

Figures vs data

Number of touristic establishments integy, Annual data							
IndicatorA100B010B020TimeHotels and similarTourist CampsitesHoliday dwellings							
2002A00	33411	2374	61479				
2003A00	33480	2530	58526				
2004A00	33518	2529	56586				
2005A00	33527	2411	68385				
2006A00	33768	2510	68376				
2007A00	34058	2587	61810				

- Figures by themselves are meaningless.
- For data to be usable, it must be properly described. The descriptions let users know what the data actually represents.

Developing a Data Model for Data Exchange

- Data model is developed to provide descriptions for all relevant characteristics of the data to be exchanged
- In some aspects similar to developing a relational database
- In SDMX, data model is represented by a Data Structure Definition (DSD).
- The "shape" of SDMX DSD is roughly similar to star schema.
- To design a DSD, we first need to find *concepts* that identify and describe our data.

Developing a Data Model for Dissemination and Exchange

- This task is similar to developing a relational database
- In SDMX, a data model is represented by a Data Structure Definition (DSD)
- The "shape" of SDMX DSD is roughly similar to a "star schema"

Concept

 To design a DSD, we first need to find concepts that describe all relevant characteristics of our data

Identifying Concepts

DESA

Statistics Division

Rof Aroa		Indica	ator		•	Time P	eriod				
		•						Unit N	lultiplie	r	
1-1 Total mid-y	year population	on - Popula	ition totale	au milieu d	le l'année						
								Thousand	ds - milliers		
Country - Pays 🔸	1980	1985	1990	1995	1999	2000	2001	2002	2003		
Angola	6993	8754	9194	11072	12692	13134	13533	13942	14366	Oh	s Value
Botswana	906	1083	1276	1487	1529	1541	1549	1552	1565		S. value
Lesotho	1339	1538	1792	2050	2037	2035	2050	2065	2080		
Malawi	6183	7340	9667	11129	11270	11308	11554	11806	12064		
Mauritius - Maurice	966	1020	1057	1117	1151	1161	1169	1178	1187		
Mozambique	12095	13711	14187	16004	17808	18292	18616	18946	19283		
Namibia - Namibie	1030	1518	1349	1540	1711	1757	1787	1817	1848		
South Africa	29170	33043	37066	41465	42902	43309	43634	43966	44306		
Swaziland	560	664	744	855	910	925	933	942	950		
Zambia - Zambie	5738	7006	8152	9456	10218	10421	10639	10683	11092		
Zimbabwe	7126	8292	9903	11261	12333	12627	12843	13065	13292		
Southern Africa, Total -											
Afrique de australe, totale	72106	83969	94387	107436	114561	116510	118305	119962	122033		

SDMX Concept Scheme

- "Set of Concepts that are used in a Data Structure Definition or Metadata Structure Definition."*
- Concept scheme places concepts into a maintainable unit.

Concept name	Concept ID
Indicator	INDICATOR
Reference area	REF_AREA
Time period	TIME_PERIOD
Unit multiplier	UNIT_MULT
Observation value	OBS_VALUE

Dimension

- Which of the concepts are used to identify an observation?
 - Indicator
 - Reference area
 - Time Period
- When all 3 are known, we can unambiguously locate an observation in the table.
- These are called dimensions.
 - A dimension is similar in meaning to a database table's primary key field.

Attribute

- In our example, **Unit Multiplier** represents additional information about observations.
- This concept is not used to identify a series or observation.
- Such concepts in are called **attributes**.
 - Not to be confused with XML attributes!
 - Similar to a database table's non-primary key fields.

Special Dimensions

- **TIME** dimension provides the period of time to which the observation relates. If a DSD describes time series data, it must have one TIME dimension.
- **REFERENCE AREA** dimension describes the geographic location to which the observation refers (e.g., country, region, city, ...)
- \rightarrow Everything happens at a specific moment (or period) in time
- \rightarrow Everything happens somewhere

Primary Measure

- Observation Value represents a concept that describes the actual values being transmitted.
- In SDMX, such a concept is called **Primary Measure**.
- Primary Measure is usually represented by concept with ID OBS_VALUE.

Dimension or Attribute?

- Choosing the role of a concept has profound implications on the structure of data.
- Concepts that identify data, should be made dimensions. Concepts that provide additional information about data, should be made attributes.
- If a concept is a dimension, it is possible to have time series that are different only in the value of this concept.
 - E.g. if Unit of Measure is a dimension, it is possible to have separate series for "T" and "T/HA" or, more controversially, "KG" and "T"

Dimension or Attribute? (2)

Cambodia		
Fixed and Mobile telephone subscriptions	2013	20.6 million
Fixed and Mobile telephone subscriptions	2012	19.7 million
Fixed and Mobile telephone subscriptions	2013	140.9 per 100 pop.

Unit of measure as a dimension...

<u>Ref.Area</u>	Indicator	<u>Time</u> <u>Period</u>	<u>Unit</u>	Unit Mult.	Obs. Value
Cambodia	Fixed and Mobile telephone subscriptions	2013	Number	Millions	20.6
Cambodia	Fixed and Mobile telephone subscriptions	2012	Number	Millions	19.7
Cambodia	Fixed and Mobile telephone subscriptions	2013	Per 100 pop.	Units	140.9
					13

Dimension or Attribute? (3)

Unit of measure as an attribute			Violation!				
<u>Ref.Area</u>	Indicator	<u>Time</u> <u>Period</u>	Unit	Unit Mult.	Obs. Value		
Cambodia	Fixed and Mobile telephone subscriptions	2013	Number	Millions	20.6		
Cambodia	Fixed and Mobile telephone subscriptions	2012	Number	Millions	19.7		
Cambodia	Fixed and Mobile telephone subscriptions	2013	Per 100 pop.	Units	140.9		

- The dataset above is invalid: duplicate observation
- The two values above are only different in their attributes

Dimension or Attribute? (4)

Unit of measure as an attribute...

<u>Ref.Area</u>	Indicator	<u>Time</u> <u>Period</u>	Unit	Unit Mult.	Obs. Value
Cambodia	Fixed and Mobile telephone subscriptions	2013	Number	Millions	20.6
Cambodia	Fixed and Mobile telephone subscriptions	2012	Number	Millions	19.7
Cambodia	Fixed and Mobile telephone subscriptions per 100 population	2013	Per 100 pop.	Units	140.9

- Now there is no violation because every row has a unique key
- The Unit concept is still useful

Attribute attachment

- In SDMX 2.0, attributes can be attached at observation, time series, group, or dataset level.
- In SDMX 2.1, attributes can be attached at observation, dimension(s), group, or dataset.
 - When attribute is attached to all dimensions except time, it is effectively attached to time series
- For practical purposes attributes are often attached at observation or time series.

Data model so far...

Concept	ID	Role	Attachment
Indicator	INDICATOR	Dimension	
Reference area	REF_AREA	Dimension	
Time period	TIME_PERIOD	Dimension	
Unit multiplier	UNIT_MULT	Attribute	Time series
Observation value	OBS_VALUE	P.Measure	

Exercise 1: Identifying concepts

- Identify concepts in the table
- Mark each concept as:
 - Dimension
 - Primary Measure
 - Attribute
- Identify the Time Dimension (Reference Period)
- Identify the Reference Area Dimension

Representation

- DSD defines a range of valid values for each concept.
- When data are transferred, each of its descriptor concepts must have valid values.
- A concept can be
 - Coded
 - Un-coded with format
 - Un-coded free text

Code

- "A language-independent set of letters, numbers or symbols that represent a concept whose meaning is described in a natural language."
- A sequence of characters that can be associated with a descriptions in any number of languages.
 - Descriptions can be updated without disrupting mappings or other components of data exchange.

Code List

- "A predefined list from which some statistical coded concepts take their values."
- A code list is a collection of codes maintained as a unit.
- A code list enumerates all possible values for a concept or set of concepts
 - Sex code list
 - Country code list
 - Indicator code list, etc

Code List: Some Examples

CL_SERIES	
Code	Description
SI_POV_DAY1	Population below international poverty line (1.1.1)
SI_POV_EMP1	Employed population below international poverty line (1.1.1)
SI_POV_NAHC	Population below national poverty line (1.2.1)
SI_COV_BENFTS	Population covered by at least one social protection floor/system (1.3.1)
SI_COV_CHLD	Children covered by social protection (1.3.1)
SI_COV_DISAB	Population with severe disabilities collecting disability social protection benefits (1.3.1)
SI_COV_LMKT	Population covered by labour market programs (1.3.1)
SI_COV_MATNL	Mothers receiving maternity benefits and benefits for newborns (1.3.1)
SI_COV_PENSN	Population above retirement age receiving a pension (1.3.1)
	· ·

CL_EDUCATION_LEV					
Code	Description (EN)	Description (FR)			
_T	Total or no breakdown by education level	Total ou aucune ventilation par niveau de s			
ISCED11_0	Early childhood education	Education de la petite enfance			
ISCED11_01	Early childhood educational development	Développement éducatif de la petite enfan			
ISCED11_02	Pre-primary education	Enseignement préprimaire			
ISCED11_1	Primary education	Enseignement primaire			
ISCED11_10	Primary education	Enseignement primaire			

CL_REF_AREA					
Code	Description				
1	World				
2	Africa (M49)				
4	Afghanistan				
5	South America (M49)				
8	Albania				
9	Oceania (M49)				
10	Antarctica				
11	Western Africa (M49)				
12	Algeria				

22

SDMX Concepts and Code lists

- Code lists provide a representation for concepts, in terms of Codes.
- Codes are language-independent and may include descriptions in multiple languages.
- Code lists must be harmonized among all data providers that will be involved in exchange.

Un-coded Concepts

- Can be free-text: Any valid text can be used as a value for the concept.
 - Footnote
- Can have their format specified
 - Postal code: 5 digits
 - Last update: date/time

Representation of concepts in SDMX

- **Dimensions** must be either coded or have their format specified.
 - Free text is not allowed.
- Attributes can be coded or un-coded; format may optionally be specified.

Data model so far...

Concept	ID	Role	Attachment	Representation
Indicator	INDICATOR	Dimension		CL_INDICATOR
Reference area	REF_AREA	Dimension		CL_REF_AREA
Time period	TIME_PERIOD	Dimension		Date/time (YYYY)
Unit multiplier	UNIT_MULT	Attribute	Time series	CL_UNIT_MULT
Observation value	OBS_VALUE	Pr. Measure		Floating point number

Exercise 2: Representation

- Working with your model, determine representation for each concept
 - Coded, formatted, free-text
- Develop code lists and formats for your concepts
 - Choose any approach for your codes and use it consistently

Data Structure Definition: summary

Со	ncept Scheme <	Reference	DSD	Reference Co	de lists
4					
Concept	Concept ID	Role	Attachment	Representation	Code list ID
Indicator	INDICATOR	Dimension		Code List	CL_INDICATOR
Reference area	REF_AREA	Dimension		Code List	CL_REF_AREA
Time period	TIME_PERIOD	Dimension		ΥΥΥΥ	
Unit multiplier	UNIT_MULT	Attribute	Time series	Code List	CL_UNIT_MULT
Obs. value	OBS_VALUE	Pr. Measure		Number	

Importance of Data Model

- Data model, represented by DSD, defines what data can be encoded and transmitted.
- Flaws in a DSD may have significant adverse impact on data exchange
 - Missing concepts
 - Incorrect role of concepts
 - Un-optimized model

Data Structure Definition: Design Considerations

- Parsimony
 - No redundant dimensions
 - Attributes attached at the highest possible level
- Simplicity
 - "Mixed dimensions" are used to minimize the number of dimensions
 - Can help avoid invalid combinations of key values
 - Should be used with caution
 - Opposite of "purity"

Data Structure Definition: Design Considerations (2)

- Unambiguousness
 - Data must retain meaning outside usual context
 - Do you supply country code with your data?
- Density
 - Model should be such that data could be supplied for most or all of possible combinations of key values
 - Related to simplicity
- Orthogonality
 - Meaning of the value of concepts should be independent of each other
 - Helps avoid ambiguity

DSD Design Tradeoffs: Simplicity vs Purity

- A simple model may increase maintenance costs
 - Codes frequently need to be added
 - Difficult to map and consume
- A *pure* model may increase the number of errors due its lower *density*
 - Some combinations of key values are impossible in reality but valid from the DSD point of view
- Splitting the *pure* model into multiple DSDs to improve *density* may increase maintenance costs
 - Multiple DSDs and other artefacts need to be maintained

Dataset

- Organised collection of data defined by a Data Structure Definition (DSD)*
- A dataset is structured in accordance with one DSD
- Serves as a container for time-series or cross-sectional series in SDMX data messages.

Time Series

- A set of observations of a particular variable, taken at different points in time.
- Observations that belong to the same time series, differ in their time dimension.
 - All other dimension values are identical.
 - Observation-level attributes may differ across observations of the same time series.

Time Series: Demonstration

1.1 Proportion of population below \$1 (PPP) per day													
Series	1990	1992	1994	1996	1998	1999	2000	2002	2006	2007	2008	2009	2011
Rwanda													
Population below \$1 (PPP) per day, percentage Last updated: 02 Jul 2012							74.6 ^{1,3}		72.1				63.2 ^{1,3}
State of Palestine													
Population below \$1 (PPP) per day, percentage Last updated: 02 Jul 2012										0.4 ^{1,2,3}		0.0 ^{1,2,3}	
Thailand													
Population below \$1 (PPP) per day, percentage Last updated: 02 Jul 2012	11.6 ^{1,3}	8.6 ^{1,3}	4.1	2.5 ^{1,3}	2.1 ^{1,3}	3.2 ^{1,3}	3.0 ^{1,3}	1.6 ^{1,3}	1.0 ^{1,3}		0.4 ^{1,3}	0.4 ^{1,3}	

🕐 1.2 Poverty gap ratio													
Series	1990	1992	1994	1996	1998	1999	2000	2002	2006	2007	2008	2009	2011
Rwanda													
Poverty gap ratio at \$1 a day (PPP), percentage Last updated: 02 Jul 2012							36.9 ^{1,3}		34.8 ^{1,3}				26.6 ^{1,3}
State of Palestine													
Poverty gap ratio at \$1 a day (PPP), percentage Last updated: 02 Jul 2012										0.1 ^{1,2,3}		0.0 ^{1,2,3}	
Thailand													
MDG @ Poverty gap ratio at \$1 a day (PPP), percentage Last updated: 02 Jul 2012	2.4 ^{1,3}	1.6 ^{1,3}	0.7 ^{1,3}	0.4	0.3 ^{1,3}	0.5 ^{1,3}	0.5 ^{1,3}	0.3	0.2 ^{1,3}		0.0 ^{1,3}	0.1	

Foot	tnotes
1	Based on nominal per capita consumption averages and distributions estimated from household survey data.
2	Based on Purchasing Power Parity (PPP) dollars imputed using regression.
3	Source: http://iresearch.worldbank.org/PovcaNet/index.htm

DESA Statistics Division

Non-Time Series Data (a.k.a. Cross-Sectional Data)

- A non-time dimension is chosen along which a set of observations is constructed.
 - E.g. for a survey or census the time is usually fixed and another dimension may be chosen to be reported at the observation level
- Used less frequently than time series representation

Time Series View vs Cross-Sectional View

2.1 Net enrolment ratio in primary education

	2009	2010	2011
Morocco			
Total net enrolment ratio in primary education, both sexes		94.1	96.2
Total net enrolment ratio in primary education, boys		95	96.8
Total net enrolment ratio in primary education, girls		93.3	95.6
State of Palestine			
Total net enrolment ratio in primary education, both sexes	88.2	89.2	
Total net enrolment ratio in primary education, boys	88.2	89.8	
Total net enrolment ratio in primary education, girls	88.2	88.5	
Uganda			
Total net enrolment ratio in primary education, both sexes	94.2	91	
Total net enrolment ratio in primary education, boys	93.1	89.7	
Total net enrolment ratio in primary education, girls	95.3	92.3	

• The Sex dimension was chosen as the cross-sectional measure.

2.1 Net enrolment ratio in primary education 2010

	Total	Boys	Girls
Morocco	94.1	95	93.3
State of Palestine	89.2	89.8	88.5
Uganda	91	89.7	92.3

• Note that Time is still applicable.

Keys in SDMX

- Series key uniquely identifies a series
 - In the case of time series, consists of all dimensions except time
- Group key uniquely identifies a group of time series
 - Consists of a subset of the series key

Exercise 3: Encoding a time series

- Working with your table, determine the total number of time series.
- For the first 5 time series, provide a valid value for each concept in its series key.

Structural and Reference Metadata

- Structural Metadata: Identifiers and Descriptors, e.g.
 - Data Structure Definition
 - Concept Scheme
 - Code
- Reference Metadata: Describes contents and quality of data, e.g.
 - Indicator definition
 - Comments and limitations

Reference Metadata in SDMX

- Can be stored or exchanged separately from the object it describes, but be linked to it
- Can be indexed and searched
- Reported according to a defined structure

Metadata Structure Definition and Metadata Set: an example

METADATA SET

SERIES=**SH_STA_BRTC** (Births attended by skilled health personnel) REF_AREA=**KH** (Cambodia)

STAT_CONC_DEF="It refers to the proportion of deliveries that were attended by skilled health personnel including physicians, medical assistants, midwives and nurses but excluding traditional birth attendants."

METHOD_COMP="The number of women aged 15-49 with a live birth attended by skilled health personnel (doctors, nurses or midwives) during delivery is expressed as a percentage of women aged 15-49 with a live birth in the same period."

Metadata Structure Definition (MSD)

- MSD Defines:
 - The object type to which reference metadata can be associated
 - E.g. DSD, Dimension, Partial Key.
 - The components comprising the object identifier of the target object
 - E.g. the draft SDG MSD allows metadata to be attached to each indicator for each country
 - Concepts used to express metadata ("metadata attributes").
 - E.g. Indicator Definition, Quality Management

Dataflow and Metadataflow

- Dataflow defines a "view" on a Data Structure Definition
 - Can be constrained to a subset of codes in any dimension
 - Can be categorized, i.e. can have categories attached
 - In its simplest form defines any data valid according to a DSD
- Similarly, Metadataflow defines a view on a Metadata Structure Definition.

Content Constraints

- Constraints can be used to define which combinations of codes are allowed
 - E.g. "When SERIES='Proportion of Women in Commune Councils', SEX must be 'Female'"
- Constraints can define more granular validation rules than a simple validation of codes
- Are often attached to the Dataflow but can also be attached to DSD, Provision Agreement, etc

Category and Category Scheme

- Category is a way of classifying data for reporting or dissemination
 - Subject matter-domains are commonly implemented as Categories, such as "Demographic Statistics", "Economic Statistics"
- Category Scheme groups Categories into a maintainable unit.

Dataflows - classification

SDMX Messages

- Any SDMX-related information is exchanged in the form of documents called messages. An SDMX message can be sent in a number of standard formats including XML, JSON, CSV
- There are several types of SDMX messages, each serving a particular purpose, e.g.
 - **Structure** message is used to transmit structural information such as DSD, MSD, Concept Scheme, etc.
 - GenericData, StructureSpecificData, and other messages are used to send data.
- SDMX messages in the XML format are referred to as SDMX-ML messages.