and proportional 

hazard models). The available variance estimation techniques include the Taylor 

linearisation, jackknife and balanced repeated replication. Again, weighting 

adjustments are not generally supported. 

 

• WesVar 

WesVar is a package primarily aiming at the estimation of basic statistics (as well as 

specific models) and corresponding standard errors from complex sample surveys 

utilizing the method of replications (balanced repeated replication, jackknife and 

bootstrap). Domain estimation and analysis of multiply-imputed data sets are 

accommodated. It can incorporate sample designs including stratification, clustering 

and multi-stage sampling. Moreover, it can calculate (and take into account in the 

variance estimation) weights of non-response adjustments, complete or incomplete 

post-stratification. 
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In the following table, a comparative presentation of the aforementioned software for 

variance estimation with respect to the main features of them, are presented. 
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Table 1: Comparative presentation of variance estimation software

 Software
Features

Bascula Caljack CLAN
SAS

Procedures
Clusters GES GSSE IVEware PC CARP POULPE STATA Sudaan WesVar

Taylor's Linearis. � � � � � � � � � � �

Jackknife � � � � �

Bootstrap �
VE methods

BRR � � �

Means � � � � � � � � � � � � �

Totals � � � � � � � � � � � �

Percentages � � � � � � � � � � � � �

Ratios � � � � � � � � � � � �

Built-in functions � � � �

Type of
parameters
for which
variance can
be estimated

Regression � � � � � �

Simple random � � � � � � � � � � � � �

Stratified � � � � � � � � � � � � �

2-stage � �(2) � � � � � � � �

>2 stage �(3) � � � � � � � �

Sampling
designs
adopted

Clustered ~(4) � � � � � � � ~ � � � ~

                                                  

(2) It can provide valid variance estimators only if: i) we are referring to the estimation of a total, and ii) SSU are selected with simple random sampling, iii) H-T estimators
only.

(3) Only in with-replacement designs.

(4) Approximately.
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 Software
Features

Bascula Caljack CLAN
SAS

Procedures
Clusters GES GSSE IVEware PC CARP POULPE STATA Sudaan WesVar

pps ~ ~ ~ ~ ~ ~ � ~ ~ ~ ~ ~ ~

Complete
poststratification

� � � �(5) � � �(6) � �(7) �(8) �

Incomplete post-
stratification

� � � � � � �

GREG � � � � � �

Adjustments

Treatment for unit
non-response

� �

Commands � � � � � � � � �
Interface 

Menu � � � � �

Freeware �(9) �(10) �(11) �(12) � �(13)
Cost

Commercial � � � � � � �

                                                  

(5) The weights have to be calculated beforehand. Variance estimates are valid only if post-strata coincide with the strata.

(6) The weights have to be calculated beforehand. Variance estimates are valid only if post-strata coincide with the strata.

(7) The weights have to be calculated beforehand. Variance estimates are valid only if post-strata coincide with the strata.

(8) The weights have to be calculated beforehand. Variance estimates are valid only if post-strata coincide with the strata.

(9) It is for internal use.

(10) It requires SAS.

(11) To organizations and individuals in developing countries.

(12) It is for internal use.

(13) It is for internal use.35
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5. SOME PRACTICAL GUIDELINES 

In chapter 3, a number of different variance estimation methods have been described. 

Among them, there is not an ‘optimal’ method, since the choice of the most 

appropriate one, in each case, is dependent on a series of criteria. As previously 

mentioned, the most critical factors are the type of sampling design, estimator, 

weighting adjustment and imputation performed. Additional factors such as ease of 

computation, bias and sampling variability of the variance estimators, information 

required for calculation (and availability of such information on confidential files) are 

important when one has to choose among more than one valid appropriate estimators. 

In the present chapter, an effort is made to organise the several variance estimation 

methods, with respect to the usual sampling designs that are used in practice for the 

surveys conducted in EU members. However, even with good criteria and with the 

use of advanced software, variance estimation is not an easy task and decisions based 

on experience have to be taken. 

We do not distinguish with respect to stratification, since this is an issue that can be 

easily incorporated in any situation (the formulae mentioned below mainly refer to the 

stratified case, but unstratified formulae can be easily derived if one sets the number 

of strata equal to 1). 

Moreover, the issue of incorporation of imputation into the estimation of variance is 

treated separately, since its treatment is rather complicated and is dependent on the 

exact imputation scheme deployed. For this reason, we illustrate the treatment of 

imputation into a specific common case. 

In section 5.3, a number of specific issues related to the variance estimation procedure 

are discussed (outliers, domain estimation, one-unit per strata problem, field 

substitution). Finally, in section 5.4 some general guidelines are provided for the 

calculation of coefficients of variation (a prominent alternative for expressing 

variability) at national as well as EU level. 

 

5.1 Some suggestions for variance estimation 

5.1.1 One-stage designs 

5.1.1.1 Sampling of elements 

� Simple random sampling 

This is the simplest case, where closed-form formulae for variance estimation can be 

easily derived. More particularly in case of linear statistics, such as totals, exact 

solutions can be obtained (when no calibration or, simply, complete post-stratification 

is performed, else approximate formulae are required), while for non-linear statistics 

(e.g. ratios) one can develop approximate closed-form formulae based on the Taylor 

linearisation technique. 

In the sequel we provide indicatively some such formulae for the case of a total, 

mean, percentage and ratio estimator, distinguishing whether weighting for calibration 

is performed or not. The notation that is used is explained in more detail in the 

Appendix. 
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(i) No weighting is used (apart from the sampling weights) 

— A total t is estimated by the formula: 
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— In a similar fashion, the mean µ of the corresponding total t is estimated as: 
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— Any percentage can be regarded as the mean of a binary variable and thus it can be 

estimated as: 
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— The estimation of a ratio (as well as its variance) is referred to the estimation of the 

totals that constitute the ratio. That is, 
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� Note: 

Apart from developing formulae and calculating variances by his/her own, one could 

use almost all of the aforementioned software for the estimation of variance in this 
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framework. Note, here that WesVar uses only replication methods and does not 

provide for Taylor linearisation approach. Replication approach, though provides also 

valid approximation for this simple case, it is not suggested due to its additional 

computational burden. 

 

(ii) Further weighting is used 

As it has been mentioned in a previous section, in many cases, apart from the 

sampling design, more information is available and thus can be incorporated in the 

estimation procedure. The most usual estimator in this general case is the generalised 

regression (GREG) estimator. A more systematic study of GREG estimator and its 

properties can be found in Särndal et al. (1992). This estimator is not unbiased. It is 

only approximately unbiased for large sample sizes, while Taylor linearisation is 

required to derive approximate formulae for variance estimators, since the analytic 

forms are too complicated. 

— In the case of total: 
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The standard linearisation variance estimator (Särndal et al., 1992) is 
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This type of variance estimator can be implemented in the most popular (specialised) 

software such as STATA, Sudaan and SAS (using the CLAN module). 

 

— One may notice that the estimation of the mean is essentially the estimation of the 

corresponding total divided by the number of units in the population. This relationship 

holds irrespectively of the type of total estimator used. That is, if we want to estimate 

the mean of a variable y using the ‘generalized regression’ approach, it suffices to 

calculate t̂ , since then 

t
N

ˆ
1

ˆ =µ  

Accordingly, the variance estimator would be 

( ) ( )tV
N

V ˆˆ1
ˆˆ

2
=µ  

So, all the comments applicable to variance estimation of totals apply here as well. 

� Note:  

In case that the size of population of interest, N, is regarded as unknown and, thus, it 

needs to be estimated, one should refer to the case of estimation of a ratio. 
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— Any percentage is essentially the mean of a dichotomous (dummy) variable. So the 

GREG estimator of a percentage can be derived in analogous manner as the GREG 

estimator of a mean.  

 

— The ratio estimator, as shown in the simple case, is the ratio of the two total 

estimators (which can be derived as described above), while the corresponding 

variance is a function of the total estimators, their variance and a covariance term. 

That is, the additional effort that is required here is the estimation of the covariance 

term as described in the approximate formula below: 
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� Note

The aforementioned approximate formulae for variance estimation are based on the 

Taylor linearisation methods. However, an alternative approach (suggested by 

Morganstein, 1998) is the use of replication methods. More particularly: 

◊ for the case of simple random sampling, without stratification, jackknife technique 

(JK1, in particular) is suggested, 

while 

◊ for stratified random sampling BRR and jackknife appear to be the main 

alternatives: 

— if 2 units are selected per stratum JK2 and BRR are suggested; 

— if more than 2 units are selected per stratum (with a small number of strata), 

JKn technique could be used; 

— if the sample consists of a large number of units, then the above suggested 

replication methods will generally tend to be too time consuming. In such case, 

one could proceed to aggregation of the units into wider ‘groups of units’. 

 

� Examples 

— In Labour Force Survey (LFS) in Luxembourg, where simple random sampling is 

deployed, a closed form formula is used for variance estimation, that takes into 

account the effect of post-stratification.  

— In Continuing Vocational Training Survey (CVTS2) conducted in European level 

the sampling method used as in most business surveys, is one-stage stratified random 

sampling of enterprises (or local units). For the estimation of variance the use of 

Taylor linearisation method, as implemented in CLAN software, has been suggested 

(Quantos, 2001). 
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• Systematic sampling 

As mentioned in a previous section, in the case of systematic sampling there is no 

unbiased variance estimate. The strategies that could be followed here (whether for 

linear or non-linear statistics) are: 

— The most common approach used is to ignore the issue of systematic sampling, 

and proceed as if simple random sampling has been used (refer to the above 

paragraph). Of course, in such a case, the analyst should be aware that a potential 

overestimation of the obtained variance exists. 

Alternatively: 

— In case that there is enough available information about the listing of sampling 

units, pseudo-stratification could be deployed. 

— According to Holmes and Skinner (2000), the jackknife linearisation (performed, 

for example, in STATA) is a promising approach, more efficient than Taylor 

linearisation approximation. 

— Replication methods could be used, incorporating the effect of systematic choice 

of sampling units. The guidelines, among the several alternative replication methods 

are identical to those mentioned above for the case of simple random sampling. 

 

� Examples 

— Statistics Finland, in the framework of LFS, utilises a systematic, unstratified, 

sample design. For the estimation of variance of statistics of main interest, the 

assumption of simple random sampling is adopted and Taylor linearisation is used 

within CLAN software. 

 (Ref: ‘Questionnaire from Statistics Finland’, presented in 3
rd
 Meeting of TF-VE) 

— In the LFS of Sweden, under stratified systematic sampling, Taylor linearisation is 

also used, ignoring the feature of systematic drawing of units. 

— In the GFSO (NSI of Germany), variance estimation of trade statistics (derived 

from an one-stage stratified systematic sampling of elements) is based on the 

assumption if stratified random sampling and the corresponding closed-form formulae 

(of Taylor linearisation approach) 

(Ref: Practice of variance estimation at the German Federal Statistical Office, 

Presented in the 2
nd
 Meeting of TF-VE, Doc. Eurostat/A4/Quality/Variance 

estimation/01/GFSO). 

 

• ‘ppS’ sampling 

Generally speaking, probability proportional-to-size (πpS or ppS) sample designs are 

rather complicated with complex second-order inclusion probabilities, leading, thus, 

to sophisticated formulae for variance estimation. Actually in most cases only 

approximations can be derived in practice. These are derived from corresponding 

simplifications in the sampling schemes (Särndal et al., 1992). 
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The suggested courses of action are: 

— If the other features of a survey comply with the features that are provided in 

GSSE, one could use this software for variance estimation. 

— An appropriate replication method could be developed, incorporating all the 

characteristics of the sampling procedure. 

— An alternative approximate solution is the use of jackknife linearisation solution, 

which is currently used by Portugal in the framework of LFS (though in a two-stage 

design, which will be further discussed in the sequel). 

— Further simplifications to the sampling design could be used, introducing though 

bias to the estimates. 

 

5.1.1.2 Sampling of clusters 

As mentioned in section 2.1.3, the clustering of sampling units, by inducing 

correlation among them, tends to an increase in variance. 

For the case of simple random sampling of clusters (and not elements, now) closed 

form formulae for simple linear statistics can be obtained. However, since the 

situation is rather more complicated than element sampling, it is suggested (for simple 

random as well as other schemes) that one uses one of the software that is able to 

incorporate clustering(
14

). Of course the choice of the software must take into account 

and the specific sampling scheme that is used for the selection of clusters, as has been 

discussed in 5.1.1.1, as well as on the decision of the most appropriate variance 

estimation technique. 

As far as the particular method used is concerned, the choice is made between 

linearisation and replication methods. 

— Taylor linearisation method could be used. 

— For replication methods, we should mention that bootstrap and random groups can, 

generally, be adapted to any sampling design, though this task may become too 

cumbersome and time-consuming sometimes. So, for clustered sample designs in 

particular, jackknife (as well as its linearisation form) is more appropriate technique. 

Morganstein (1998) provides a detailed description of how these methods can be 

implemented in practice in WesVar software. 

 

� Examples 

— In the ONS (Office of National Statistics, of UK), the labour force survey is 

implemented using one-stage systematic sampling of addresses (i.e. clusters). 

Currently, variance estimation is performed via Taylor linearisation (in STATA). 

However, jackknife linearisation (in STATA) is suggested by Holmes and Skinner 

(2000) 

(Ref: Variance estimators, ONS, UK, presented in TF-VE) 

                   

(14) However even in this case one has to be careful with the particular assumptions and conventions 

that each software adopts.  
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— In the German MicroCensus, one-stage clustered stratified systematic sampling is 

performed. The assumption of stratified random sampling is made and the 

corresponding closed-form formulae are used (with no post-stratification), where the 

used values are aggregated to the level of clusters. It is stated that the omission of 

systematic aspect leads to an overestimation of the variance. 

(Ref: Practice of variance estimation at the German Federal Statistical Office, 

presented in the 2
nd
 Meeting of TF-VE, Doc. Eurostat/A4/Quality/Variance 

estimation/01/GFSO). 

 

 

5.1.2 Multi-stage designs 

In multi-stage designs we have more than one component of sampling variability to 

estimate. More particularly, each stage of the design induces an additional variance 

component to the total variation of any statistic. 

Analytic closed-form formulae can be derived in few, rather simple cases (for 

example with no post-weighting or, only, complete post-stratification, and simple 

random sampling at each stage, stratified or not). Generally speaking, however, the 

ad-hoc development of such formulae is not always easy, or even feasible, so the use 

of approximate methods is suggested (Taylor linearisation or replication methods). In 

addition, almost always, advanced software is coupled with complete estimation 

techniques. 

Based on the choice of the most appropriate variance estimation methods, the other 

characteristics of the sampling design under study and the presentation of software 

(Table 1) one may proceed to the implementation of variance estimation with the 

software that most appropriately satisfies his/her requirements. 

 

The simplest case of multi-stage designs is that of ‘two-stage’ designs. In the sequel 

we discuss, specifically, some designs of this category, commonly used in practice, in 

household and business surveys. They are usually stratified, while the ultimate 

sampling unit (SSU in two-stage designs) could be either clusters or elements. 

 

• 2-stage sampling, with simple random sampling in both stages 

— In this case, jackknife linearisation (performed, for example, in STATA) is an 

efficient approximate solution, since it holds the nice properties of jackknife variance 

estimator while it is less time-consuming. 

— Of course, another solution (though not always feasible in practice) that could be 

used is the development of analytic (approximate, usually) formulae. 

 

� Examples 

— In the Austrian Labour Force Survey, where a different sampling design is 

deployed in the two strata of the population (simple random sampling in one stratum 

and 2-stage random sampling in the other), the estimation of variance is based on a 

closed-form approximation formula. According to this formula, the variance consists 

43

eurostat



of two components, representing the variance in each of the two strata. Though this 

formula incorporates the effects of the particular sampling design (the different 

sampling designs in the two strata, the clustering in one of the strata and so on) it 

cannot capture the effect of weighting that is performed on LFS data (using 

incomplete post-stratification methodology). 

— In ‘Expenditure and food survey’ of ONS, where two-stage stratified random 

sampling of addresses (i.e. clusters) is performed, Jackknife linearisation (in STATA) 

is used for variance estimation. 

(Ref: Variance estimators, ONS, UK, presented in TF-VE)  

 

• 2-stage sampling, with systematic random sampling in one or both of the stages 

As we have previously mentioned, there is no analytic unbiased variance estimation in 

systematic sampling. 

— So, a possible approach one could use is to ignore the issue of systematic choice 

and follow the suggested approach for the above case of two-stage random sampling. 

The simplification of assuming simple random sampling instead of systematic 

sampling leads to biased though acceptable variance estimates, as long as the ordering 

of sampling units has been made according to an influential characteristic of them 

(leading thus to heterogeneous samples). Moreover, according to Särndal et al. 

(1992), in multi-stage samples where systematic sampling is deployed in the final 

stage, the bias is not as serious as one might expect. 

— Alternatively, in order to fully incorporate the features of the survey into the 

variance estimation, one could proceed to the performance of a replication technique. 

A suggested approach, here, is the balanced half-sample method, which is able to 

incorporate in the estimation of variance al the features of the sampling design (the 

stratification as well as the two-stages deployed). The cost for this is the additional 

computational burden imposed. In large-scale surveys, that are periodically 

performed, this could turn out to be a prohibitive factor. 

— A quicker, but efficient method that could, also, be possibly used is the jackknife 

linearisation method, which has been proven to be efficient for, the assumed, multi-

stage stratified sampling of UK. However, in such a case detailed information on the 

sorting procedure of the population is required, in order to appropriately group the 

data. 

 

� Examples 

— In the German LFS (where stratified random sampling is deployed at the 1
st
 stage 

and systematic clustered at the 2
nd

), standard errors are calculated in the level of 

clusters (districts) according to the simple formula for stratified random sampling. In 

such a case, the effect of post-stratification, non-response weighting and systematic 

sampling is not taken into account. So, variance estimates are expected to 

overestimate variance.  

— In the Spanish LFS (with the same sample design as Germany), on the contrary, 

variance estimation is performed via a replication approach, which may adequately 
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take into account both the sampling design and the weighting procedure used. More 

particularly, balanced repeated replication is deployed. 

— The sampling design used in the Irish LFS is two-stage stratified sampling. 

Systematic sampling is deployed in both stages of the sampling. Post-stratification is 

also utilized. In order to derive valid variance estimators they adjust the naive 

estimations derived assuming simple random sampling by an estimated design effect 

(‘deft’). Different values of ‘deft’ are suggested by Steel (1997) depending on the 

nature of the phenomenon (variable) under study. 

The method of adjustment of variance estimation by ‘deft’ factor is a really cost 

efficient and straightforward method and it is, undeniably, preferable over the ‘simple 

random sampling’ simplification. However, it is rather restrictive, in the sense that 

different factors need to be applied for different measures of interest, which means 

added burden of work in case a new interest arises. Moreover, in case of repeated 

surveys on dynamic phenomenon the ‘deft’ factors may need revision and possibly 

adjustment from time to time. 

 

• 2-stage sampling, with probability proportional-to-size sampling (in one or both 

of the stages) 

Generally speaking, probability proportional-to-size sampling is related to 

complicated inclusion probabilities. 

— So, a suggested approach is the use of an appropriate replication method (possibly 

jackknife). In case of clustered sampling, jackknife is the most preferred replication 

method. 

— Alternatively, GSSE is the only software that can incorporate ppS sampling 

(CLAN can do only approximate it). 

— Following the theoretical framework developed in Belgian LFS one could develop 

closed-form formulae for the calculation of variances based on inclusion probabilities. 

— The option of simplifying assumptions of the sampling design is also present here. 

 

� Examples 

— In the framework of Belgian LFS (with two-stage stratified sampling, 1
st
 stage 

ppS, 2
nd

 stage systematic sampling of clusters) closed-form formulae have been 

developed based on (approximate) first and second order inclusion probabilities both 

for clusters and elements. Numerical techniques, though, are needed for the 

calculation of inclusion probabilities (the issue of systematic choice of clusters in the 

2
nd

 stage is ignored and simple random sampling is assumed, instead). 

(Ref: Internal document of statistics Belgium) 

— In the Italian LFS (where two-stage sampling design is deployed with stratified 

πpS and simple random sampling at 1
st
 and 2

nd
 stage, respectively) the calculation of 

standards errors is performed via GSSE, which is based on the Taylor linearisation 

method. 
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— In the Portugal LFS (with stratified πpS and simple πpS sampling at 1
st
 and 2

nd
 

stage, respectively), the variance estimation of statistics such as totals is performed in 

the SAS macro Caljack. Caljack estimates variances based on the jackknife method. 

 

5.2 Incorporation of imputation in variance estimation 

5.2.1 General comments 

In section 2.3 we have dealt, in a general context, with the impact of imputation in 

variance as well as in the procedures themselves for variance estimation. Some 

generic methods for the incorporation of imputation into variance estimation have 

been mentioned therein (analytic, resampling and repeated imputation methods). 

These methods need to be adjusted for every specific imputation technique deployed. 

As we have previously mentioned, the two potential factors of underestimation of 

variance (when estimating variance with imputed data) are the following: 

— The data set seems to be complete and the factor 1/n in the formulae is incorrect. 

— We ignore the additional variance that is imposed by the imputation. 

These issues are illustrated in the following basic example. 

Let’s assume that we have a simple random sample of size n. For a specific question/ 

variable, there are only m respondents and n-m imputed data. The response model is 

that missing data miss at random. 

If we neglect the finite population correction, the variance of the mean of y is equal to 

σ2
/m. However the estimator of the variance should be, apparently:  

1

)(
1ˆ

2

−

−
=

∑
n

yy

n
V

k

app = 2ˆ
1 σ
n

 

If  σ2 is estimated correctly, we have to make a correction by a factor n/m. 

Suppose now, that imputation is performed by imputing to the non-respondents the 

mean of the respondents. In  ∑ −
s

k yy 2)(  there are n-m terms equal to 0, and we have 

to multiply the quantity by (n-1)/(m-1) to get a correct estimate of σ2. Finally, we 

have to correct the naive (and given by all standard software!) estimator by a factor 

approximately equal to (n/m)
2
 ! If the response rate is 50%, the factor of 

underestimation is 4! This is the worst case. 

The best case is when the data are imputed by hot–deck, since, in this case, the 

estimation of σ2 is correct, and the underestimation is n/m only. 

Intermediate cases arise when imputation is computed by using a prediction model for 

the imputed data, with again two cases: 

1. The imputed value is the predictor. 

2. The imputed value is the predictor plus a ‘simulated’ residual in order to respect 

the distribution of the y values. 
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The example can be extended to a more general sampling plan and to a more general 

estimator. 

Different imputation techniques may ask for totally different variance estimation 

procedures. So, we will not proceed in detail into such a description. However, in the 

framework of multiple imputation approach a common strategy for variance 

estimation can be adopted, as discussed in the subsequent section. Furthermore, for 

reasons of illustration, we present an analytic technique that has been developed for 

the incorporation of imputation in variance estimation of CVTS2 (Quantos 2001). 

 

5.2.2 Multiple imputation 

In multiple imputation, Rubin (1987), each missing value is replaced, instead of a 

single value, with a set of plausible values that represent the uncertainty about the 

right value to impute. 

So, standard statistical procedures can be implemented, separately, in each one of 

these multiply-imputed data sets. Subsequently, one may combine the results of these 

analyses and come up with single, common, estimates. 

It is important to note that the process of combining results from different imputed 

data sets is essentially the same, regardless of the type of statistical analysis. This 

leads to valid statistical inferences that properly adjust for the non-response even in 

complicated cases (Herzog and Rubin, 1985).  

Summarising, as mentioned in Yuan (2000), multiple imputation inference involves 

three distinct phases: 

• The missing data are filled in m times to generate m complete data sets. 

• The m complete data sets are analysed by using standard procedures. 

• The results from the m complete data sets are combined for the inference. 

Multiple imputation approach, its theoretical justification and its use for statistical 

inference in practice is discussed in detail in Herzog and Rubin (1985). In this case 

the incorporation of imputation (more precisely the variance induced to the estimates 

from the imputation procedure) can be easily derived based on the variability of the 

estimates among the multiply imputed data sets.  

More particularly, Herzog and Rubin (1985) show that the resulting variance 

estimation (when multiple imputation is deployed) can be estimated as the sum of the 

following two components: 

1. The average variance of estimation given one set of imputed values 

2. The variance of estimates across the multiple imputations. 

In Luzi and Seeber (2000) one may find a simulation study evaluating several 

imputation methods (including multiple imputation) and corresponding software in 

terms of precision, i.e. variance estimation. 
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5.2.3 A case-study 

In the case of CVTS2, conducted in 2000, general guidelines have been provided for 

the imputation method deployed in each country, discriminating between quantitative 

and qualitative variables (Eurostat 2000a,b).  

Some critical features of this survey are: 

— Sampling and original processing of the data (i.e. imputation) are performed at 

national levels. 

— Datasets at micro level are transferred to Eurostat, where analysis (including 

variance estimation) is made. 

— No flagging of the imputed values was available (transmitted to Eurostat). 

— Different imputation has been deployed for quantitative and qualitative variables. 

 

5.2.3.1 Qualitative variables 

In the case of qualitative variables sequential hot-deck imputation was performed, 

while no-flagging of imputed values was available in the final datasets transmitted to 

Eurostat. 

So the lack of precise information and the diversity of the methods in addition to the 

deficiency of appropriate software impose to apply some rough approximation. 

Taking into account the fact that the suggested imputation method is near to the ‘best 

case’ described above, we propose the two-step procedure: 

1. compute the variance as if there were no imputation; and 

2. multiply this estimate by the inverse of the response rate (correction factor). 

For example if there are 4 000 units in the sample but only 3 000 have responded to 

the specific question then the variance has to be increased by 1.33 (4 000/3 000) and 

the confidence intervals would be increased by the square root of this factor. Of 

course this adjustment holds for simple random sampling and we have to use it under 

the assumption that the effect is uniform across all strata. 

Nevertheless, this correction may be considered as very conservative and thus it can 

be argued that it should be used as an upper limit only. The correction factor assumes 

that imputation does not add anything to the precision of the estimation. However, if 

the imputation model is good we should expect that some values must have been 

correctly imputed. Thus, while it is unreasonable to expect that all the values are 

going to be perfectly predicted it is also unreasonable to expect that none will be close 

to the true value if the imputation model is correct. 

 

5.2.3.2 Quantitative variables 

For quantitative variables, the imputation method falls under the general setting of 

‘ratio imputation’. According to this approach, a ratio 
x
r

y
r

r
t

t
r

ˆ

ˆ
ˆ =  is computed on the 

respondent sample (r). Then, for k in nr (set of non-respondents), the value krk xry ˆ=  

is imputed. Note that for the purposes of the imputation procedure of variable Y, it is 
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assumed that there is no item non-response for variable X, that means that either there 

is, indeed, no item non-response or missing values have already been imputed in a 

previous step of the analysis. 

That is, the finally derived variable Y has values: 





=
)(set  srespondent-non  the tobelongs  if*ˆ

)(set  srespondent  the tobelongs  if*

nrkxr

rky
y

kr

k
k  

 

Starting from this fact, there are many ways to tackle the problem of variance 

estimation. The more simple and general approach for the variance estimation of the 

total of variable, let’s say, Y is as follows: 

We have r
x
s

y rtt ˆˆˆ =  and therefore ( ) )ˆ()ˆ()ˆ( 22 x
sr

xy tVrrVttV +≅  

So, in order to properly assess the variance of variable we need to get point and 

variance estimates for xt̂ and x
r

y
rr ttr ˆˆˆ =  

• Appropriate point estimates for xt and r can be easily derived ignoring the issue of 

imputation using standard software. 

• The variance estimation of x
st̂  is also derived rather straightforward since: 

° in the case that it is, actually, a variable with no item non-response, the 

variance estimation can be easily derived via several of the software of Table 1; 

° in case that imputation has already been performed to substitute for missing 

values, the correct variance estimation will have already been computed in a 

previous step and thus it will be readily available for this step. 

• Thirdly, we have to calculate )ˆ(ˆ
rrV , that is the variance estimation of a ratio with 

missing values. 

If the imputed data were flagged, there would be a rigorous solution as the ones 

mentioned in Deville and Särndal (1994) and Lee et al. (1994). 

However, in CVTS2, the datasets transmitted to Eurostat do not have imputed values 

flagged. Thus, we have to use a ‘rough correction’ method. The methodology 

proposed here is a four-step procedure as follows: 

1. We construct the ‘residuals’ yi – rr̂ xi and calculate their variance as if all data were 

observed, and not imputed. 

2. Residuals’ variance is inflated by the square of the inverse of the response rate in 

order to provide an adequate variance estimation for rr̂ . 

(The rationale for this is that the ‘residuals’ are equal to zero for imputed data, 

and the estimator behave like the mean imputation estimator as previously 

described). 

• Finally, using the estimates of the components in the three steps above, we can 

derive an appropriate estimator for the measure that originally concerned us, that 

is variance estimation of Y, through the formula: 
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This proposed method can be further elaborated for the derivation of variance 

estimators, taking into account imputation, of other statistics such as means, 

percentages or ratios. The case of variance estimation of these statistics, and in 

particular of ratios, raises some difficulties, since we have somewhere to evaluate the 

covariance between two estimators based on different samples overlapping at random. 

 

5.3 Special issues in variance estimation 

5.3.1 Variance estimation in the presence of outliers 

A problem, frequently occurring in business surveys, in particular, is that of outlier 

observations, that is observations with ‘unexpectedly’ extreme (large or small) values 

in one or more of the measured variables. 

The issue of outliers in surveys and possible strategies for dealing with them are 

discussed analytically by Chambers (1998). 

According to them, there are three main approaches to dealing with sample outliers.  

• Deletion of outliers from the sample 

This method, although commonly used in practice, is the weakest with respect to its 

theoretical justification. 

• Assignment of weight equal to 1 to the outlier observations 

This type of weighting implies that outliers are, essentially, unique in the population 

(i.e. they represent only themselves). 

• Modification of outliers so as to reduce their impact on the sample estimates 

In this approach, known an winsorisation, we retain the original weight of the value, 

as calculated by the corresponding weighting method, but we try to modify the 

extreme value itself, so as to diminish its impact on the estimates. One-sided 

winsorisation, applicable to strictly positive variables, commonly met in business or 

household surveys, has a sound theoretical background, since the modifications are 

model-based allowing thus statistical inference. 

Currently, there is a great degree of heterogeneity among the methods for outlier 

treatment used at surveys, while differentiations exist even to the definition of outliers 

themselves. 

Outlier observations, having large deviations from the remaining cases, tend to 

increase the estimates of variance. Each one of the aforementioned approaches for 

dealing with outliers, leads to a stabilisation of the variance estimates introducing 

though a component of bias in the estimation, since standard variance estimation 

methods do not take into account the outlier treatment applied (underestimating, thus, 

true variance). Actually, there exists a trade-off among these two issues (decrease of 

variance and increase of bias). Deletion of outliers and assignment of weights equal to 

one, stabilize variances but on the cost of a potentiality large bias. Winsorisation 
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methods may control more efficient this trade-off of bias and variance via the use of 

sophisticated models. 

 

5.3.2 Variance estimation within domains 

Ιn most surveys, our interest is focused not only on the estimates for the whole sample 

population of study but also for specific subpopulations, usually called domains. 

Domains may be overlapping or not, complementary (covering the whole population) 

or not. Often domains cut across stratum boundaries and are referred to as ‘cross-

classes’. 

For example, in household surveys we might be interested in inference distinguishing 

among families of different size (with 1, 2 etc members) or of different socio-

economic class. Furthermore, in cases of out-of date sampling frames, where the 

original stratum classification of observations deviates from the actual current status 

of sampled units, domain estimates are essentially needed for an analysis based on the 

observed classification of units. This is a phenomenon often occurring in business 

surveys. 

 

So since, usually, the formation of these subpopulations of interest is unrelated to the 

sample design, the sample sizes for the subpopulations are random variables, inducing 

an additional component of variability into the domain estimates. This distinguishes 

domain estimates from, for example, estimates within strata. 

The stochastic nature of the size of the domains, makes invalid the mere application 

of any estimation method (if we regard as fixed the sample sizes of the domains then 

we tend to underestimate the variances, since we ignore a component of additional 

variability).  

The key idea here is that if we transform the variable of interest as: 



 ∈

=
otherwise 0,

Ddomain   i if ,
* hi

hi

y
y  then, according to the design-based approach to inference 

(Chambers, 1998), the application of standard methods to the transformed variable y
*
 

provides us with the appropriate estimates. 

Many of the previously reviewed software facilitate the estimation of several 

quantities for different domains of the population. 

Analytic formulae, based on Taylor linearisation method can be provided for variance 

estimation of simple statistics within domains (Chambers, 1998). Alternatively, as 

noted in Brick et al. (2000), replication methods for variance estimation are also well 

suited for the analysis of domains. In this case, where the replicate weights contain all 

the required information for variance estimation, one may work only with the subset 

file containing the domain of interest and the replicate weights. 

 

5.3.3 Variance estimation with one-unit per stratum  

A problematic situation for the procedure of variance estimation arises when in a 

realized sample we have only one unit per stratum (in all or some of the strata of the 
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sample). This situation may be confronted when we have a very refined stratification 

and: 

• each stratum has sample size greater than one, but only one responding unit exists; 

• the design of the sampling, itself imposes a single-unit per stratum. 

In any of these two cases, it is impossible to directly calculate variances with one 

sampled unit per stratum. The most common strategy, suggested in the literature, for 

dealing with this problem is the collapsed stratum technique. The issue of collapsing 

strata for variance estimation with one unit per stratum is discussed in Cochran (1977) 

and Sarndal et al. (1992) (Wolter, 1985, deals with the case of multi-stage designs 

with one PSU per stratum). 

Note, however, that a critical point for the effectiveness of this method relates to the 

origin of the one-unit per stratum situation. If the problem comes from non-response, 

it could mean that the chosen estimator is dramatically bad (with very low reliability). 

In the framework of this technique one essentially proceeds to the merging 

(collapsing) of two or more strata in order to calculate variances in groups with more 

than one units, using the most appropriate among the aforementioned techniques. 

Generally speaking, this collapsing of groups is biased and leads to an overestimation 

of the variance. In order to reduce the bias, the strata to be groups should be chosen to 

be as similar as possible, since the bias depends on the difference of the means 

between the unit strata used for collapse. However, what is equally important is to 

select the complementary stratum carefully based on a priori information. That is, the 

allocation of groups should be based on the population characteristics and not on the 

sampling ones. 

 

The main steps for collapsing stratum technique, are illustrated below for the simple 

case where we have L (even number of) strata, each consisting of a single unit, and 

we intend to collapse them in G groups of two (G=L/2). The steps that could be 

followed are 

i) Identification of the strata that are going to be collapsed 

This type of grouping is required in order to diminish the overestimation that is 

inherent to the ‘collapsed-stratum’ variance estimation. 

ii) The corresponding variance of the total yt̂ can, indeed, be estimated as the sum of 

G components as follows: 
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Further modifications are required for the above formulae in case that not all strata are 

single-unit and/or there are strata with different number of units. These adjustments 

are needed due to the fact that the units that constitute the collapsed strata have 

unequal probabilities of selection (see for example Kish, 1965). 
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It worth noting that apart from the aforementioned analytic formulae, appropriate 

replication methods for variance estimation can accommodate the collapsing of strata 

such as BRR or JK2 (Morganstein, 1998). 

 

5.3.4 Non-parametric confidence interval for median 

Apart from totals, means, proportions or ratios there are more complicated statistics 

for which one may be interested. Such an example is the median of a variable, which 

is essentially a function of the probability distribution function of the variable. 

Median and other percentiles of a distribution are particularly useful in cases of skew 

variables, as often met in business (e.g. salaries) and household surveys (e.g. 

incomes). In these cases more elaborate techniques are required for the calculation of 

corresponding variances. 

Särndal et al. (1992) present a non-parametric technique for the calculation of 

confidence interval for medians (the variance can be derived indirectly). 

The main steps of this approach are as follows: 

• Produce an estimate of the probability distribution, let’s say F̂  , using the 

philosophy of ratio estimation. 

• Proceed to construction of variance estimation formulae for any point of the 

estimated probability distribution (i.e. for any probability). The assessment of those 

variances is based on the fact that we are dealing with ratio estimates. 

• Inversing the estimated distribution F̂ , estimate the median as M̂  (for p=0.5). 

• Approximate a confidence interval for the estimated median by inversing a 

confidence interval for the 50% probability. 

This procedure can be applied to sample designs more complicated that simple or 

stratified random sampling, if appropriately incorporate the inclusion probabilities in 

the estimation of F̂  

The main advantages of such a non-parametric approach are: 

• no model assumptions are made on the population, since it is based on the design-

based approach to variance estimation; 

• it makes use of closed-form formulae for variance estimation and thus it can be 

extended to complex survey designs and large samples; 

• it is less time-computing demanding than resampling methods. 

However, some restrictions are: 

• The populational probability distribution function of the variable under 

investigation should be continuous. In discrete cases the estimated confidence interval 

has larger coverage than the nominal one. This causes problem for finite populations 

(since in these cases the distribution is essentially discrete), however, the 

overcoverage can be considered to be negligible if the population is large enough. 

• As we previously saw, the original variance estimation is made for the distribution 

function, and an inverse is needed in order to derive an estimate for the median. In 

this procedure approximations are deployed. 
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This technique has been adopted by Graf (2002) for the derivation of confidence 

interval for the median in the Swiss earnings structure survey 2000 (SESS-2000). The 

author reached a number of practical findings: 

• if the empirical distribution function is bimodal, in which case the median is an 

inappropriate measure anyway, the confidence intervals tend to be rather large; 

• on the contrary the narrowest confidence intervals are observed when the 

empirical distribution function is steep around the median; 

• observations with very large weights induce instability in the median estimation. 

The empirical distribution function cannot be regarded as continuous, making, thus, 

necessary the elimination of largest weights. 

 

5.3.5 Field substitution 

5.3.5.1 Main characteristics of field substitution 

An issue of particular interest in the context of variance estimation is the practice of 

‘field substitution’ commonly used in household sample surveys. 

Field substitution (for brevity, in the sequel called merely substitution) is an 

alternative technique, to imputation or weighting, in order to deal with unit non-

response. That is, instead of imputing data from respondents or adjusting the weights 

of the respondents, population units not initially selected for the sample are used to 

replace eligible sample units that do not participate in the survey. 

The most appealing feature of field substitution is that it preserves the optimal 

structure of the survey. By substitution, we are able to keep fixed, as originally 

planned, the size and the allocation of total samples within stages, strata and 

intermediate sampling units. This is particularly appealing in complex sample designs, 

especially when small strata or clusters are deployed. For example in case of stratified 

sampling with two sampling units (elements or clusters) per stratum, substitution 

alleviates the problem of single units per stratum that may occur due to non-response 

and which calls for other techniques, such as collapsing strata, in order to deal with 

the corresponding variance estimation. 

Some other advantages of the field substitution are the following: 

• control of the sample size; 

• Removal (at least, partial) of the non-response bias; 

• simplicity for the users. 

The disadvantages of the field substitution procedure are, primarily, related to the 

following: 

• provision of illusion that non-response has been removed; 

• non-response rate tends to increase; 

• field work is prolonged. 

 

54

eurostat



5.3.5.2 Implication of field substitution in variance estimation 

The main discussion on field substitution is related to its effect on the bias that 

induces on the estimates. However, ignoring any possible bias, i.e. assuming that non-

responses are ‘missing at random’, we may study its impact on the variance 

estimation. 

Generally speaking, comparing variance from a sample, in which substitution has 

been deployed, with a sample of equal size with no non-response, no significant 

differences arise (Vehovar, 1999). Large difference may occur in rare cases, such as 

when there are strong dissimilarities among secondary respondents and secondary 

non-respondents. In complex sample designs as the ones most often used in national 

LFS (incorporating stratification and clustering) the impact of field substitution in 

variance estimation tends to be negligible. 

Vehovar (1999) deals, in detail, with the case of a two-stage cluster sampling. In this 

case, benefit appears (compared to weighting adjustments) only in very specific 

circumstances (rarely met in practice) with respect to the size of the clusters and the 

intra-class correlation. For more than two stages the benefit is negligible, since 

substitution is performed at the last stage clusters, and the corresponding component 

of the within cluster variability represents an even smaller part of the sampling 

variance. On the other hand substitution at the level of primary sampling unit is even 

more impractical as the cluster size would be too big to allow any gains in variance. 

Similar results apply to stratification, where the gains in precision are similar to the 

case of proportionate sample compared with post stratification (Cochran, 1977). 

However, in practice, the strata are usually too large in order to benefit from field 

substitution. 

 

5.3.5.3 Practical guidelines for the use of field substitution 

As mentioned in Chapman (1983) field substitution is more appropriate for surveys 

that involve an extensively stratified design, with a relative small sample size. In 

such cases, field substitution will tend to provide a better treatment of the non-

response bias, compared to weighting or imputation. This is primarily due to the 

following reasons: 

• in strata with small extent it is easier to find a substitute unit with quite similar 

characteristics to a non-respondent; 

• on the contrary, in order to perform post-stratification adjustment, wider classes 

need to be developed (to avoid producing non-trivial increase in variance estimates), 

loosing thus the relative advantage over substitution. 

More generally, field substitution could be considered as an alternative method for 

dealing with non-response, in the following cases: 

• where there is a strong need for a self-weighted sample. In such a case the 

following conditions must additionally hold: 

o there are no other theoretical reasons for weighting, 

o the substitution can remove the non-response bias, at least to the extent of the 

alternative procedures; 
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• it is possible, due to high non-response and a small ‘take’ per cluster (or stratum), 

a considerable number of clusters (or strata) to have no (or only 1) observations(
15

); 

• there exists a potential advantage of improved precision, with respect the mean 

squared error (for a more elaborate discussion on this issue one may refer to Vehovar, 

1999). 

On the contrary, field substitution is not an appropriate procedure for large 

probability samples where at least one of the following features is valid: 

• short time available for field operations; 

• evidence of a strong bias induced by the substitution procedure itself; 

• weak (or expensive) control over field work procedures. 

Finally, we should point out that there is no general theoretical framework supporting 

or rejecting the use of field substitution. The efficiency of its use seems to be a matter 

of empirical-only evaluation. That is, in order to evaluate its performance once should 

compare it with alternative adjustment methods (such as imputation or post-

weighting). 

To conclude with, some conventions, in cases where ‘field substitution’ is used, are 

the following: 

• identification of the data records that are obtained from substitute units should be 

kept; 

• the level of substitution should be reported; 

• substitutes should be treated as non-response cases in the calculation of the survey 

response rate. 

 

5.4 Calculation of coefficients of variation 

Apart from the variances themselves, another very useful measure, indicative of the 

quality of any estimate, is the coefficient of variation (relative standard error). 

Actually, coefficients of variation are of the most popular quality indicators of 

statistics. Coefficients of variations can be computed either at national level or, even, 

at EU level. Some generic instructions for its derivation are provided in the 

paragraphs to follow. 

 

5.4.1 National level 

For any statistic θ , estimated by θ̂  and with estimated variance ( )θ̂V̂ , one can 

estimate(
16

) its coefficient of variation as: 

                   

(15) This situation may be encountered in surveys of institutions (stores, schools) and in specific 

household surveys (such as the ‘household budget survey’). 

(16) The symbol CV(.) indicates the estimator of the true coefficient variation of any statistic. 
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( ) ( )
θ

θθ
ˆ

ˆˆ
ˆ V

CV =  

Such a measure can be calculated either for the whole population under study or for 

separate domains of it. In the latter case, the same formula, as above, applies as well, 

where point and variance estimates are calculated for each domain separately. For 

example, the coefficient of variation of statistic S for domain d is calculated as: 

( ) ( )
d

d

d

V
CV

θ
θ

θ
ˆ

ˆˆ
ˆ =  

where dθ̂ , ( )θ̂ˆ
dV  are the point and variance estimates of statistic θ  for domain d, 

respectively. 

 

5.4.2 EU Level 

When it comes to EU level, the above formula holds as well. The critical point here is 

to obtain a common point and variance estimate for the whole EU (combining the 

national estimates).  

This is not a hard task though, since we can treat each country as a separate stratum 

with independent sampling, whose union constitutes the whole of EU. So, the logic 

that is used in the stratification can be applied here as well, i.e. point and variance 

estimates are essentially (weighted) averages of the corresponding estimates of all 

strata. 

 

• For the case of a total, we have that: 

∑=
i

iEU tt ˆˆ , ( ) ( )∑=
i
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∑
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(subscript i refers to the national estimates of Member States {i}, and EU to the 

aggregate estimate at EU level) 

 

• For the case of a mean, we have that: 
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∑
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Note: The above formulae for the case of mean hold if the sizes of the populations 

(Ni) are considered to be known. Alternatively (if they are considered unknown), one 

should refer to the case of CVs for ratios, further discussed below. 

 

• For the case of a ratio: 

In the case of ratios, and more generally of non-linear statistics, the formula is more 

complicated, mainly due to the fact that the variance at EU level cannot be 

decomposed into a weighted sum of the national variances. So, here we have: 

∑
∑
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i

z

i

i

y

i

z
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y
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t
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Summing up, the required information (at national level) for the calculation of EU 

CVs, depending on the type of statistic is illustrated in the table that follows. Note, 

that it is preferable that all estimators (point and, especially, variance) are calculated 

using the same method (so that they have the same properties and level of precision, 

accuracy). 

 

Table 2: Information required for EU CV’s 

Statistic Required information at national level 

Total Total estimate; Variance estimate of total 

Mean Total estimate; Variance estimate of total; Population size 

Ratio Total estimate (numerator, denominator); Variance estimate of total 

(numerator, denominator); Covariance of totals (numerator-denominator) 

 

5.4.2.1 National contribution to EU coefficient of variation 

In case that we are mainly interested in EU CVs and not national ones, an alternative 

measure that could be presented, accompanying the EU CVs is the contribution of 

each country to this total figure. More precisely, the contribution of MS i to the EU 

CV (CTi) is calculated as: 

{ }

{ }iEU

iEUEU

i
CV

CVCV
CT

−

−−
⋅=100  

where EUCV  is the coefficient of variation of statistic S calculated at EU level, and  
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{ }iEUCV −  is the corresponding coefficient obtained if country i is ignored in the 

estimation of CV. 

A positive contribution indicates that MS i tends to increase the variability of statistic 

S at European level, while the opposite (decrease of EU variability) is suggested by a 

negative value of contribution. 

 

A case study of the implementation of CVs in structural business statistics (at 

European Level) is provided in ‘Coefficient of Variations in Structural Business 

Statistics’ presented at the 2nd meeting of TF-VE. 
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6. CONCLUDING REMARKS 

 

In this report we have tackled the issue of variance estimation in the framework of 

several sampling designs and estimation procedures that are currently used in EU 

countries, covering both household and business surveys. Variance estimation is a 

crucial issue in the assessment of the survey results. 

As we have previously mentioned, the choice of an appropriate variance estimator 

primarily depends on: 

• the type of the estimator itself; 

• the type of adjustments (weighting procedures) performed; 

• the underlying sampling design of the survey. 

These factors complicate the straightforward estimation of variance and a number of 

more advanced variance estimation methods have been developed. Thus, the literature 

on variance estimation is rich, however no clear guidelines exist, for each case more 

than one techniques could be used, each one of which suffering from some drawbacks 

and offering some other advantages, at the same time. 

In Table 3 that follows, we summarise the several alternative variance estimation 

methods and practices that have been reviewed in section 5.1 for business and 

household surveys conducted in EU countries. To enhance the readability of the table 

we note the following: the first column ‘Sampling design’ describes the several 

sampling designs and situations that have been met in practice in European level. In 

the second column (‘Current practices’) examples of specific surveys and the methods 

used in practice of variance estimation are presented. For each case, corresponding 

variance estimation approaches are suggested in the final column of the table 

(‘Suggested methods’). Distinction is made between business and household surveys. 

For a further discussion on these issues of current practices and suggested methods 

one may refer to section 5.1. 

 

In the final choice of the most appropriate variance estimation method, additional 

factors need to be taken into account (when one has to choose among more than one 

valid appropriate estimator) such as: 

• properties of the resulting variance estimator (bias, mean square error, coverage of 

confidence interval); 

• timeliness (ad hoc calculation vs. general software); 

• operation convenience (simplicity); 

• information required for calculation (and availability of such information on 

confidentially protected files; 

• other administrative details. 

 

The final choice is, essentially, a trade-off among the above criteria. 
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Table 3: Comparative presentation of variance estimation methods for business 

and household surveys 

Sampling designs Current practices (business surveys) Suggested methods 

One-stage designs      

Sampling of elements      

Simple random sampling o CVTS2 at Eurostat (Stratified): no estimation • Taylor linearisation 

Systematic sampling 

 

o Trade statistics in Germany (GFSO) (Stratified): 

Taylor's linearisation 
• Jackknife linearisation 
• Replication methods 

• Pseudo-stratification 

 

Sampling designs Current practices (household surveys) Suggested methods 

One-stage designs       

Sampling of elements      

Simple random sampling o LFS Luxembourg: closed form formulae • Closed form formulae 

(exact for linear statistics, 

Taylor’s linearisation for 

non-linear statistics) 

Systematic sampling o LFS of Finland: Taylor's linearisation 

o LFS of Sweden (Stratified): Taylor's linearisation 

• Jackknife linearisation 
• Replication methods 

• Pseudo-stratification 

Probability proportional-to- 

size sampling 

 • Replication methods 

• Jackknife linearisation  
• Use of GSSE 

Sampling of clusters Clustered systematic (stratified): 

o LFS of UK — Taylor's linearisation 

o German MicroCensus: closed-form Formulae 

• Taylor's linearisation 
• Jackknife linearisation 
• Replication methods 

(jackknife) 

Multi-Stage Designs    

o LFS of Austria: closed-form Formulae • Jackknife linearisation 2-stage sampling, with simple 

random sampling in both 

stages 
o Expenditure and Food Survey of UK: jackknife 

linearisation 
• Closed form formulae 

(approximate) 

2-stage sampling, with 

systematic random sampling 

in one or both of the stages 

o In general effect of systematic selection is 

ignored 

o LFS of Germany: simplified closed-form 

formulae 

o LFS of Spain: replication method (BRR) 

o LFS in Ireland: use of design effect 

• Replication methods (BRR) 

• Jackknife linearisation 
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Sampling designs Current practices (household surveys) Suggested methods 

• Replication methods 

(jackknife) 

• Use of GSSE 

2-stage sampling, with 

probability proportional-to-

size sampling (in one or both 

of the stages) 

o LFS of Belgium: closed form formulae 

(approximate) 

o LFS of Italy: closed form formulae 

(approximate) 

o LFS of Portugal: replication methods (jackknife) 
• Closed form formulae 

(approximate) 
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8. APPENDIX 

8.1 Notation 

The notation adopted in this report is as follows: 

• We have a population of size N, split into H strata 

• Stratum h (h=1,..H) is consisted of hN  sampling units, ∑
=

=
H

h

hNN
1

 

• From stratum h, a sample of size hs is taken 

• Sample hs  is divided into a subset hr  of hn  respondents and a subset hnr  of 

( )hh ns −  non-respondents 

• Y is the variable of interest with values denoted as hiy  (the observation of 

enterprise i in stratum h) 

• The quantities of main interest are totals, means, percentages and ratios and are 

denoted by t, µ, p and r, respectively. If necessary (such as in the case of ratios which 

is consisted of the totals of two variables), the variable to which they refer appears as 

superscript (e.g. yt ) 

• In the case of GREG weighting: 

The estimator of, e.g., a total is defined as ∑ ∑
= =

⋅=
H

h

n

i

hihi

h

h
GREG

h

yg
n

N
t

1 1

ˆ  

where ghi is the GREG weight defined as ( )xxT
hihi ttAxg ˆˆ1 1 −+= −

 

xhi is the vector of the values of the auxiliary variables used in the weighting 

for the i case in stratum h (+1 in the first row), 

xt  is the (known) vector of totals of the xhi across the population 

∑ ∑=
= =

H

h

n

i
hi

h

hx h

x
n

N
t

1 1

ˆ  is essentially the estimation of xt based on the sample, and 

∑ ∑ ⋅=
= =

H

h
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h

h h
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n
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A

1 1

ˆ  

• Apart from the ( )hh ns −  non-respondents (unit non-response), item non-response 

exists for specific questions and imputation procedures could be applied. The non-

imputation rate for the variable y is yy nm / , where ym  is the number of respondents 

in the corresponding question of variable y and yn  is the number of respondents in the 

survey that were eligible for answering the specific question. 

For the notation of basic concepts one may also refer to any standard textbook, such 

as Cochran (1977), while GREG weighting is treated in detail in Andersson and 

Nordberg (1998). 
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