INTEGRATED DISEASE SEROSURVEYS

Leveraging existing population-representative sampling frames

Samantha Dolan, Program Officer
Surveillance Team

Samantha.dolan@gatesfoundation.org
COVID-19 pandemic has exposed the weaknesses in our existing disease surveillance systems

Systems were hampered by: inadequate diagnostic capacity, fragmented data systems, incomplete data, sub-optimal governance

Information on mortality and causes of death is important for designing disease prevention programs

- Only 8 African countries have compulsory death registration systems
- Reliance on surveys, model estimates, and small studies
- Completeness of data
 - >50% of deaths occur outside of facilities, meaning they are less likely to be counted
 - Different data collection instruments used across settings; >50% of SSA countries only have paper death records

Now is the time to assess what failed and act boldly to implement improvements

References
2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6815655/
DISEASE SURVEILLANCE VISION

An integrated surveillance system to support the detection and response of the next pandemic and improve routine disease surveillance.

1 Population-representative surveillance foundation / population surveillance and vital statistics
 Civil registration and vital statistics (CRVS) or a sample registration system (SRS) & a mortality deep dive (confirming cause of death and disease burden)

2 Notifiable disease and IDSR-like surveillance
 Community based surveillance, electronic case reporting, syndromic and notifiable disease surveillance, and rapid investigative response teams

3 Pathogen surveillance including sequencing
 Laboratory reporting, genomic analysis to identify a pathogen and novel variants / strains, sewage and septic surveillance

4 Specialized programs
 Population immunity surveillance and vaccine effectiveness

5 Data integration
 Interoperable with common meta-data and privacy protection

6 National Public Health Institute
 Central surveillance coordination and decision making, incl. modeling, forecasting, and analytics

Surveillance component
Types of surveillance programs and elements included within it
CORE PRINCIPLES FOR INTEGRATED DISEASE SURVEILLANCE*

<table>
<thead>
<tr>
<th>Principles</th>
<th>Implications</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Population-based foundation - CRVS or sample registration system</td>
<td>Denominators for rates and burden</td>
</tr>
<tr>
<td>2 Laboratory testing adequately scaled to the threat</td>
<td>Cases accurately tracked</td>
</tr>
<tr>
<td>3 All digital with unique health identifiers and core metadata</td>
<td>Systems interconnect and privacy protected</td>
</tr>
<tr>
<td>4 Data transparency and automated reporting to NPHI</td>
<td>Full visibility at NPHI and WHO if PHEIC</td>
</tr>
<tr>
<td>5 Adequate financing</td>
<td>Countries determine adequate % of GDP needed</td>
</tr>
</tbody>
</table>

As described in a commentary published in the Lancet
NEED POPULATION REPRESENTATIVE PLATFORMS TO SERVE AS THE FOUNDATION

Benefits of a sample registration systems

• Nationally and sub-nationally representative data of entire population
 • Household sampling frame
 • Continuous data collection
 • Capturing births, pregnancies, and deaths
• Disease agnostic
• Stepping-stone to full CRVS
• Government led

Figure 1: Map of Sierra Leone showing enumeration areas, regions, and numbers of study deaths
• 1 province (Zambezia)
• Representative sample of households from COMSA clusters
• Target 2,900 individuals of all ages
• Five dried blood spots (50 µL each for four spots, plus 60 µL on separate TropBio card for serology, total 260 µL) on barcoded filter paper
 • Serum extracted, multiplex bead assay on eluate (one DBS can be used to determine antibody responses to up to 50 antigens)
 • Testing by Mozambique National Institute of Health (INS) using Luminex and CDC Atlanta
• Calculate provincial-level age-group-specific seropositivity (IgG antibodies to COVID, malaria, selected NTDs, measles, rubella, tetanus, and Hep A, B, C, E)
• Interest from USAID/Mozambique and INS in adding HIV – we are exploring this option and expanding target age group to adults
COMSA Mozambique

Pathogens and antigens available to be included in MagPix custom IgG panels developed by CDC and LSTMH

<table>
<thead>
<tr>
<th>Pathogen/Disease</th>
<th>Antigen</th>
</tr>
</thead>
<tbody>
<tr>
<td>P. falciparum</td>
<td>MSP-1(19), PfAMA1, Gexp18, GLURP R2, Etramp5 Ag1, Rh4.2, CSP</td>
</tr>
<tr>
<td>P. vivax</td>
<td>PvMSP119, PvDBPRII, PvRBP2b</td>
</tr>
<tr>
<td>P. ovale</td>
<td>PoMSP119</td>
</tr>
<tr>
<td>P. malariae</td>
<td>PmMSP119</td>
</tr>
<tr>
<td>Measles</td>
<td>Whole virus</td>
</tr>
<tr>
<td>Rubella</td>
<td>Whole virus</td>
</tr>
<tr>
<td>Diphtheria</td>
<td>Toxoid</td>
</tr>
<tr>
<td>Tetanus</td>
<td>Toxoid</td>
</tr>
<tr>
<td>Strongyloides stercoralis</td>
<td>NIE</td>
</tr>
<tr>
<td>Onchocerca volvulus</td>
<td>OV16</td>
</tr>
<tr>
<td>Taenia solium</td>
<td>ES33, T24H</td>
</tr>
<tr>
<td>Chlamydia trachomatis</td>
<td>pgp3, CT694</td>
</tr>
<tr>
<td>Treponema pallidum</td>
<td>Rp17, TmpA</td>
</tr>
<tr>
<td>Wuchereria bancrofti</td>
<td>Wb123, Bm14, Bm33</td>
</tr>
<tr>
<td>Schistosomiasis</td>
<td>SEA, Sm25</td>
</tr>
<tr>
<td>Dengue virus</td>
<td>Dengue 1 NS1, Dengue 2 NS1, Dengue 3 NS1, Dengue 4 NS1</td>
</tr>
<tr>
<td>Chikungunya virus</td>
<td>ChikE1 (envelope protein)</td>
</tr>
<tr>
<td>Cryptosporidium</td>
<td>Cp23, Cp17</td>
</tr>
<tr>
<td>Giardia lamblia</td>
<td>VSP3, VSP5</td>
</tr>
<tr>
<td>SARS-CoV-2</td>
<td>Spike RBD, Nucleocapsid</td>
</tr>
</tbody>
</table>

Pilot in Zambezia Province
Lessons learned

<table>
<thead>
<tr>
<th>Challenges</th>
<th>Opportunities</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Social mobilization needed to be increased to overcome community hesitancy with blood collection</td>
<td>• Used HIV and malaria rapid diagnostic tests to provide immediate results to participants</td>
</tr>
<tr>
<td>• Significant delays in procuring supplies for specimen collection and laboratory caused field and testing delays</td>
<td>• Integration of multiple pathogens provides rich epidemiological picture</td>
</tr>
<tr>
<td>• Conducting fieldwork in the context of COVID-19</td>
<td></td>
</tr>
<tr>
<td>• Difficult terrain complicated logistics for getting specimens to the laboratory</td>
<td></td>
</tr>
</tbody>
</table>
Healthy Sierra Leone (HCS) Dried blood spot study: Goal and approach

• Investigate the prevalence of exposure (antibodies) to various pathogens including COVID-19 infection using the COMSA platform

• COMSA sample frame: 46 enumeration areas in Bo District with ~8,000 people: ~4000 urban adults, ~3000 rural adults, ~1000 kids): 17 dedicated Surveyors

• To date: all urban and 1500 rural adults completed, rest plus kids to be completed by Aug 1, 2023

• Teams of two trained field staff enumerate/consent households and implement a general health check up about current health, blood pressure, exercise, smoking, alcohol, mental health concerns, and COVID experience

• Anthropometric measurements- two x BP, height, weight, waist hip ratio, body impedance (fat) and grip strength

• Collect DBS samples (5 spots Whatman paper for central Multiplex analyses), plus anemia/diabetes instant results

• Participants representative for age, smoking, BMI, BP vs whole of Sierra Leone
Malawi- Study Design

• The data collection was conducted in 7 districts
 o Kasungu, Dowa, Lilongwe, Dedza, Machinga, Zomba and Blantyre

• Data collection commenced on 27th December 2021 and completed on 17th January 2022

• The target number of household members to be enrolled in the 7 districts was 5,948.
 o Of these, 79.2% were enrolled.

• Zomba, Blantyre, Machinga, Kasungu and Dedza all enrolled over 80% of their target number of individuals
High seroprevalence in adults and in females
Household cohort study in two communities serviced by health facilities where severe respiratory illness (SRI) and influenza-like illness (ILI) surveillance is conducted in South Africa, namely Pietermaritzburg (KwaZulu-Natal), and Mitchell's Plain (Western Cape).

- Study participants were identified using randomly selected GPS coordinates to identify households in the target areas.
- **HUTS-1**: November 2020 – April 2021
- **HUTS-2**: April – May 2022

Laboratory Testing

- Serum samples collected for SARS-CoV-2 ELISA using the Roche Elecsys® Anti-SARS-CoV-2 assay
 - Anti-Nucleocapsid
 - Anti-Spike
- Plasma samples collected for HIV and viral load testing

Seroprevalence

- **4800 individuals**
COVID-19 Healthcare Utilisation and seroprevalence survey (HUTS-1), Nov 2020 – Apr 2021

Seroprevalence of Severe Acute Respiratory Syndrome Coronavirus 2 After the Second Wave in South Africa in Human Immunodeficiency Virus–Infected and Uninfected Persons: A Cross-Sectional Household Survey
High prevalence of antibodies against COVID-19 within the general population: Evidence from Nairobi and Kilifi

Key messages:
- By May 2022, 69% of individuals residing within the Kilifi Health and Demographic System (HDSS) and 91% residing within the Nairobi Urban HDSS had COVID-19 antibodies resulting from natural infection and/or vaccination, i.e., anti-spike IgG antibodies.
- The majority of HDSS residents with anti-spike IgG antibodies appear to have developed them as a result of natural infection, given that about 11% - 27% of the total number of residents sampled within the Kilifi HDSS and Nairobi Urban HDSS reported receiving one or more doses of COVID-19 vaccine by May 2022.
- The proportion of HDSS residents with anti-spike IgG antibodies was significantly higher in Nairobi, an urban setting, than in rural Kilifi.
- Seroprevalence by May 2022 represents a substantial increase from May 2021 when about 20% of the residents within the Kilifi HDSS and 40% within the Nairobi Urban HDSS had anti-spike IgG antibodies.
- Surveillance for COVID-19 antibodies among residents HDSS sites provides an opportunity to understand the extent COVID-19 spread and immunity within the general population in Kenya.
Building population-representative, Pathology-informed Mortality Surveillance platforms

• Building platforms to serve as the foundation for disease surveillance

Collecting better primary data → Countrywide integration → Improved global estimates for decision-making

MITS Surveillance Alliance
• ~5 sites MITS-VA feasibility projects
• MITS Kits
• Training and capacity building
• Data quality assurance of tissues samples

Child Health and Mortality Surveillance (CHAMPS)
• Most accurate cause-of-death data for children <5 years, using MITS
• Sub-nationally representative sites across 9 countries in Africa and South East Asia

Countrywide Mortality Surveillance for Action (COMSA)
• Sample registration system providing representative causes-of-death using verbal autopsy, all ages
• Subset of death w/MITS
• Integrated serosurveillance using dried blood spots

Institute for Health Metrics and Evaluation (IHME)
• Improved modeling of causes of death and global burden of disease
• Geospatial mapping to guide interventions and highlight data gaps

Africa CDC’s Mortality Surveillance Program Secretariat
• TA across Member States
• Developed continental mortality surveillance framework

Digital Mortality Tool Assessment
• Developing guidance and standards on mortality data collection

Post-COVID-19 Investments
Measuring excess-mortality

• Burial Site Surveillance
• Bangladesh
• Pakistan
• Mobile Phone Surveys
• Mozambique
• Bangladesh
• Burkina Faso
• Malawi
• HDSS Sites
• 18 sites across SSA and SEA (4 CHAMPS sites)
EXTRA SLIDES ON SAMPLE REGISTRATION SYSTEMS
COMSA is a country-led sample registration system

- Led by national statistics organizations with close collaboration from ministries of health, national civil registration authorities, national public health institutes
 - Four years of BMGF support for external technical assistance
 - Low running costs
- Select representative enumeration areas across a country
 - Cover ~ 3-8% of entire population
 - Identify and report pregnancies outcomes and deaths (including stillbirths)
 - Conduct verbal autopsy (VA) on all deaths
 - Conduct MITS on some U5 deaths from COMSA (outside of CHAMPS site)
- Assemble all data across the country and calculate statistics at the national and subnational levels
 - National and subnational crude birth and death rates
 - Age-group specific mortality rates and cause-specific mortality fractions and rates
 - Use MITS-VA pairs from CHAMPS and COMSA to calibrate national VA-based COD
- Integrate with existing data systems and share data promptly and continuously with local, national, and international stakeholders
COMSA Mozambique- Births and deaths registered by place of residence

% Deaths

- Urban: 45.9
- Rural: 7.4

% Births

- Urban: 36.9
- Rural: 27.7

Urban with high registration compared to rural
COMSA Mozambique - Deaths registered by wealth quintiles

<table>
<thead>
<tr>
<th>Wealth Quintile</th>
<th>% Deaths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poorest</td>
<td>2.6</td>
</tr>
<tr>
<td>Second</td>
<td>4.9</td>
</tr>
<tr>
<td>Middle</td>
<td>6.3</td>
</tr>
<tr>
<td>Fourth</td>
<td>14.2</td>
</tr>
<tr>
<td>Wealthiest</td>
<td>56.3</td>
</tr>
</tbody>
</table>

Wealthiest with high registration compared to poorest households
Odds ratio of death registration by selected characteristics

- Age 5-14 vs U5
- Age 15-59 vs U5
- 60+ yo vs U5
- Male vs Female
- Employed vs Unemployed
- Pension vs Unemployed
- Other vs Unemployed
- Stud vs Unemployed
- Health facility vs home
- Other vs home
- lower vs poorest
- Q2 vs poorest
- Q4 vs poorest
- Wealthiest vs poorest
- Urban vs rural
Data collection and analysis

• Establish representative random sample of 700 clusters (~300 households each) nationally

• Recruit, train and equip a Community Surveillance Assistant (CSA) in each cluster to:
 • List population of the cluster
 • Identify and report pregnancies, pregnancy outcomes (live births, stillbirth, pregnancy loss), and deaths continuously

• Recruit, train and equip verbal autopsy (VA) data collectors based at provincial level to:
 • Follow up on all deaths for VA interviews on a continuous basis
 • Supervise the CSAs

• Calibrate national VA-based cause of death information using pathology-based gold standard cause of death information from CHAMPS sites and other sources of paired minimally invasive tissue sampling/VA data
Comsa Mozambique is now reporting births and deaths nationwide

700 clusters of ~300 households each

- ~800,000 people under active surveillance
- 38,000 annual births
- 2,600 annual under-five deaths
- Reporting births & deaths in all provinces (1,924 deaths reported to date)
 - 1,446 verbal autopsies completed
- Preliminary calibration analysis completed using 167 CHAMPS network MITS/VA pairs on 226 COMSA deaths (February 2019)
 - As CHAMPS network produces more MITS/VA pairs and they are incorporated into calibration, we expect to see some shifting of cause-specific mortality fraction estimates and improved accuracy of VA cause of death findings
Other uses for the EAs/sampling frame, beyond mortality and serosurveillance purposes

• COMSA sample drawn to be representative of the population of each province
• Cluster maps developed and digitized
• Population listing done, with GIS and phone numbers (needs regular update)
• In theory COMSA sample can accommodate all survey type data collection. Current examples include:
 • Rapid mortality mobile phone surveys (RAMMPS)
 • Study of COVID-19 impact on RMNCH