
Uses of nontraditional data for SDGs monitoring

Source:

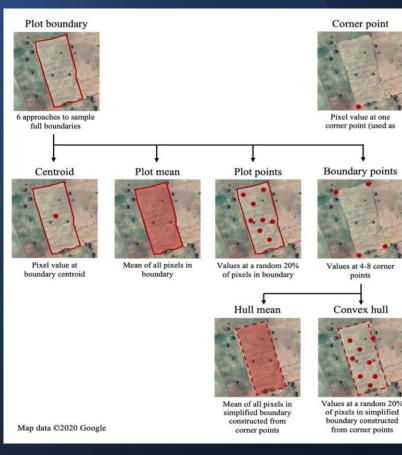
- IAEG-SDGs Wiki for Good
 Practices in Non-traditional Data
 Sources and Data Innovations
- UNESCAP Data Integration
 Community of Practice
- Academic research

- A discussion around different types of data sources used for SDGs:
 - Geospatial information
 - Mobile phone positioning data
 - Social media data
 - Citizen data
- Data integration
- Data quality considerations

Geospatial information (1)

- Most widely used in SDGs monitoring
- Data integration is required

Traditional data under NSOs


- Geographic Information System (GIS) to establish boundaries
- Geocoded population information (people)

- Satellite images (remote sensing)
- Locations of key infrastructures (hospitals, banks, etc.)
- Sensors (e.g., to monitor air pollution)

Non-traditional data sources

Geospatial information (2)

Source: Azzari et al. 2021

Variations in data availability

- Availability of governmental sources
- Financial and technical capability to procure nongovernmental sources

Data quality considerations

- Comparability and Consistency: Key consideration for data integration
- Relevance: Do the data have adequately high resolution?
- Accuracy: Images → Meaning
 - Study by <u>Azzari et al. 2021</u>: Use household surveys to support satellite-based crop type mapping

Mobile phone positioning

- ❖ Mobile phone signals ~ People
 - Population counts
 - Population movements
- Fine time intervals (hours, days, months)
 - Relevance for specific topics
 - Cot et al. 2021 study on social distancing
 - Improved timeliness for topics of population change and mobility (internal migration)
- ❖ Data integration → Data quality
 - Accuracy: Benchmarking using traditional statistics
 - Consistency & Comparability: Use multiple sources of non-traditional data (e.g., <u>Tu et al. 2017</u> study combines mobile phone positioning and social media check-ins data in China)

Social media data

- Social (media) listening, usually qualitative information
 - About the users (gender, age, etc.)
 - About their sentiments, opinions, etc.

Challenges in analysis

- Multiple media: texts, photos, videos
- Multiple postings per user
- Required sophisticated analytical tools (Natural language processing, Sentiment analysis, etc.)
- Example:
 - <u>Pristiyono et al. 2021's</u> sentiment analysis of COVID-19 vaccines in Indonesia on Twitter
 - Ondrikova et al. 2023's analysis of Google search terms to predict norovirus spread

Data quality consideration


- Availability using web-scrapping or scanner tools
- Data concerns are intertwined with concerns about the analytical strategies

Citizen data

- Diverse in types and methodological orientations
- Fill data gaps for SDGs
 - Specific SDG indicators:
 - Ghana was the first country to report SDG indicator 14.1.1b for marine plastic using citizen data
 - Foundation for Free Press (FLIP) Collaborate with DANE to support efforts in producing estimates for SDG indicator 16.10.1
 - Leaving no one behind:
 - Community-driven data that identifies population groups that are left behind
- Implementation of the <u>Copenhagen Framework on Citizen Data</u> to support work on citizen data
 - Data quality
 - Qualitative data
 - Sufficient and meaningful engagement of citizens in the DVC
 - Trust building

To recap

- Large variations in non-traditional data types and usages
- Opportunities and challenges:
 - Filling data gap and making data more inclusive
 - Data access
 - A large variety of data types
 - Quality and comparability (data integration can help?!)
 - Data analysis
 - Data integration

