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Executive summary 

This handbook, written by members of the United Nations Task Team on Satellite Imagery and Geo-

spatial Data, provides a guide for National Statistical Offices considering using satellite imagery 

(known as earth observations) data for official statistics. It was produced as an input to the United 

Nation Global Working Group on Big Data for Official Statistics report to the United Nations Statistical 

Commission for 2017. 

The handbook provides a brief introduction to the use of earth observations (EO) data for official 

statistics, types of sources available and methodologies for producing statistics from this type of data. 

It also summarises the results of four pilot projects produced by Task Team members; Australian Bureau 

of Statistics (ABS), Australia, Instituto Nacional de Estadística Geografíca e Informática (INEGI), 

Mexico, Departamento Administrativo Nacional de Estadistica (DANE), Colombia and Google. 

Supplementary material includes a methodology literature review, and the full reports of the pilot 

projects.  

In the final chapter, guidelines are presented for National Statistical Offices to consider and refer to 

when considering whether to implement earth observations data sources into their statistical production 

process, and issues to consider throughout the implementation and output processes. Rather than being 

prescriptive, the guidelines are intended to prompt National Statistical Office to critically consider their 

own business needs, and apply the recommendations as appropriate to their circumstances. As the 

international experience using these data for statistical purposes grows, National Statistical Offices can 

build on the guidelines provided in this handbook with their own expertise and knowledge. 
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Foreword 

Official statisticians have been using a diversity of data sources in the production of official statistics 

for decades, including “designed” data sources such as censuses and surveys, and “found” data sources 

such as administrative and transactional data.  

As a result of increasing interaction with digital technologies by citizens, and the increasing capability 

of these technologies to provide digital trails, new sources of data have emerged and are increasingly 

available to official statisticians.  Such sources include data from sensor networks and tracking devices 

e.g. satellites and mobile phones.   

Statistical agencies around the world have a strong interest in exploring the viability of using satellite 

imagery data, or more broadly termed as earth observations (EO) data, to improve official statistics on 

a wide range of topics spanning agriculture, the environment, business activity and transport. 

EO data have significant potential to provide more timely statistical outputs, to reduce the frequency of 

surveys, to reduce respondent burden and other costs, to provide data at a more disaggregated level for 

informed decision making and to provide new statistics and statistical insights.  

EO data may also support the monitoring of the Sustainable Development Goals (SDGs) by improving 

timeliness and relevance of indicators without compromising their impartiality and methodological 

soundness. 

This handbook provides a brief introduction to the use of EO data for official statistics, types of sources 

available, examples of using EO data to compile the indicators for SDGs and methodologies for 

producing statistics from this type of data.  It also summarises the results of four pilot projects produced 

by United Nations Satellite Imagery and Geospatial Data Task Team members to explore the feasibility 

of using EO data for official statistics, and additionally, other relevant and useful case studies. 

Supplementary material includes a methodology literature review.  

In the final chapter, guidelines are presented for National Statistical Offices to consider and refer to 

when considering whether to use EO data in producing official statistics, and issues to consider 

throughout the implementation and output processes.  

 

Producing this handbook would not have been possible without the hard work, dedication and 

significant contributions of the chapter authors. I would like to express my appreciation to Dr Hannes 

I. Reuter (Eurostat), Dr Arnold Dekker, Flora Kerblat, Dr Alex Held and Dr Robert Woodcock 

(Commonwealth Science and Industrial Research Organisation) Alexis McIntyre (Geoscience 

Australia), Professor Kerrie Mengersen and James McBroom (Queensland University of Technology), 

Sandra Yaneth Rodriquez (Departamento Administrativo Nacional de Estadistica),  and Jacinta 

Holloway (Australian Bureau of Statistics).  I would also like to thank the authors of the Task Team 

Pilot reports, Patrick Dunagan (Google), Ronaldo Ocampo and José  De La Torre (Instituto Nacional 

de Estadística Geografíca e Informática), Jennifer Marley, Ryan Defina, Kate Traeger, Daniel Elazar, 

Anura Amarasinghe and Gareth Biggs (Australian Bureau of Statistics). Thank you also to Ben 

Fitzpatrick and Brigitte Colin (Queensland University of Technology) for their contributions to the 

methods case studies in Chapter 4. Thank you also to Statistics Canada for allowing us to include their 

work as an example of using EO data for official statistics in practice.  
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1. Introduction 

Remote sensing is a technology that aims to observe and study the Earth systems, and their dynamics. 

Data related to remote sensing, specifically satellite images, have a purpose to observe and study the 

Earth from space; its land surface, the oceans and the atmosphere (ESA, 2016)1. Civilisation interacts 

with the natural components of Earth systems, adapting them in diverse and complex ways, generating 

modified Earth systems suitable for measuring by Earth Observation (EO). 

In this sense, what society does, and its relation with Earth, has different responses which modify 

geospatial variables. These can be directly or indirectly detected by EO; indeed, socio-economic activity 

is distributed across most of the planet. Then, if the National Statistical Offices (NSOs) are among the 

most important sources of basic socio-economic information for their Governments, EO data and 

information is a key geospatial source that complements, improves and updates official statistics.  This 

means a change of paradigm from past and current statistical approaches measuring effects of social 

life on Earth (anthropogenic effects), its evolution, distribution, impacts and sustainability. Basically, 

the main challenges that mankind is facing in what is now called the Anthropocene. 

EO data and the information derived from these data is a special case of geospatial Big Data. Big Data 

is defined as “any large and complex collection of data sets that becomes difficult to process using 

traditional data processing applications”, and therefore includes data from EO satellites. In many cases, 

Big Data is considered to be unstructured data or data that is used for another aim than the original 

creator of the data intended. In the case of EO it is actually purposefully created to be highly structured 

and to measure specific aspects of the Earth. The complexity of EO data is to extract meaningful 

information about a real object, value, state or condition from its reflected or emitted electromagnetic 

signal coming from the earth, the atmosphere or ocean, travelling through the atmosphere and measured 

in space, ocean or soil. 

Satellite EO as an information source in support of many sectors of government and industry has been 

proven, and was reconfirmed in September 2015 by world leaders, whilst adopting the 2030 Agenda 

for Sustainable Development.  They recognised the critical importance of “transparent and accountable 

scaling-up of appropriate public-private cooperation to exploit the contribution to be made by a wide 

range of data, including EO and geospatial information, while ensuring national ownership in 

supporting and tracking progress”. In adopting the 2030 Agenda for Sustainable Development, world 

leaders agreed that a global indicator framework would be an essential tool to measure, monitor and 

report progress on achieving the Sustainable Development Goals (SDGs).  At the 47th Session of the 

United Nations Statistical Commission (UNSC) 8-11 March 2016, global indicators were presented and 

discussed to help NSOs to monitor these 17 SDGs. Effective use of the information in satellite imagery 

can have a transformational impact on many of humanity’s most significant challenges, such as helping 

global scientists, resource and planning managers and politicians better monitor and protect fragile 

ecosystems, ensure resilient infrastructure, manage climate risks, enhance food security, build more 

resilient cities, reduce poverty, and improve governance, among others.   

The Global Working Group (GWG) on Big Data for Official Statistics was created in 2014, as an 

outcome of the 45th meeting of the UN Statistical Commission. In accordance with its terms of 

reference, the UN GWG provides strategic vision, direction and coordination of a global programme 

on Big Data for official statistics, including for indicators of the 2030 agenda for sustainable 

                                                           
1 http://www.esa.int/SPECIALS/Eduspace_EN/SEMF9R3Z2OF_0.html 
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development. It also promotes practical use of Big Data sources, while promoting capability building, 

training and sharing of experiences.  

Finally, UN GWG fosters communication and advocacy of use of Big Data for policy applications and 

offers advice in building public trust in the use of Big Data from the private sector. 

In this context, this report focuses on EO data and methods as explored by the UN GWG Task Team 

on Satellite Imagery and Geo-Spatial Data. 

In the past the uptake by NSOs of EO information has been slow. However, many NSOs are now 

discovering the potential of using new and consistent data sources and methodologies to integrate 

various "geo" variables to support and inform official statistics. These can be generated by a 

combination of geospatial information, EO and other Big Data sources and are able to fill data gaps, 

provide information where no measurements were ever made and improve the temporal and spatial 

resolutions of data (e.g. daily updates on crop area and yield statistics). 

This shift in paradigm from traditional statistical methods (e.g. counting, measuring by humans) 

towards estimation from sensors (with associated aspects of validity, approximation, uncertainty), 

simulation and modelling will not be simple, as an established statistical system with its advantages and 

disadvantages currently exists. It will require convincing, statistically sound results, run in a production 

process for a number of years, well thought out arguments and excellent scientific methods, willingness 

to shift resources in the institutions, positive cost-benefit-analysis (e.g. subsidiary or replacement) and 

the motivation (e.g. cost/ staff reductions) to move ahead in a fast changing world to adapt to higher 

spatial and temporal resolutions to address policy questions. 

This comes hand in hand with the incorporation of these new methods into the Generic Statistical 

Business Process Model (GSBPM).  The official documentation of the GSBPM helps to describe and 

define the set of business processes needed to produce official statistics. NSOs are given a standard 

framework and harmonised terminology to help to modernise their statistical production processes, as 

well as to share methods and components. Additionally the GSBPM can also be used for integrating 

data and metadata standards, as a template for process documentation, for harmonising statistical 

computing infrastructures, and to provide a framework for process quality assessment and improvement 

(UNECE, 2013). Currently, according to the survey in UNECE (2015) most of the countries still need 

to develop a strategy for Big Data or GSBPMs to treat these kinds of data accordingly.  

In contrast, production processes somehow similar to the business processes or GSBPMs are in place 

outside the NSOs. Examples are found in different statistical domains - e.g. for Forest the Global Forest 

Observations Initiative (GFOI)- and are discussed in more detail in Chapters 2 and 4. We selected the 

exemplary field of agriculture production where the two organisations mentioned below are e.g. 

contributing strongly to the Group on Earth Observations Global Agricultural Monitoring 

(GEOGLAM).  

The US Department of Agriculture releases monthly the World Agricultural Supply and Demand 

Estimates (WASDE) report (USDA, 2016) with the earliest reports available from 1973. The UN-Food 

and Agriculture Organisation (FAO) provides the monthly FAO Cereal Supply and Demand Brief 

(FAO, 2016), with additional detailed information in a quarterly Crop Prospects and Food Situation 

prepared by economists. These reports provide at the national or even subnational level estimates and 

forecasts of agriculture production, acreage and prices based on a mixture of data. The USDA reports 

clearly link their results to analytical data based on weather information and satellite data (e.g. down to 

250 m spatial resolution from MODIS imagery).   
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A slightly different example is the European Commission, where the Monitoring Agricultural 

Resources (MARS) bulletins (EC, 2016) report the latest predictions on crop vegetation growth (cereal, 

oil seed crops, protein crops, sugar beet, potatoes, pastures, rice) including the short-term effects of 

meteorological events. These reports are supported since 1992 by near real-time crop growth monitoring 

and yield forecasting information called the MARS Crop Yield Forecasting System (MCYFS). Several 

more of these systems exist around the world. The latest with the cooperation of Statistics Philippines 

is the Philippine Rice Information System (PRISM, 2016) which aims to combine a variety of data 

sources to determine much more than a traditional statistical GSBPM product would be able to cover. 

PRISM aims to obtain parameters like rice crop seasonality; area; yield; damage (e.g. flood, wind, 

drought); and yield-reducing factors (e.g. diseases, animal pests, and weeds) that will certainly not be 

reported from a statistical perspective, but are needed for an evidence based policy support. The 

statistical community needs to reflect for what purpose and with which tools intend to provide 

information for current and near-future evidence based policy relevant questions.  

One major opportunity to address within this context is the use of EO data. Currently we observe rapid 

changes in the EO world in terms of capabilities and availability. In 1997-1998 from the 23 

available/programmed Landsat-TM scenes for a specific spot for one given year only 2, respective 4 

scenes were useable due to cloud cover in North-eastern Germany (Grenzdörffer, G., 2001). This 

contrasts completely the availability for arid or semi-arid areas where maybe one or two scenes were 

not available. Over the past decades data consumers have seen an increased global coverage in imagery 

and sensors (e.g. MODIS, Sentinels, WorldView, Bella Vista – see Chapter 2) up to daily global mosaics 

(planet labs, 2016)). However, weather (e.g. clouds – Wilson & Jetz, 2016) and location (e.g. Norway 

and its sun lit times) will still play a role in decreasing the amount of suitable data captures. This 

enormous amount of data brings a shift in the traditional way EO data are handled. The EU Copernicus 

Sentinels satellite will create 3PB data per year, globally the estimations reach 1 EB. The community 

will move away from local processing of a single scene for one given day into a workflow which 

combines a) multiple sensors (e.g. SAR, thermal, optics – see Chapter 2) with b) various other input 

data streams at c) various dates and d) different resolutions. Thereby the processing will move into high 

performance computing data centres (e.g. Google Earth Engine, planet-API, National Computing 

Infrastructure in Australia, Digital Globe DGBX platform) using Big Data processing tools (e.g. 

MapReduce, Hipi) along the lines of moving the algorithms to the data not the data to the algorithms. 

Many gains in information coupled with more complex uncertainties are to be expected, especially in 

the combination of different data sources. Risks and challenges (e.g. Ma et al, 2015, Li et al., 2016) 

need to be mitigated; however, the gain in temporal and spatial resolution to address police relevant 

questions justifies these risks.   

Related to the capabilities and availabilities is the recent development of the concept of providing 

Analysis Ready Data (ARD). Here, satellite data have been processed to a minimum set of requirements 

and organised into a form that allows immediate value-adding and analysis without additional user 

effort. Advantages are reproducibility, consistency and faster methodological developments. An 

example is the usage of an ARD dataset for the detection of water surfaces over a time span of 27 years 

- which would be usable for the Land Surface Area Calculations in the statistical domain (Lewis et al, 

2016). 

Last but not least a word of friendly guidance on EO data and methods to the uninitiated. EO can cover 

large areas (even inaccessible) repetitively with various spectral bands and spatial resolutions which 

can be analysed on a computer for many applications (e.g. base map, vegetation cover, crop estimation, 

erosion, water quality, coral reefs, flooding, and failure of a dam).  Some disadvantages are that humans 

– the operators, select the sensors, calibrate the data, and perform the analysis, e.g. specialist knowledge 



 8 

is needed to be successful.  NSOs also need to be aware EO data has various limitations. EO will not 

provide any statistical indicators by default; it provides some spatial, spectral, and temporal information 

which can be related to indicators. Therefore, it is recommended to start small to gain experience - even 

on large Analysis Ready Datasets - and scale up afterwards. 

Finally, this paper attempts to provide a relevant overview of EO data (Chapter 2) and methods (Chapter 

3), showcasing several pilot projects from around the world (Chapter 4) and provide guidance to 

statisticians in the UN system and NSOs on how to use EO in their domains (Chapter 5).  
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2. Data Sources 

2.1 Big Data and Earth Observations 

This chapter aims at providing guiding information to NSOs for consideration whether they could and 

should use EO satellite data derived information as a form of Big Data to relate to e.g. the UN SDGs 

indicators, or other NSO relevant information and if yes, which sources would be most relevant. This 

chapter also aims to shed light on some strengths and limitations of using EO data for official statistics, 

which is essential when specialists are required to provide fast and reliable information to decision 

makers. 

There is a proliferation of earth observing systems (archival, current and planned- over 100s of sensors) 

so it is useful to categorise these sensors by their sensing characteristics. This is meant as a guide to be 

able to interpret publicly available lists of EO sensors such as on the CEOS (Committee on Earth 

Observation Satellites) website (www.ceos.org), and more specifically on the database page: 

http://database.eohandbook.com/  as well as the OSCAR (Observing Systems Capability Analysis and 

Review Tool) database of the WMO (World Meteorological Organisation) https://www.wmo-

sat.info/oscar/satellites. 

Each of these databases has merit for selecting the most suitable sensors (See 2.1.2 Earth Observation 

Data Information Sources). In Figure 1, for example, a selection is shown for vegetation cover 

measurement. It indicates guaranteed data continuity until 2030 at a minimum, coupled with the 

challenge of selecting the most fit-for-purpose EO sensor(s). 

 

http://www.ceos.org/
http://database.eohandbook.com/
https://www.wmo-sat.info/oscar/satellites
https://www.wmo-sat.info/oscar/satellites
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Figure 1: Extract from the CEOS database for Vegetation Cover and Land Cover measurements  

Source: http://database.eohandbook.com/timeline/ 
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2.2 Two main EO systems: LEO, GEO 

Three main types of EO systems exist, based on their orbit around the earth, which has consequences 

for the spatial resolution and the temporal resolution; the LEO (Low Earth polar Orbiting), the MEO 

(Medium Earth Orbit) and the GEO (geostationary) satellites. 

LEO satellites typically fly between 400 and 800 km altitude in an orbit that goes across both poles 

(with a slight deviation called the inclination). Effectively they scan the earth in fixed orbit at 

approximately 28,000 km/hr whilst the earth rotates beneath them, thus building up a global picture 

over some period of time (between daily to monthly depending on the swath width they record or the 

amount of satellites simultaneously in orbit). Each earth rotation takes about 90 minutes. These satellites 

have increased coverage towards the poles and decreased coverage around the equator (see Figure 3). 

As they are relatively close to the earth their spatial resolution can be as high as 30 cm pixels in black 

& white (panchromatic) and about 1 m in colour or multispectral bands for commercially available 

imagery.  

The most well-known of the publicly available LEO sensors are the MODIS (MODerate-resolution 

Imaging Spectroradiometer since 1999) and Landsat sensors (since 1984) with spatial resolutions of 

250/500/1000 m for MODIS and 30 m for Landsat. 80 m Landsat data is available since 1973. (Note: 

spatial resolution of e.g. 30 m indicates a pixel with dimension of 30 by 30 m = 900 m2.) The recently 

launched Sentinel-2A satellite (with many more following Sentinel-2B, 2C, 2 D etc.) has 10 m spatial 

resolution (as well as some bands at 20 m and at 60 m resolutions). 

The Landsat 30 m resolution and Sentinel-2  10 m data are examples of a public good; providing freely 

available data with a significant track record of documentation and peer reviewed literature covering 

all aspects of the sensor to applications relevant to society. 

Landsat 4, 5, and 7 images consist of seven spectral bands with a spatial resolution of 30 by 30 m for 

Bands 1 to 5 and 7. The spatial resolution for Band 6 (thermal infrared) is 120 m, but is subsequently 

resampled to 30m pixels to align with the other 5 bands. Figure 2 shows the operational time windows 

of the various Landsat satellite generations.  

Landsat 8 is now the preferred satellite from the Landsat series as it is significantly more sensitive, has 

additional spectral bands, and is very well calibrated. The previous Landsat series images should only 

be used for archival analysis to detect change over time or frequency of events (see the Water 

Observations from Space Flood frequency web mapping facility by GeoScience Australia 

http://www.ga.gov.au/scientific-topics/hazards/flood/wofs). 

The Sentinel-2 satellites will become increasingly relevant as the data becomes increasingly globally 

available. 
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A Brief Overview of Landsat Data 

 

Figure 2: Landsat Satellite Generations 

Source: https://directory.eoportal.org/web/eoportal/satellite-missions/l/landsat-7 

 

 

Figure 3: Spectral bands: Landsat Satellite Generations vs Sentinel-2  

Source : http://landsat.gsfc.nasa.gov/sentinel-2a-launches-our-compliments-our-complements/ 

Landsat satellite imagery is recorded and saved in rows and paths based on a construct known as the 

Worldwide Reference System (WRS). Structuring and saving the imagery using the WRS in this way 

enables inquiry over any location of the world by specifying a nominal scene centre designated by 

paths and row numbers (see Figure 4). 
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Figure 4: Worldwide Reference System  

Source: http://landsat.gsfc.nasa.gov/the-worldwide-reference-system/ 

The Landsat 1-3 WRS-1 notation assigns sequential path numbers from east to west to 251 nominal 

satellite orbital tracks, starting with number 001 for the first track which crosses the equator at 65.48 

degrees west longitude. A specific orbital track can vary due to drift and other factors; thus, a path line 

is only approximate. The orbit is periodically adjusted after a specified amount of drift has occurred in 

order to bring the satellite back to an orbit that is nearly coincident with the initial orbit. An example 

for an area of Melbourne, Australia, 

showing path/row grids is shown in 

Figure 5. 
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Figure 5: Path and Row Satellite Grids for a Selected Area of Melbourne, Australia. 

Landsat 8 and Landsat 7 follow the WRS-2, as did Landsat 5 and Landsat 4, whereas Landsat 1, Landsat 

2, and Landsat 3 followed WRS-1. 

The Landsat 4, 5, and 7 Worldwide Reference System-2 (WRS-2) is an extension of the global Landsat 

1 through 3 WRS-1 and utilises an orderly Path/Row system in a similar fashion. There are, however, 

major differences in repeat cycles, coverage, swathing patterns and Path/Row designators due to the 

large orbital differences of Landsats 4 and 5 compared to Landsats 1 through 3.  

Once the satellite data is pre-processed into Analysis Ready Data this file system is removed and 

replaced by each pixel of each image being placed in a spatio-temporal database from which any slice 

of data through time and space can be selected. 

GEO satellites are located above the equator at an altitude of about 36,000km where they can stay 

exactly positioned over the same spot on earth. Originally designed for meteorological use they are 

becoming so sophisticated that the sensors are also useful for non-meteorological purposes. The current 

highest spatial resolution is 500 m with images taken at 10 minute intervals from the HIMAWARI-8 

Satellite, the first of a series of similar satellites (GOES-R Type) that will cover most of the world. 

Himawari-8 is positioned over Indonesia and covers half the globe, although at larger off nadir (=off 

vertical) angles the satellite creates increasingly skewed pixels. 

 

Figure 6: Visual representation of satellite orbits  

Source: http://www.idirect.net/Company/Resource-Center/~/media/Files/Corporate/iDirect%20Satellite%20Basics.pdf 

The MEO (Medium Earth Orbit, approximately 20,000 km) satellites are mainly focused on navigation, 

communication, and geodetic/space environment science, with an orbit time of 12 hours to 2 hours. For 

more information, please visit NASA (National Aeronautics and Space Administration) website: 

http://earthobservatory.nasa.gov/Features/OrbitsCatalog/  

http://earthobservatory.nasa.gov/Features/OrbitsCatalog/
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2.3 Active and passive sensors 

 

Figure 7: Active/Passive sensors characteristics 

Source: http://lms.seos-project.eu/learning_modules/marinepollution/marinepollution-c01-s02-p01.html. 

Wavelengths and frequencies of electromagnetic waves are on logarithmic scales. Passive instruments 

detect signals which are naturally available, e.g. sun irradiance reflected or thermal radiation emitted 

from a target. Active instruments provide their own source of radiation for target illumination and 

returned signal detection.  

It is also important to discriminate the electromagnetic wavelength domain these sensors record and 

whether they measure reflected sun energy, emissions from the earth (the passive earth observing 

sensors) or a signal they emit and then record as it is reflected by the earth (the active sensors). 

For the passive sensors wavelengths measured vary from those the human eye can see such as the blue 

to green to yellow to orange to red wavelengths (the visible or VIS Wavelengths); the NIR (Nearby 

Infrared) wavelengths, the SWIR (Shortwave Infrared Wavelengths), MIR (Mid Infrared Wavelengths 

in research mode currently), the TIR (Thermal Infrared Wavelengths) measuring temperature emission 

through to the microwave region (or radar). The VIS to NIR to SWIR to MIR sensors operate mainly 

during the day time (with some exceptions such as using night time lights to detect marine (shipping & 

energy resource platforms)  or terrestrial artificial light sources. The TIR and passive microwave sensors 

can also detect emissions at night. Passive microwave may be used to estimate soil moisture on land or 

ocean salinity.  

A separate, recent development is the detection of gravity anomalies using satellites. These anomalies 

over time can infer the depletion or recharge of large subsurface groundwater reservoirs as an example. 

The active sensors either emit light by lasers in the VIS to NIR domain (LiDAR:Light Detection And 

Ranging) or emit microwave energy by synthetic aperture radar (SAR). These systems can work day 

and night as they have their own source of electromagnetic energy. LiDAR is used for accurate 

estimations of elevation and canopy height or in shallow waters for the bottom depth (bathymetry). 

Research and development on LiDAR is focusing on being able to discriminate aspects of the canopy 

or of the water column. 

SAR is used for imaging the radar backscatter signal from which land cover, flood cover, agricultural 

crops, forests etc., illegal & unreported vessels can be detected and measured. SAR interferometry can 

http://lms.seos-project.eu/learning_modules/marinepollution/marinepollution-c01-s02-p01.html
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detect millimetre shifts, such as shifts in resource extraction areas (subsidence) or volcanic or 

earthquake regions. 

2.4 Applications of algorithms to EO  

EO is generally used to determine the spatial distribution of a variable (what’s where?) and to determine 

the nature of the variable. For example, colour, depth, fluxes, vigour, concentration, density, mass, etc. 

By adding the temporal aspect of repeat coverage the question of state, condition and trend can then be 

answered. Therefore, these measured reflections or emissions need to be translated into meaningful 

information, such as for official statistics, through the application of algorithms. In general these 

algorithms are mathematical equations, statistical or biophysical, geophysical, chemo physical methods 

or any combination of these approaches. 

The nature of these algorithms has a significant consequence for their use in producing official statistics. 

It is possible to discriminate five broad categories with many possible permutations; the first three are 

pixel-based methods and the fourth uses this information as well as spatial and contextual information. 

In the fifth method hybrid approaches are described. 

1. Empirical methods: where a statistical relationship is established between the spectral bands 

or frequencies used and the variable measured (field-based) without there necessarily being a 

causal relationship. This method is the least suitable for automation across large areas and 

varying conditions (sun angle, season, latitude, slope and aspect of terrain, atmospheric 

conditions) unless accompanied by a significant, ongoing field measurement activity, 

preferably with each satellite overpass. 

 

2. Semi-empirical methods: where a causal relationship is established between the spectral bands 

or frequencies used and the variable assessed. This method is less prone to providing spurious 

results, although results may have significantly increased error outside the field-based range. 

This method has medium suitability for automation across large areas and has less stringent 

requirements for frequent field based sampling. 

 

3. Physics-based inversion methods: which are also known as semi-analytical inversion 

methods. All required variables are assessed in one spectral inversion simultaneously. This 

method provides physics-based consistency in results, and is most suitable for automation 

across large areas, provided the inversion model is properly parameterised for the desired 

variables. These are also called biophysical, biogeochemical or geophysical inversion methods. 

 

4. Object based image analysis method (OBIA): This method combines spatial, pattern, texture 

and spectral information together (e.g. through initial image segmentation) with contextual 

information supervised by a human operator. This method has suitability for automation across 

the natural or manmade system for which it was developed and is being increasingly used.  

 

5. Artificial intelligence and machine learning methods: these are intelligent, high-dimensional 

statistical (often non-linear) models for identifying highly complex relationships in data. 

Depending on how these methods are trained (using field measurements or physics-based 

models), they cross the realms of empirical to semi-empirical to physics-based and OBIA based 

inversion methods.   

Methodological approaches to working with EO data are further discussed in depth in Chapter 3.  
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When the physical processes are well understood, we can develop physics-based inversion models. 

Often prefixes will be used such as bio-physical or geo-physical etc., indicating the nature of the 

variable being sensed.  Sometimes EO data can provide useful inputs to such physical models, and this 

is the ideal situation.  Inverting physical models is only one way of using them.  For example, fractional 

cover or Leaf Area Index (LAI) can be used in a biophysical model in a forward manner – to predict, 

for example, gross primary productivity or evapotranspiration. Another example is water quality; some 

aspects of which can be determined from space using physics based inversion models. The advantage 

of these inversion models is that once properly parameterised they no longer need in situ data and thus 

are a prime candidate for automation of processing of large EO data volumes. Therefore, if it is possible, 

the physics based forward and inverse approaches are recommended as they decrease the need for in 

situ data and increase the opportunity to be automated. 

However, often EO can’t provide direct measures of the inputs, and that is when semi-empirical 

methods that find correlations between an EO derived variable and some real biophysical variable are 

required.  When the physical processes aren’t well understood (e.g. ecology), we can’t use physical 

models and resort to empirical, semi-empirical or OBIA or machine learning models, which rely on 

statistics to define the relationships rather than physics.  In this case, the empirical relationships need to 

be continually checked (field work or simulations) to ensure they are not changing across space and 

especially through time. 

2.5 Combining data: data-data, data-model and model-data assimilation 

Increasingly use is being made of combining the information of two or more EO sensors in order to 

counteract the disadvantages of some EO sources. This is called data-data fusion or blending. An 

example of this approach is using land reflectance in the VIS and NIR coupled with TIR imagery, or 

using sensors with high repeat frequency and low spatial resolution with low frequency and high spatial 

resolution to compensate for each other’s weakness. 

 It is also possible to merge EO information with an underpinning model of the phenomenon under 

study. This approach is called data-model fusion.  

When EO and/or field observation data is used to improve the performance of a model and the model 

output is then used to strengthen the validity or accuracy of the field data or EO products or vice versa 

in ways that maintain consistency amongst system variables, is cognisant of model and observation 

uncertainty, and enhances information value of generated outputs is called model-data assimilation. 

2.6 Current examples of EO data applications 

Many applications of EO derived geospatial information exist across domains, including but not limited 

to the following; biosecurity, biodiversity, forestry, agriculture, soil moisture, catchment water balance, 

land atmosphere energy exchange, digital elevation models, minerals, mine site environmental 

management, urbanisation, infrastructure, commodity stockpiles, environmental pollution, water 

quantity and quality, seagrasses and coral reefs, shallow water bathymetry, coastal and ocean water 

productivity, algal blooms, sea state, currents, upwelling and down welling zones, atmospheric air 

quality, emergency management and mitigation, disaster risk management, environmental accounting 

(i.e. monitoring land cover changes). Many more applications will be developed as sensors become 

more sophisticated, and the EO data become more accessible (see section 2.8 on Analysis Ready Data 

(ARD). 
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Figure 8: Remote sensing basics: wavelengths and reflectance signatures  

Source: http://www.geog.ucsb.edu/~jeff/115a/remote_sensing/remotesensing.html 

2.7 CEOS and GEO: international EO organisations 

The GEO (Group on Earth Observations) and CEOS (Committee on Earth Observation Satellites) are 

two key players related to EO;these two global organisations work closely on various subjects linked 

to EO data, and CEOS is often called the “space” arm of GEO. The 2030 Agenda to implement and 

monitor the UN SDGs is a great opportunity to reflect the collaboration between the two entities, already 

working on a GEO initiative, called EO4SDGs, dedicated to the UN SDGs.  

The EO enabling space agencies (through CEOS) and GEO acknowledge they have yet to fully address 

the major barriers faced by potential users of EO derived information. The translation of the signal 

measured in space to a meaningful variable requires this signal to pass several pre-processing steps until 

a signal is calculated, from which (in the case of VIS, NIR or TIR) effects of sensor noise, the 

atmosphere, the sun angle, terrain angle, clouds and cloud shadows, canopy shadowing or in the case 

of water sun and sky glint reflectance are removed.  

CEOS was created in 1984, with an original function to coordinate and harmonise EO to make it easier 

for the user community to access and use data. CEOS initially focused on interoperability, common 

data formats, the inter-calibration of instruments, and common validation and inter-comparison of 

products. However, over time, the circumstances surrounding the collection and use of space-based EO 

have changed. Over the past three decades, CEOS has significantly contributed to the advancement of 

space-based Earth Observation community efforts. CEOS Agencies, (31 members) communicate, 

collaborate, and exchange information on EO activities, spurring useful partnerships such as the 

Integrated Global Observing Strategy (IGOS). A full list of CEOS members is available at 

http://ceos.org/about-ceos/agencies/.  

CEOS played an influential role in the establishment and ongoing development of GEO and the GEOSS 

(Global Earth Observation System of System). CEOS Agencies work together to launch multi-agency 

collaborative missions and such cooperative efforts has highly benefited users all around the world. 

CEOS also provides an established means of communicating with external organisations, enabling 

CEOS to understand and act upon these organisations’ EO needs and requirements. 

http://www.geog.ucsb.edu/~jeff/115a/remote_sensing/remotesensing.html
http://ceos.org/about-ceos/agencies/
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Established in 2005, GEO is a voluntary partnership of governments and organisations that envisions 

“a future wherein decisions and actions for the benefit of humankind are informed by coordinated, 

comprehensive and sustained Earth observations and information.”  

See https://www.earthobservations.org/vision.php 

GEO has created an initiative ( “EO4SDGs”, Earth Observations in Service of the 2030 Agenda for 

Sustainable Development), to organise and realise the potential of EO sources to advance the 2030 

Agenda and enable societal benefits through achievement of the SDGs.  EO4SDGS especially works to 

expand GEO’s current partnerships, enhance its strong relationship with the UN, and foster consolidated 

engagement of the individual Member countries and Participating Organisations. CEOS is highly 

supporting this GEO initiative, and has also created an ad hoc team on SDGs 

(http://ceos.org/ourwork/ad-hoc-teams/sustainable-development-goals/) to better coordinate CEOS 

Agencies’ activities around SDGs. 

GEO is working closely with key UN entities includes the UN Statistics Division, the United Nations 

Committee of Experts on Global Geospatial Information Management (UN GGIM), the UN Sustainable 

Development Solutions Network (UN SDSN). Additional potential partners include development 

banks, Non-governmental organisations (NGOs), and international entities. Engagement and 

partnerships with these entities help build processes, mechanisms and human capacity to include EO 

data in national development plans and integrate them with national statistical accounts to improve the 

measuring, monitoring and achievement of the SDGs. 

One of the actions of the EO4SDGs consists of Capacity Building and Engagement; support to countries 

in the implementation of all appropriate measures to properly address the 2030 Agenda. Drawing on 

capacity building activities within GEO, this action coordinates and fosters capacity building efforts at 

appropriate levels on effective ways to convey methods, enable data access, and sustain use of EO in 

the context of SDGs. Activities here draws on and support GEO efforts to characterise user needs.  

Given the basis of the SDGs in statistical data, this action includes engagement with the SDG statistical 

community about EO as well as capacity building within GEO and the EO community about SDG 

statistical principles and practices.  

GEO and CEOS will therefore be fully engaged in the process of implementing the UN SDGs, 

especially when showing where EO can be useful to monitor some key indicators or to help achieve the 

goals/targets.  

Some projects or initiatives are already crucial for EO monitoring and their continuity will help better 

connecting EO and official statistics worlds. For example, see 2.14.2 the example of GFOI (Global 

Forest Observations Initiative), a GEO initiative. 

It is recommended for the National Statistical Offices in countries that are members of GEO to establish 

a working relationship with their national space/meteorological/science agencies in this area of using 

EO data for official statistics. 

 

2.8 Introduction to EO based Analysis Ready Data (ARD) 

Many satellite data users, particularly those in developing countries, lack the expertise, infrastructure 

and internet bandwidth to efficiently and effectively access, prepare, process, and utilise the growing 

https://www.earthobservations.org/vision.php
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volume of raw space-based data for local, regional, and national decision-making2. Where such 

expertise does exist, data preparation is often limited to a small number of specialists, which limits the 

number of end-users of EO data and/or use a diversity of techniques making it difficult for observations 

and derived products to be appropriately compared. This results in often inconsistent and sometimes 

conflicting results. This is a major barrier to successful utilisation of space-based data, and the success 

of major global and regional initiatives that are supported by CEOS3 and GEO.  

Therefore, it is useful to introduce the concept of “Analysis Ready Data” (ARD). EO data needs to be 

corrected for many effects caused by the distance from the subject being measured and all the 

transmission effects as the signal passes from the earth’s surface and is measured in space. Some of 

these effects are due to the atmosphere, the solar angle, the viewing angle from the sensor to the target 

etc. Pre-processing the data to correct for these effects creates EO data as if the sensor is collecting data 

within a few meters of the surface.  

This pre-processing of EO data can be automated, thereby reducing the burden on the geospatial and 

information experts that are focused on extracting valuable information from this data. Moreover, if 

ARD is well defined and preferably peer reviewed, the user of the data can be confident they are 

working with data that has an acceptably high level of validity and accuracy. 

CEOS has begun to consider the following interim definition:   

“Analysis Ready Data (ARD)” are satellite data that have been processed to a minimum set of 

requirements and organized into a form that allows immediate value-adding and analysis without 

additional user effort”.  

Once raw data is processed to ARD it becomes more accessible and useful to properly harness the 

multiple technologies and initiatives behind ‘Big Data’, that allow real-time analysis and data mining 

to produce better science. Once the ARD state has been reached the algorithms and methods discussed 

previously can be applied and importantly are more likely to be comparable across different groups of 

users and sensor configurations. For NSOs to derive indicators for statistical purposes there is a 

requirement to bring the pre-processed EO data to a ‘Product’ stage where it has been classified into 

more meaningful variables such as a land cover classification. This still requires additional expertise 

which may be outside or inside an NSO. Refer to section 2.10 and Lewis et al, 2016 for more 

information on ARD. 

2.9 Variety of EO sources (in situ, airborne) 

To work with EO data, NSOs need to be aware of which sources can be used to monitor relevant 

variables for official statistics. Besides the most well-known MODIS and Landsat images, there are 

many sources of available satellite imagery data, free or commercial, from different EO satellites, 

collecting various measurements about the land and land cover, water and atmosphere.  MODIS and 

Landsat are the most used satellite data sources due to their early launch (providing relatively long-

term archives) and longevity, leading to a significant amount of peer reviewed publications, spatial 

resolution coupled with open and free data policies.  

However, the two MODIS satellites, originally intended as research instruments, will not be replaced 

by identical systems but by an intermediate current system called SUOMI-VIRRS to be followed up 

                                                           
2 NASA useful page to get information on how to use data: https://earthdata.nasa.gov/earth-observation-data/tools 

3 From CEOS Draft discussion paper on Analysis Ready Data (CEOS Systems Engineering Office 2016) 
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by the NPOESS sensors that combine meteorological and climate and land and ocean observations. 

The Landsat capacity for multispectral 30 m resolution data is no longer the highest spatial resolution 

freely available data and is no longer considered state-of-the-art in sensor development, although 

Landsat 8 is a significant improvement over the Landsat 5 and 7 satellites.  

Below is a guide to selecting the best spectral bands to use for Landsat 8.  

Band Wavelength Useful for mapping 

Band 1 – coastal 

aerosol 
0.43 - 0.45 Coastal and aerosol studies. 

Band 2 – blue 0.45 - 0.51 
Bathymetric mapping, distinguishing soil from vegetation 

and deciduous from coniferous vegetation. 

Band 3 - green 0.53 - 0.59 
Emphasises peak vegetation, which is useful for assessing 

plant vigour. Total suspended matter in water bodies. 

Band 4 - red 0.64 - 0.67 

Discriminates vegetation spectral slopes; also measures the 

primary photosynthetic pigment in plants (terrestrial and 

aquatic) : chlorophyll-a. 

Band 5 - Near Infrared 

(NIR) 
0.85-0.88 Emphasises biomass content and shorelines. 

Band 6 - Short-wave 

Infrared (SWIR) 1 
1.57 - 1.65 

Discriminates moisture content of soil and vegetation; 

penetrates thin clouds 

Band 7 - Short-wave 

Infrared (SWIR) 2 
2.11 - 2.29 

Improved moisture content of soil and vegetation and  thin 

cloud penetration 

Band 8 - Panchromatic 0.50 - 0.68 15 meter resolution, sharper image definition 

Band 9 – Cirrus 1.36 - 1.38 Improved detection of cirrus cloud contamination 

Band 10 – TIRS 1 10.60 – 11.19 
100 meter resolution, thermal mapping and estimated soil 

moisture 

Band 11 – TIRS 2 11.5 - 12.51 
100 meter resolution, Improved thermal mapping and 

estimated soil moisture 

Table 1: Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS)  

Source: http://landsat.usgs.gov/best_spectral_bands_to_use.php plus modifications by authors (Dekker, A., Held, A., and Kerblat, F.) 

The European Commission’s Copernicus Sentinel system of satellites (Sentinel types 1 through 6 now 

funded through to 2030, managed by the European Space Agency and EUMETSAT) are state of the art 

http://landsat.usgs.gov/best_spectral_bands_to_use.php
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operational systems with significantly enhanced capabilities. Take for example the Sentinel-2 satellite 

with 10 m pixels and (with the launch of Sentinel 2B from 2017 onwards) a repeat visit cycle of one 

image every five days. 

We are now in the early stages of a technology revolution; a global sensing revolution, in which ground-

based, aerial and space-based sensors, and new forms of data analytics, will enable entirely new 

approaches to the global administration of our planet. These new geospatial technologies can transform 

the accuracy, frequency, transparency and progress on assessing many of the indicators for the SDGs 

or other forms of official statistics at a significantly reduced cost per variable per square kilometre. 

NSOs and decision-makers will need to take into account this continuous technologic evolution, 

including a democratisation of EO satellite use. Going forward, it is recommended that NSOs increase 

training of their people in working with these data sources and permanently update these skills as 

technologies change. 

2.10 Use of ARD or EO sources for official statistics 

The advantage of EO data is its large spatial and temporal coverage, and its accessibility, reliability, 

and accuracy have improved dramatically. With EO satellite data, almost 100% of the earth surface is 

covered repeatedly, far more than could ever be achieved using field based or airborne technologies. 

A disadvantage of EO is that contrary to field based, or in-situ measurements, EO estimates are derived 

indirectly (although one could argue that all sensor technologies do this including the human eye, which 

is effectively a remote sensing system with 3 wavelengths, also called spectral bands). While results of 

EO for potential operational use in many areas look promising, in other areas EO has not yet succeeded 

in extracting all the required information gaps and opportunities for further development of many 

operational applications still exist. 

EO data, especially when used jointly with in-situ or model data, can make an essential contribution to 

resources management and development.  However, it is not always easy to generate a clear picture of 

the boundaries between complementarity and substitutability of these techniques. Herein lies the risk 

for the common practitioner and planner; it is easy to become overwhelmed by all these advances and 

promises, while also feeling constrained by the institutional inability to cope with the long time periods 

and significant budgetary resources required for in-situ measurements. To make sound decisions, 

practitioners need to be aware of both the potential value and limitations of applications of EO 

technology and products, through informed recommendations and the development of practical, result-

oriented tools. See Chapter 5 Figures 32 and 33 for more information. 

Collecting, using, analysing and storing Big Data is a challenge that can be at least partially addressed 

by using EO satellite sources due to their highly structured nature and being designed for their specific 

purpose. 

NSOs are currently using traditional data sources (surveys, collection of samples, etc.) which are still 

valid and useful, but EO data can help complete or obtain more accurate, frequent, spatially or 

temporally extrapolated, or temporally interpolated measurements. 

In 2015, the UN Global Working Group on Big Data conducted a survey enquiring about the strategic 

vision of NSOs and their practical experience with Big Data. It is interesting to see that among the 93 

countries which responded, the statistical offices considered “faster statistics”, “reduction of respondent 

burden” and “modernization of the statistical production process” to be the main benefits of using Big 

Data.  Two other reasons to use Big Data followed; “new products and services” and "cost reduction”. 
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Figure 9: Main benefits of Big Data for NSOs  

Source: Figure 5: Global survey analysed in the “Report of the Global Working Group on Big Data for Official Statistics” 

EO derived information is a growing opportunity to complement traditional sources (ground or socio-

economic data) when there is a lack of data. Using EO data products can make spatially or temporally 

denser data (globally), improve frequency or richness of data, and save money on traditional methods 

(surveys methods are highly time-consuming and expensive). EO data can be a game-changer for 

monitoring global initiatives (such as the current ones GFOI, GEOGLAM (GEO Global Agriculture 

Monitoring), etc.), and therefore would be useful methods to help monitor the UN SDGs by measuring 

and collecting some relevant indicators. If the stage of an automated EO processing system is achieved 

updates to official statistics could be done more frequently e.g. monthly. 

Despite the potential benefits of EO, it is not always the most appropriate source for producing official 

statistics. Below are some criteria for practitioners to consider when assessing whether EO data is fit 

for their purposes. A further cost benefit analysis process is outlined in Chapter 5.  

2.11 Validity and definitions 

For empirical, semi-empirical, OBIA, AI and machine learning approaches there are three major sources 

of uncertainty in satellite estimations: (i) retrieval errors, (ii) sampling errors, and (iii) inadequate 

ground reference observations. In the case of physics-based inversion models (iv) the parameterisation 

of the model can introduce uncertainties; however these methods deal better with the first three sources 

of uncertainty. A physics-based inversion model does not necessarily need ground observations for 

validation once it is parameterised in a representative manner of the variability of the target variables. 

This is a bonus in the case of needing to estimate variables in remote areas. Moreover, physics-based 

inversion methods can be easily transferred from one EO sensor to another without needing an entire 

new set of ground measurements. 

Additional sources of uncertainty originate in the need for model calibration, different spatial scales, 

and the need for bias correction of the estimated values prior to being used. An important challenge in 

the use of remote sensing based estimates is how to reconcile them with ground reference 

measurements, as both can be observations of a very different nature. Thus, observations from space 

need to be analysed, validated, and used in accordance with their limitations.  
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Sampling and measurement errors can result from the measurement of a variable in the wrong place 

(e.g. rainfall measured at the cloud base instead of at the ground surface) and from indirect estimations 

and biases in measurement sensors, entailing errors in the magnitude of the (e.g. precipitation) rate 

being measured. These errors will vary with the geographic and atmospheric setting. 

However, ground reference measurements also have errors in validity, representativeness, 

completeness, and in the case of laboratory analysis also contain errors of sample preparation, material 

extraction, storage, and measurement errors. Thus, both EO data and ground reference data are variables 

with errors. Essentially these are measurement error models that need to account for errors in the ground 

reference variables, often seen as the independent variables. Note that in the case of crop classification, 

these cannot be obtained directly from EO data but can be from ground reference data. Although there 

will be measurement errors, ground reference data do not require modelling to turn them into the 

variables of interest to agricultural statistics, thus avoiding modelling errors.  

A useful publication on validity of EO based information products (focusing on hydro meteorological 

variable estimation) can be found in: From Earth Observation for Water Resources Management: 

Current Use and Future Opportunities for the Water Sector  

(https://openknowledge.worldbank.org/bitstream/handle/10986/22952/9781464804755.pdf).  Here a 

short summary is given, with some additional information as pertaining to physics-based inversion 

models.  

Despite the uncertainties inherent to in-situ or ground reference measurements, it is believed the 

accuracy of an EO data product will rarely be as high as that of an equivalent field measurement at that 

location. Nevertheless, despite the generally lower site specific accuracy, EO products should still be 

considered an important alternative data source, as EO imagery can provide information with greater 

spatial extent, spatial density, and/or temporal frequency than can most field-based (point-based) 

observation networks. . Furthermore, EO derived information can be acquired much faster and are more 

cost effective than most traditional survey based methods. Once validated, the data can also be readily 

extrapolated across large regions and remote areas with high efficacy. It is for these reasons that a 

combination of EO and field (ground reference) data generally provides the best information outcomes. 

If it is possible to have a model ( e.g. deterministic) that sufficiently  describes the phenomenon of 

interest then model, EO and field data assimilation is the most powerful way to derive the required 

information. 

 2.12 When is EO considered as “valid”?  The fit-for-purpose argument 

The most useful definition in the case of trying to establish the validity of an EO based information 

product is the concept of it being fit for purpose. An EO scientist will, in general, try to achieve the 

highest level of precision, accuracy and validity.  For statisticians, in a geospatial analysis context, fit 

for purpose for EO derived information will focus around the question: is there an advantage with 

respect to existing non-EO based methods? Aspects which may be considered are timeliness, spatial 

and temporal coverage, assessing multiple variables from the same dataset, independence of 

respondents, avoiding political or other biases etc.  

Among NSOs, quality is generally accepted as "fitness for purpose". However, this implies an 

assessment of an output, with specific reference to its intended objectives or aims. Quality is therefore 

a multidimensional concept which not only includes the accuracy of statistics, but also other aspects 

such as relevance and interpretability. Over the last decade, considerable effort has been made to give 

a solid framework to these definitions in statistics.  

https://openknowledge.worldbank.org/bitstream/handle/10986/22952/9781464804755.pdf
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For instance, the ABS Data Quality Framework (DQF) 2009 is based on the Statistics Canada Quality 

Assurance Framework (2002) and the European Statistics Code of Practice (2005). Besides the 

“Institutional environment”, six dimensions have been specifically defined to help getting the best data 

quality; Relevance, Timeliness, Accuracy, Coherence, Interpretability, and Accessibility. The following 

table presents some thoughts on how these dimensions can be viewed from an EO perspective, and add 

two additional definitions from the EO discipline; integrity and utility.  

Table 2: Statisticians and EO scientists’ definitions: summary 

 ABS DQF or 

NSOs community 

Key aspects (How NSOs 

assess the dimension?) 

EO/remote sensing community 

Institutional 

environment 

 

“The institutional 

and 

organisational 

factors which 

may have a 

significant 

influence on the 

effectiveness and 

credibility of the 

agency producing 

the statistics”. 

• Impartiality and 

objectivity 

• Professional 

independence 

• Mandate for data 

collection 

• Adequacy of 

resources 

(sufficient to meet 

needs) 

• Quality 

commitment 

• Statistical 

confidentiality 

In principle EO data is impartial, objective and 

reproducible. The processing must be transparent 

and open to scrutiny. 

Space agencies or commercial aerospace 

companies provide the raw “Top of Atmosphere” 

data. These same agencies and others pre-process 

the data to an analysis ready format. Subsequently 

the ARD needs to be translated into a relevant 

variable either by or for the NSO.  

Criteria to look for: comprehensive information 

about the EO sensor specifications, its calibration 

(pre-flight, on-board and vicarious); does reliable 

peer reviewed literature exist? It is essential to have 

transparent algorithms and documentation, 

complete metadata and product documentation, 

open access products, or open access algorithms. 

The concept of ARD is important here as it solves 

one aspect of institutional capacity: If world-class 

experts pre-process the EO data to ARD EO Data 

Cubes the institutional capacity can focus on 

applying the right algorithm, parameterisation and 

validation. It is essential to have geospatial 

analytics capacity. 

Relevance “How well the 

statistical product 

or release meets 

the needs of users 

in terms of the 

concept(s) 

measured, and 

• Scope and 

average4 

• Reference period5 

• Geographic detail 

• Main outputs/data 

items 

Reference period =Record life, i.e.   EO mission 

life. Could be one satellite sensor or a suite of 

sensors such as Landsat (multiple sensors from 

1984 onwards). 

                                                           
4 Purpose or aim for collecting the information, including identification of the target population, discussion of whom the data represent, who 

is excluded and whether there are any impacts or biases caused by exclusion of particular people, areas or groups 

5 Period for which the data were collected, as well as whether there were any exceptions to the collection period 
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 ABS DQF or 

NSOs community 

Key aspects (How NSOs 

assess the dimension?) 

EO/remote sensing community 

the population(s) 

represented”. 

• Classification and 

statistical 

standards 

• Types of estimates 

available 

• Other sources6 

Geographical detail corresponds to the spatial 

resolution of the EO sensor which needs to be 

selected for the intended purpose. 

Temporal resolution is also important for EO 

applications and also varies with sensor. 

Main outputs/data items and types of estimates: see 

discussion in Chapter 3 on various methods and 

algorithms. 

Many EO classification methods exist but there is 

a need for standards that are widely followed (e.g. 

GFOI and GEOGLAM). Potentially NSOs could 

develop classification standards for this type of 

data. 

Types of estimates available will be enhanced by 

increases in: geographic coverage (global mapper, 

regional, on demand) and sensor resolution 

considerations; spatial, spectral, temporal, 

radiometric. 

Other sources: an issue to consider is whether 

there is no, minimal or adequate ground reference 

data available.  

A related concept in EO is integrity; biophysical 

and scientific integrity. This relates to the ability to 

relate and interpret EO derived metrics to 

biophysical processes. 

Timeliness “The delay 

between the 

reference period 

(to which the data 

pertain) and the 

date at which the 

data become 

available; and the 

delay between 

the advertised 

• Timing7 

• Frequency of 

survey 

With automated processing systems producing 1) 

ARD and 2) properly validated algorithms, a near- 

real time delivery becomes possible i.e. within a 

few days to a few hours of EO data reception. 

A related concept in EO is utility: this is a function 

of accuracy and timing. A high accuracy after the 

event has less utility than a much lower accuracy 

early on or before a specific biological period e.g. 

                                                           
6www.abs.gov.au/ausstats/abs@.nsf/Latestproducts/1520.0Main%20Features4May%202009?opendocument&tabname=Summary&prodno=

1520.0&issue=May%202009&num=&view= 

7 Time lag between the reference period and when the data actually become available (including the time lag between the advertised date for 

release and the actual date of release) 
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 ABS DQF or 

NSOs community 

Key aspects (How NSOs 

assess the dimension?) 

EO/remote sensing community 

date and the date 

at which the data 

become 

available”. 

sowing, flowering of crop or harvesting or e.g. in 

the case of coral reefs, a bleaching event. 

Accuracy “The degree to 

which the data 

correctly describe 

the phenomenon 

they were 

designed to 

measure”.  

“Should be 

assessed in terms 

of the major 

sources of errors 

that potentially 

cause 

inaccuracy”.  

 

• Coverage error 

• Sample error 

• Non-response 

error 

• Responses error 

• Other sources8 

For EO derived information products the validity 

has to be established first. Thus, it essential to 

establish a causal relationship between the EO 

measurement and the phenomenon. Empirical 

algorithms can run the risk of producing spurious 

results.  

EO data have a high spatial and temporal coverage 

but can have data gaps due to low repeat visits and 

/or inclement weather or other image conditions. 

For classification results (products with categorical 

variables, e.g., land use land cover, vegetation type, 

benthic type), the users, producers and overall 

accuracy need to be determined. Note that Kappa 

statistic is considered defunct.  

For products with continuous variables (e.g. 

fractional cover, chl-a concentration), there are 

numerous statistics used. Common statistics 

include RMSE and variants thereof, bias, R2, 

Pearson’s R. 

For RMSE and bias, the results can vary 

significantly based on which value is put first; EO 

or ground reference. R2 and R obfuscate how well 

the data match up (things can be highly linearly 

correlated and not fall along the one-to-one line). 

It is essential to assess EO products with 

independent data. Best practice is all accuracy 

assessment done with independent data. Note 

though, that ground reference measurements also 

contain uncertainties.  

Coherence “The internal 

consistency of a 

statistical 

collection, 

Changes to data items 

Comparison across data 

items 

EO data sets are internally very consistent as they 

are all based on measurements by the same 

instrument. However the processing from raw top 

of atmosphere data to ARD continuously 

                                                           
8http://www.abs.gov.au/ausstats/abs@.nsf/Latestproducts/1520.0Main%20Features6May%202009?opendocument&tabname=Summary&pr

odno=1520.0&issue=May%202009&num=&view= 
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 ABS DQF or 

NSOs community 

Key aspects (How NSOs 

assess the dimension?) 

EO/remote sensing community 

product or 

release, as well as 

its comparability 

with other 

sources of 

information, 

within a broad 

analytical 

framework and 

over time”. 

Comparison with previous 

releases 

Comparison with other 

products available 

improves. Similarly, the EO algorithms improve 

continuously. The increased use of EO data, 

ground reference data and model data improves 

validity and accuracy but may make comparison 

with previous version derived data more complex. 

The coherence issue also occurs when multiple 

sources of EO data are used. 

Interpretabilit

y 

“The availability 

of information to 

help provide 

insight into the 

data”.9 

Presentation of the 

information 

Availability of information 

regarding the data 

The interpretation of EO data derived information 

requires several skills in the EO processing domain 

as well as the geospatial analytics domain. EO data 

is often reduced to table and graphics destroying 

some of the interesting spatial and temporal 

contextual information.  Good documentation and 

record keeping is key. A guide on what the scope 

and limitations are of using EO data is required. 

 

Accessibility 

 

 

 

 

 

 

 

 

 

 

“The ease of 

access to data by 

users, including 

the ease with 

which the 

existence of 

information can 

be ascertained, as 

well as the 

suitability of the 

form or medium 

through which 

information can 

be accessed”. 

 

“The cost of the 

information may 

Accessibility to the public 

(extent to which the data 

are publicly available, or 

the level of access 

restrictions) 

Data products available10 

EO data products are typically very large and 

complex, which challenges accessibility. EO data 

products need to be accessible, meaning they need 

to be delivered in data formats that are 

standardised and easily openable by a variety of 

different software, especially open access 

software. It is also preferred that data products be 

open access (GEO). It is useful if the EO data is 

supplied according to open geospatial standards 

(OGS) and open source geospatial software and 

data (OSGeo) standards.  

 

Another standardisation is through the Geospatial 

Data Abstraction Library (GDAL) which is a 

computer software library for reading and writing 

raster and vector geospatial data formats. 

There is a joint standards working group of the 

OGC and the W3C that is developing an approach 

                                                           
9 Information to assist interpretation may include the variables used, the availability of metadata, including concepts, classifications, and 

measures of accuracy. 
10 specific products available (e.g., publications, spreadsheets), the formats of these products, their cost, and the available data items which 

they contain 
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 ABS DQF or 

NSOs community 

Key aspects (How NSOs 

assess the dimension?) 

EO/remote sensing community 

 also represent an 

aspect of 

accessibility for 

some users”. 

to publishing EO data as “linked data” for easy 

access, employing a model for Data Cubes that 

was originally developed by the statistical SDMX 

community. 

 

If ARD is adopted by all prior to the translation of 

this ARD data to a meaningful information 

product the interpretability will increase as a 

growing body of knowledge is more easily 

created. This will also lead to more standardised 

products. 

 

As EO use by NSOs is relatively new, pilot and demonstration studies that explore these definitions and 

refine the table above are recommended. Some pilot studies conducted by members of the UN Satellite 

Imagery and Geospatial Data Task Team are described in Chapter 4.  

In the following section, it will be shown the potential of using EO satellite data is much more than 

using only time series of MODIS or LANDSAT images. More sources are available, and examples will 

be presented about which sensors are most suited to get the best expected data quality 

2.13 Earth Observation data information sources available 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Operational weather satellites  

Source: CEOS EO Handbook: http://www.eohandbook.com/eohb2011/climate_satellites.html 
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A comprehensive list of EO satellites past, present and future exists on the online WMO Oscar database 

that contains 645 entries (per April 2016). https://www.wmo-sat.info/oscar/satellites 

Filters exist for sorting the data on: 

1. Acronym of earth observing sensor platform (that may contain multiple payloads: a single 

payload is the specific earth observing sensor),  

2. Launch date and end-of-life;  

3. Space agency programme name,  

4. List of orbital characteristics and  

5. Payload  

As an example, look at Sentinel-3 (an important sensor for the next 15 years for land and ocean visible 

and nearby infrared monitoring; as well as land and ocean surface temperature measurement and with 

a land and ocean altimeter).  

There are two Sentinel-3 A and B satellite platforms in the system; one was launched on 16th February 

2016 and one will be launched in 2017. After that Sentinel-3 C and D are already funded and will be 

similar replacing Sentinel-3 A and B. Sentinel E and F are also planned but will be amenable to 

enhanced sensor performance based on the results of the preceding 4 satellites. Sentinel-3 A and B both 

have an expected lifetime of 7 years. Expected lifetime can be exceeded 3 to 4 fold for some EO sensors-

space agencies are often cautious about this aspect. It flies in a sun-synchronous orbit, meaning it will 

pass exactly over the same strip of earth at the same solar time, at 814.5 km altitude. Its status is 

operational for Sentinel 3 A and Planned for Sentinel 3 B. The payload is composed of 7 sensors: 

DORIS, GPS, LRR, MWR, OLCI, SLSTR and SRAL. The first four sensors are mainly used for exact 

positioning and assessment of atmospheric conditions, whereas the last three are the actual earth 

observing sensors with an application to detecting and monitoring the earth; OLCI (Ocean Land Colour 

Imager), SLSTR (Sea and Land Surface Temperature Radiometer) and SLAR (Synthetic Aperture 

Radar Altimeter).  

On the WMO Oscar database, by selecting the EO sensor acronym one is transferred to the instrument 

page where a wealth of information on the sensor is presented.  Information is also presented on other 

satellites this instrument also flies on; its contribution to Space Capabilities and a very informative 

“Tentative Evaluation of Measurements” containing a list of measurements that can typically be 

retrieved from this type of instrument. For OLCI this table is as follows below11. 

Variable Relevance for 

measuring 

this Variable 

Operational 

Limitations 

Processing maturity 

Ocean Diffuse Attenuation 

Coefficient (DAC)  

1-primary  Clouds  Consolidated 

methodology  

                                                           
11 Source: https://wmo-sat.info/oscar/instruments/view/374: Tentative Evaluation of Measurements .The following list indicates which 

measurements can typically be retrieved from this category of instrument. To see a full Gap Analysis by Variable, click on the respective 

variable. Note: table can be sorted by clicking on the column headers. 

https://www.wmo-sat.info/oscar/satellites
https://www.wmo-sat.info/oscar/gapanalyses?view=111
https://www.wmo-sat.info/oscar/gapanalyses?view=111
https://wmo-sat.info/oscar/instruments/view/374
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Variable Relevance for 

measuring 

this Variable 

Operational 

Limitations 

Processing maturity 

Colour Dissolved Organic Matter 

(CDOM)  

1-primary  Clouds  Consolidated 

methodology  

Ocean chlorophyll concentration  1-primary  Clouds  Consolidated 

methodology  

Ocean suspended sediments 

concentration  

1-primary  Clouds  Consolidated 

methodology  

Normalised Difference 

Vegetation Index (NDVI)  

1-primary  Clouds  Consolidated 

methodology  

Oil spill cover  2-very high  Clouds  Consolidated 

methodology  

Cloud top height  3-high  Clouds  Consolidated 

methodology  

Short-wave cloud reflectance  3-high  No specific 

limitation  

Consolidated 

methodology  

Aerosol volcanic ash (Total 

column)  

3-high  Clouds  Consolidated 

methodology  

Sea-ice cover  3-high  Clouds  Consolidated 

methodology  

Aerosol Optical Depth  3-high  Clouds  Consolidated 

methodology  

Cloud optical depth  3-high  Cloud not too 

dense  

Consolidated 

methodology  

Fraction of Absorbed PAR 

(FAPAR)  

3-high  Clouds  

Land use 

Consolidated 

methodology  

Integrated Water Vapour (IWV)  3-high  Clouds  Consolidated 

methodology  

https://www.wmo-sat.info/oscar/gapanalyses?view=42
https://www.wmo-sat.info/oscar/gapanalyses?view=42
https://www.wmo-sat.info/oscar/gapanalyses?view=110
https://www.wmo-sat.info/oscar/gapanalyses?view=117
https://www.wmo-sat.info/oscar/gapanalyses?view=117
https://www.wmo-sat.info/oscar/gapanalyses?view=107
https://www.wmo-sat.info/oscar/gapanalyses?view=107
https://www.wmo-sat.info/oscar/gapanalyses?view=121
https://www.wmo-sat.info/oscar/gapanalyses?view=35
https://www.wmo-sat.info/oscar/gapanalyses?view=141
https://www.wmo-sat.info/oscar/gapanalyses?view=174
https://www.wmo-sat.info/oscar/gapanalyses?view=174
https://www.wmo-sat.info/oscar/gapanalyses?view=135
https://www.wmo-sat.info/oscar/gapanalyses?view=6
https://www.wmo-sat.info/oscar/gapanalyses?view=34
https://www.wmo-sat.info/oscar/gapanalyses?view=65
https://www.wmo-sat.info/oscar/gapanalyses?view=65
https://www.wmo-sat.info/oscar/gapanalyses?view=162
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Variable Relevance for 

measuring 

this Variable 

Operational 

Limitations 

Processing maturity 

Earth surface albedo  3-high  Clouds  Consolidated 

methodology  

Upward short-wave irradiance at 

TOA  

4-fair  No specific 

limitation  

Consolidated 

methodology  

Aerosol column burden  4-fair  Clouds  Consolidated 

methodology  

Photosynthetically Active 

Radiation (PAR)  

4-fair  Clouds  Consolidated 

methodology  

Cloud cover  4-fair  No specific 

limitation  

Consolidated 

methodology  

Aerosol type  4-fair  Clouds  Heavily dependent on 

external info  

Aerosol effective radius  4-fair  Clouds  Heavily model-

dependent  

Aerosol volcanic ash  4-fair  Clouds  Consolidated 

methodology  

Downward short-wave irradiance 

at Earth surface  

5-marginal  Total column only. 

Clouds  

Heavily dependent on 

external info  

Aerosol mass mixing ratio  5-marginal  Clouds  Consolidated 

methodology  

Figure 11: Tentative Evaluation of Measurements 

The following list indicates which measurements can typically be retrieved from this category of 

instrument. To see a full Gap Analysis by Variable, click on the respective variable. Note: the table can 

be sorted by clicking on the column headers. An interesting feature of this site is the gap analysis page: 

https://www.wmo-sat.info/oscar/gapanalyses  where if one selected e.g. “Land surface” it produces a 

menu of Land surface applications e.g. “soil type” which then produces a list of instruments, their 

relevance for measuring the requested variable (colour coded) and below that comprehensive list 

another list ordered in terms of relevance, processing maturity and operation imitations. 

Another satellite mission database can be found at CEOS website: 

http://database.eohandbook.com/database/missiontable.aspx 

https://www.wmo-sat.info/oscar/gapanalyses?view=54
https://www.wmo-sat.info/oscar/gapanalyses?view=167
https://www.wmo-sat.info/oscar/gapanalyses?view=167
https://www.wmo-sat.info/oscar/gapanalyses?view=2
https://www.wmo-sat.info/oscar/gapanalyses?view=126
https://www.wmo-sat.info/oscar/gapanalyses?view=126
https://www.wmo-sat.info/oscar/gapanalyses?view=27
https://www.wmo-sat.info/oscar/gapanalyses?view=9
https://www.wmo-sat.info/oscar/gapanalyses?view=3
https://www.wmo-sat.info/oscar/gapanalyses?view=173
https://www.wmo-sat.info/oscar/gapanalyses?view=50
https://www.wmo-sat.info/oscar/gapanalyses?view=50
https://www.wmo-sat.info/oscar/gapanalyses?view=5
https://www.wmo-sat.info/oscar/gapanalyses
http://database.eohandbook.com/database/missiontable.aspx
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It is organised slightly differently with the mission name being the initial field (equivalent to the earth 

observing sensor platform in the Oscar database). Next the responsible space agency or commercial 

operator, status, launch date, end of life data , then the applications, followed by the instruments that do 

the measurements for these applications and then the orbit details and the URL. 

An attractive feature of this database is the ability to search on keywords e.g. “applications” by going 

to the page of http://database.eohandbook.com/measurements/overview.aspx 

There is a quick informative overview of the measurements split into categories of atmosphere, land, 

ocean snow and ice and gravity and magnetic fields.  In each category on the right hand a small graph 

is visible with timelines and if selected will open a graph showing the full timelines of past, present and 

planned sensors allowing an estimation of the continuity of that particular data stream. By selecting e.g. 

under “Land” the category “vegetation” a new page opens with all the vegetation variables that can be 

measured.  

For example if Measurements > Land > Vegetation >Chlorophyll Fluorescence from Vegetation on 

Land is selected an earth observing instrument overview is presented with a concise summary of the 

intended applications and showing the planned instruments that are intended for carbon estimation by 

measuring solar induced chlorophyll fluorescence. 

The following is a list of several satellite imagery repositories where data can be downloaded for free. 

• USGS Earth Explorer;  

• ESA Sentinel Mission; 

• NOAA CLASS;  

• NASA Reverb;  

• Earth Observation Link(EOLi); 

• National Institute for Space Research (INPE), specific to South America and Africa; Bhuvan 

Indian Geo-Platform of ISRO; 

• JAXAs Global ALOS 3D World; 

• NOAA Data Access Viewer Discover Authoritative Datasets;  

• VITO Vision Coarse Vegetation Data; 

• NOAA Digital Coast Snorkel the Seashore; 

• Global Land Cover Facility Derived Satellite Data 

• DigitalGlobe Free Product Samples; 

• BlackBridge/Geo-Airbus Tag Team Champions of Satellite Imagery;  

• UNAVCO Research Data. 

The USGS Earth Explorer is one of the most famous and popular agencies for freely available Landsat 

data. Users are required to register in order to access the USGS data repository and this registration is 

free of charge. 

For detailed information on suitable EO sensors past, present and future for water resources see the 

open report written for World Bank12. It provides an overview of the issue areas related to water 

resources management, and discusses the data requirements for addressing these issues, focusing on 

                                                           
12 García, Luis E., Diego J. Rodríguez, Marcus Wijnen, and Inge Pakulski, eds. Earth Observation for Water Resources Management: 

Current Use and Future Opportunities for the Water Sector.Washington, DC: World Bank Group.doi:10.1596/978-1-4648-0475-5. License: 

Creative Commons Attribution CC BY 3.0 IGO 

http://database.eohandbook.com/measurements/overview.aspx
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those variables that can be obtained or estimated through EO. Besides the surface characteristics, such 

as topography, land subsidence, and others, Earth observation can address eight key hydro 

meteorological variables relevant to water resource management applications; precipitation, 

evapotranspiration, soil moisture, vegetation, land use, and land cover; groundwater, surface water, 

snow and ice, and water quality. 

 

 

 

2.14 Data product characteristics 

Types of Data Obtained from EO (example of Water management) 

Data type Description 

Raw data Sensor measurements as received directly from the satellite, formatted as 

“digital counts.” 

Processed data 

 

 

a) TOA (Top-of-atmosphere) signal. 

Raw data processed to TOA data: conversion to real-world units, such as 

radiance (W m-2 nm-1 sr-1) or reflectance (%); signal calibration. 

b) Surface signal. 

TOA data processed to surface-equivalent data: corrections applied to remove 

atmospheric and solar-sensor viewing-angle effects; scene stitching; 

geolocation and re-projection. 

Data products 

 

Conversion of processed data into products that describe real-world (usually 

biophysical) variables such as chlorophyll concentration, leaf area, rainfall 

rate, surface temperature, and soil moisture mass. 

Information 

products 

 

Conversion of data products into management-relevant information for 

decision support, for example, eutrophication state of a lake, flood risk of a 

river delta, and sustainable irrigation rates in an agriculture area. 

2.14.1 Key characteristics of data products 

Spatial Resolution (sensor-specific) 

The spatial resolution of EO data, sometimes called the spatial frequency or image resolution, refers to 

the pixel size of an image. The spatial resolution of data determines the precision with which the spatial 

variation of the observed phenomenon can be captured. A relatively large pixel size will capture less 

fine-scale spatial variation than a relatively small pixel size. Thus spatial resolution is defined as the 

size of the smallest individual component or dot (called a pixel) from which the image is constituted. 

For instance, if a satellite's resolution is stated as "5 meters," each pixel in the imagery has a size of 5 

meters by 5 meters.  
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The other aspect is the swath of a sensor; this is equivalent to the number of pixels across that track 

direction of the satellite. E.g. if an instrument has 1000 pixels of 5 m its swath width is 5 km. If a 

satellite sensor has 2000 pixels of 1 km then the swath width is 2000 km. A larger swath width is 

associated with a higher repeat coverage rate for one sensor on one satellite. By having multiple 

satellites the coverage rate increases with each sensor on each satellite.  

When a pixel straddles two (or more) distinct ground features (such as a water body and adjacent 

vegetation), the pixel captures a mixture of the signals from both features, and is sometimes referred 

to as a “mixel”. Mixels make image interpretation more difficult and, the larger the pixel size, the 

more mixels the data are likely to contain. Mixed pixels are further described in Chapter 3.   

Temporal frequency (sensor-specific) 

The temporal frequency of data (or the temporal resolution) refers to how often a sensor makes 

observations of a given location. In the case of polar-orbiting satellites, frequency is related to overpass 

frequency and is typically measured in days. With the current constellations for LEOs sub day capacity 

can be achieved in some cases.  The frequency of imagery by geostationary satellites is much higher, 

being measured in the order of minutes to hours as the sensor is stationary above a fixed location above 

the equator The distance of geostationary sensors to the earth (~ 36000 km) means the spatial resolution 

is low( currently between 05. And 2 km). Relatively high-frequency observations are better able to 

capture the dynamics in fast-changing processes than are relatively low-temporal frequency 

observations. 

For some applications, the time of observation can be important, either to ensure the observations occur 

at the same time each day, or because observations need to occur at specific times of the day. 

Record length (sensor-specific) 

The record length refers to how long the record of data is. This is typically a function of the period of 

operation of the satellite (or series of similar satellites), and so is determined by the mission launch and 

end dates. Often, however, satellite sensors acquire data long past their planned mission end dates (e.g. 

Landsat-5).  

Generally speaking, the longer the record length, the older the satellite and its associated technology. 

Thus, there is usually a trade-off between record length and other data attributes such as accuracy, 

spatial resolution, and/or number of spectral bands. On the other hand long lasting sensor systems and 

their data streams have often created a significant opportunity for developing operational information 

extraction methods, supported by relevant scientific and applied literature. 

Field or ground reference data requirement (product-specific) 

Some EO data products are generated solely from satellite observations, some from a combination of 

satellite and field-based observations. The latter have much higher input data requirements, and so are 

more dependent on the availability of suitable field data. Traditional survey data captured by NSOs may 

offer suitable field validation data in some cases. EO data generated from a combination of satellite and 

field based observations are also generally more complex to generate and can become limited to the 

specific locations and times the field data represent.  

• Low field-based data requirement products refer to data products that do not use field data, or 

use them only for initial parameterisation of algorithm or for algorithm output validation 

purposes;  
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• Medium field-based data requirement products refer to data products that need field data for 

calibration of the EO data, or use a moderate amount of field data in the derivation of the final 

EO product itself (such as when river gauge data are combined with satellite-derived flood 

extent data to estimate flood volumes);  

• High field-based data requirement products refer to data products that incorporate multiple 

sources of field data (e.g. most evapotranspiration (ET) and soil moisture data products), 

sometimes in complex data assimilation systems. 

 

 

Data product source reliability (product-specific) 

Data product reliability refers to the certainty of supply of that product across space and through time. 

The greater the spatial coverage, the more frequently the product is updated; the greater the number of 

options for sourcing the product, the higher the reliability of the product. 

• Low reliability describes a product that is tailor-made for a specific time, region, or application, 

or is generated by only one organisation;  

• Medium reliability describes a product that typically has wide (global) coverage and is 

frequently updated but is provided by just one source organisation;  

• High reliability describes a product with global coverage that is frequently updated and can be 

sourced from multiple, independent organisations. 

Data product accuracy (product-specific) 

The accuracy of data products is an estimation of the uncertainty associated with the data estimates. 

Accuracy can be described in absolute terms (that is, in physical units such as mm/y) or in relative terms 

(usually as a percentage). So, for example, if an estimate of evaporation of 200 mm/y has an error of 10 

percent (and thus an accuracy of 90 percent), the real value is likely to be between 180 and 220 mm/y 

but may be lower than  180 or higher than 220 mm/y. 

Please note: rarely will the accuracy of an EO data product be as high as that of an equivalent field 

measurement at that precise location (although this has not been systematically analysed often enough).  

Although when extrapolating field measurement results through time and space EO observations are 

likely to become more accurate overall. 

The field of quality assurance for EO is in rapid development and standards are being developed. We 

refer to the GEO activity on “A Quality Assurance Framework for Earth Observation: Principles” 

(http://wiki.esipfed.org/index.php/Data_Understanding_-_Quality_(ISO-19157)  as well as ISO 

19157:2013 - Geographic information -- Data quality for detailed information.  

 

In Yang et al (2013) a relevant summary is presented on data quality in earth observation. Fig (below) 

describes essential aspects of EO data quality assessment 

 

https://www.iso.org/standard/32575.html
https://www.iso.org/standard/32575.html
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Figure 12 

The Yang paper addresses the following quality aspects known from ISO standards, which might be 

characterised as producer data quality elements because they are known by the data producer: 

 

• completeness: presence and absence of features, their attributes and relationships; 

• logical consistency: degree of adherence to logical rules of data structure, attribution and 

• relationships; 

• positional accuracy: accuracy of the position of features; 

• temporal accuracy: accuracy of the temporal attributes and temporal relationships of features; 

• thematic accuracy: accuracy of quantitative attributes and the correctness of non-quantitative 

• attributes and of the classifications of features and their relationships; and 

• lineage: information about the provenance of the dataset, including details of processing 

applied. 

 

In addition, Yang et al add that good quality metadata records are essential too. An interesting aspect is 

that end users also desire  ‘soft’ knowledge about data quality—i.e. data providers’ comments on the 

overall quality of a dataset, any data errors, potential data use and any other information that can help 

to assess fitness-for-use of the data. Finally importance was given to dataset provenance as well as 

citation and licensing information when assessing whether data are fit for purpose. 

 

Despite their generally lower accuracy, EO products are an important data source as EO imagery can 

provide information with greater spatial extent, spatial density, and/or temporal frequency than can most 

field-based (point-based) observation networks. It is for this reason a combination of EO and field data 

generally provides the best information outcomes. If it is possible to have a model ( e.g. deterministic) 

that sufficiently  describes the phenomenon of interest then model, EO and field data assimilation is the 

most powerful way to derive the required information. 

 

 

 



 39 

Data product maturity (product-specific) 

Product maturity refers to how established a data product is; it can be gauged by the level of validation, 

acceptance, and adoption of that data product. A mature product is generally founded on well-

established science. Data product maturity is evidenced by a body of peer reviewed literature as well as 

relevant technical reports and applications publications. 

• Low maturity indicates that the product is still in an experimental stage.  

• Medium maturity indicates that the product is developmental in the sense that, while the 

underlying science is mature, the product’s conversion to being operational is still in progress. 

• High maturity refers to a proven, widely tested and adopted, operational product. 

Data product complexity (product-specific) 

Data product complexity describes the level of complication involved in the process of converting the 

EO-processed data into the data product. Complexity is a function of, among other things, the number 

of methodological steps involved, the number and type of input data sources, the level of mathematics 

involved, the volumes of data to be processed, and/or the required technical expertise. 

• Low complexity: no function or very simple function for converting processed satellite data 

into the data product, requiring basic technical expertise;  

• Medium complexity: moderately complex method;  

• High complexity: highly complex method for generating the data product, requiring advanced 

technical and/or computational expertise. 

2.14.2 Necessity to define “core data streams”: example of GFOI, a GEO initiative 

The Global Forest Observation Initiative (GFOI) (http://www.gfoi.org), was founded under GEO, and 

is currently led by the Governments of Australia, Norway and the USA as well as the Food and 

Agriculture Organization of the United Nations (FAO) and CEOS. It is supported by an extensive 

community of international experts and stakeholders, including from the United Nations Framework 

Convention on Climate Change (UNFCCC) Secretariat, the greenhouse gas inventory programme of 

the Intergovernmental Panel on Climate Change (IPCC), the World Bank Forest Carbon Partnership 

Facility, Global Observation of Forest and Land Cover Dynamics (GOFC-GOLD), universities, other 

specialist international organisations and experts, and of course REDD+ countries. 

For such global initiatives which need frequent, regular and global coverage, a baseline data strategy 

acquisition involves coordination of core satellite data streams that satisfy key criteria consistent with 

the principles for implementation of the initiative: 

• core  data  streams  provide  data,  at 30 m resolution  or  finer,  free-of-charge and openly  

shareable for  GFOI  purposes,  consistent  with  being  available  in  support of any country’s 

information requirements; 

• core  data  stream  systems  have  a  sustained  and  long-term  capacity  in  coverage,  processing 

and distribution which is consistent with the large (global) scale data requirements of the GFOI. 

Several years of discussions within CEOS have resulted in consensus on a working list of CEOS agency 

satellite missions that represent the GFOI Core Data Streams - based on available information regarding 

known or expected data policies and mission capacities. These include: 

Optical, NIR and TIR systems that required clear skies; 

http://www.gfoi.org/
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• Landsat-7 and - 8 (optical) – USGS /NASA; 

• Sentinel-2 series (optical) – ESA/EU; 

• CBERS-3 and -4 (optical) – INPE (Instituto Nacional de Pesquisas Espaciais, the Brazilian 

National Institute for Space Research)/CRESDA (Center for Resource Satellite Data and 

Applications, China); 

Synthetic Aperture Radar missions that have cloud, fog, mist and haze penetrating capabilities; 

• RADARSAT Constellation Mission (C-band SAR) – CSA 

• Sentinel-1 series (C-band SAR) – ESA/EU (European Union); 

Other CEOS agencies’ related missions, such as optical high-resolution missions, (e.g.RapidEye and 

the SPOT series), and radar missions (e.g. ALOS-2, Radarsat-2, TerraSAR-X and TanDEM-X) can 

supplement the core missions for persistently cloudy areas in addition to supporting validation and 

technical studies. 
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Figure 13: GFOI Initiative: sub-30 Core Satellite Data for Continuous, Annual, Global Coverage 
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2.14.3 Examples of how to choose sensors data to measure specific variables (water and land 

cover areas) 

Table of existing EO data sources - most “suitable” according to EO scientists  

This table shows the ability of each sensor to monitor and detect surface water in floods. 

We use different symbols/colours to shows various levels of ability:  

 Highly suitable ❖ Suitable  Potential  Not suitable 

Table 3: ARCHIVAL SOURCES 

 

 

 

 

 

Sensor 

functional type 

Mission 

instruments 

Mission 

names 

(short) 

Spatial 

Resolution 

(m) 

Frequency 

(d) 

Accessibility Cost 

effectiveness 

Surface 

water in 

floods 

OPTICAL TM Landsat  5 30 16 Open ? ❖ 

 MSS Landsat 

1-3 

80 18 Open ? ❖ 

 AVHRR/2 NOAA 7-

14 

1100 1 Open ?  

 MODIS Terra 250 16 Open ? ❖ 

ACTIVE 

MICROWAVE 

SAR 

(RADARS

AT-1) 

RADARS

AT-1 

25 24 Constrained ? ❖ 

 PALSAR ALOS 7-44 14 Constrained ? ❖ 

 ASAR 

(stripmap) 

Envisat 30  Constrained ? ❖ 

 ASAR 

(wide  

swat) 

Envisat 150  Open ?  

 AMI-SAR ERS-1 30 35 Constrained ? ❖ 

 AMI-SAR ERS-2 30 35 Constrained ? ❖ 

RADAR 

ALTIMETRY 

NRA TOPEX-

Poseidon 

 10 Open ?  

 GFO-RA GFO  17 Open ?  

 Poseidon-2 JASON-1  10 Open ?  
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Table 4: CURRENT SOURCES 

Sensor 

functional 

type 

Mission 

instruments 

Mission 

names 

(short) 

Spatial 

Resolution 

(m) 

Frequency 

(d) 
Accessibility 

Cost 

effectiveness 

Surface 

water in 

floods 

OPTICAL OSA IKONOS 3.3  Constrained ? ❖ 

 GIS GeoEye 1.6  Constrained ? ❖ 

 MSI RapidEye 6.5 1 Constrained ?  

 
Worldview 

2 and 3 

Worldvie

w 2 and 3 
2/1.3 2 Constrained ?  

 MSI Sentinel-2 10/20/60 5 Open ?  

 ASTER Terra 15 16 Open ? ❖ 

 OLI Landsat-8 30 16 Open ? ❖ 

 ETM+ Landsat-7 30 16 Open ? ❖ 

 MODIS Aqua 250 16 Open ?  

 MODIS Terra 250 16 Open ? ❖ 

 AVHRR/3 
NOAA-

18 
1100 1 Open ? ❖ 

 AVHRR/3 
NOAA-

19 
1100 1 Open ?  

 
VEGETAT

ION 
SPOT-5 1150 26 ? ?  

 VIIRS 
Suomi 

NPP 
1600 16 Open ?  

 OLCI 
Sentinel-3 

A+B 
300 1 Open ? ? 
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Which sensors to use to measure Vegetation and Land Cover metrics (NDVI, Albedo, fPAR and LAI) 

Note: NDVI (Normalised Difference Vegetation Index)/ fPAR (fraction of PAR)/ PAR is photosynthetically Active radiation/Leaf Area Index (LAI). 

 

Data 

Currency 

Sensor 

Functional 

Type 

Mission 

Instruments 

Mission 

Name 

(Short) 

Spatial 

Resolution 

(m) 

Revisit 

Period 

(days) 

Accessibility 
Launch 

Date 

End 

Date 
NDVI Albedo fPAR LAI 

A
rc

h
iv

al
 

Optical TM Landsat 5 30 16 Open Jul-82 Jun-13     

 
MSS Landsat 1-

3 

80 18 Open Jul-72 Sep-83 ❖ ❖ ❖ ❖ 

 
AVHRR/2 NOAA 7-

14 

1100 1 Open Jun-81 
 

 ❖   

C
u
rr

en
t 

Active 

microwave 

X-Band SAR TanDEM-

X 

16 11 Open Jun-10 
 

❖  ❖  

 
X-Band SAR TerraSAR-

X 

16 11 Open Jun-07 
 

❖  ❖  

 
S-Band SAR HJ-1C 20 31 Open Nov-12 

 
❖  ❖  

 
SAR 

(RADARSAT

-2) 

RADARS

AT-2 

25 24 Constrained Dec-07 
 

❖  ❖  

Optical MSI RapidEye 6.5 1 Constrained Aug-08 
 

❖ ❖ ❖ ❖ 
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Data 

Currency 

Sensor 

Functional 

Type 

Mission 

Instruments 

Mission 

Name 

(Short) 

Spatial 

Resolution 

(m) 

Revisit 

Period 

(days) 

Accessibility 
Launch 

Date 

End 

Date 
NDVI Albedo fPAR LAI 

 MSI Sentinel-2 10/20/60 5 Open Jun-15  ❖ ❖ ❖ ❖ 

 
ASTER Terra 15 16 Open Dec-99 

 
    

 
OLI Landsat-8 30 16 Open Feb-13 

 
   ❖ 

 
ETM+ Landsat 7 30 16 Open Apr-99 

 
   ❖ 

 
Hyperion NMP EO-1 30 16 Open Nov-00 Oct-14     

 
AWiFS RESOUR

CESAT-2 

55 26 Open Apr-11 
 

    

 
LISS-III 

(Resourcesat) 

RESOUR

CESAT-2 

55 26 Open Apr-11 
 

  ❖ ❖ 

 
MISR Terra 250 16 Open Dec-99 

 
❖ ❖ ❖ ❖ 

 
MODIS Aqua 250 16 Open May-02 

 
    

 
MODIS Terra 250 16 Open Dec-99 

 
    

 
AVHRR/3 NOAA-18 1100 1 Open May-05 

 
 ❖   

 
AVHRR/3 NOAA-19 1100 1 Open Feb-09 

 
 ❖   

 
VEGETATI

ON 

SPOT-5 1150 26 ? May-02 Dec-

14 

 ❖  ❖ 
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Data 

Currency 

Sensor 

Functional 

Type 

Mission 

Instruments 

Mission 

Name 

(Short) 

Spatial 

Resolution 

(m) 

Revisit 

Period 

(days) 

Accessibility 
Launch 

Date 

End 

Date 
NDVI Albedo fPAR LAI 

 
VIIRS Suomi 

NPP 

1600 16 Open Oct-11 
 

    

F
u
tu

re
 

Active 

microwave 

SAR (RCM) RADARS

AT C-1 

50 12 Constrained 2018 
 

❖  ❖  

 
SAR (RCM) RADARS

AT C-2 

50 12 Constrained 2018 
 

❖  ❖  

 
SAR (RCM) RADARS

AT C-3 

50 12 Constrained 2018 
 

❖  ❖  

Optical LISS-III 

(Resourcesat) 

RESOUR

CESAT-

2A 

5.8 26 Open 2015 
 

  ❖ ❖ 

 
MSI 

(Sentinel-2) 

Sentinel-2 

A 

10 10 Open 2015 
 

 ❖  ❖ 

 
MSI 

(Sentinel-2) 

Sentinel-2 

B 

10 10 Open 2016 
 

 ❖  ❖ 

 
MSI 

(Sentinel-2) 

Sentinel-2 

C 

10 10 Open 2020 
 

 ❖  ❖ 

 
LISS-IV RESOUR

CESAT-

2A 

23.5 26 Open 2015 
 

  ❖ ❖ 
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Data 

Currency 

Sensor 

Functional 

Type 

Mission 

Instruments 

Mission 

Name 

(Short) 

Spatial 

Resolution 

(m) 

Revisit 

Period 

(days) 

Accessibility 
Launch 

Date 

End 

Date 
NDVI Albedo fPAR LAI 

 
HISUI ALOS-3 30 60 ? 2016 

 
    

 
AWiFS RESOUR

CESAT-

2A 

55 26 Open 2015 
 

    

 
OLCI Sentinel-3 

A 

300 27 Open 2015/16 
 

 ❖ ❖ ❖ 

 
OLCI Sentinel-3 

B 

300 27 Open 2017 
 

 ❖ ❖ ❖ 

 
OLCI Sentinel-3 

C 

300 27 Open 2020 
 

 ❖ ❖ ❖ 

 
VIIRS JPSS-1 1600 16 Open 2017 

 
    

Source: Information derived from the Committee on Earth Observation Satellites (CEOS) Earth Observation Handbook (http://www.eohandbook.com/) and WMO Observing Systems Capability Analysis and Review 

Tool (http://www.wmo-sat.info/oscar/). 

 

http://www.eohandbook.com/
http://www.wmo-sat.info/oscar/
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2.15 Public and private sensors/satellites 

There are three types of providers of satellite data; the national and multinational space agencies, most 

of which are part of CEOS, commercial private industry providers and some private providers that are 

linked to national space agencies such as ISRO for India and its affiliated company Antrix.  

In tables 3 and 4 “open” and “constrained” satellite data sources are mentioned. Most open sources are 

from the national and multinational space agencies and most constrained sources are the commercial 

providers. The reason they are called constrained is because the End User License Agreement is usually 

quite restrictive for sharing the raw data. Many of the commercial satellite data providers focus on very 

high spatial resolution for defence, precision agriculture and precision mapping (e.g. cadastral) 

purposes.  

Most EO sources used to monitor ecosystem variables or renewable and non-renewable resources are 

from the space agencies with an open data policy as that reduces or annuls the cost of data acquisition. 

However, high value commodity monitoring does use the commercially available very high spatial 

resolution data.   

Although in the past much of the R&D was carried out by space agencies or large technological 

institutes and academia, the last few years have seen an augmentation of applied research by 

organisations such as GEO, NGOs, international development banks and the private sector. Thus, it is 

crucial to adopt a pragmatic approach while entering the Big Data era, and work with all sectors. More 

companies are getting involved in launching their own satellites or using satellite data products, and 

some are taking the lead in some areas. 

Even if governments used to rely only on their national satellites and sensors, they now understand the 

urgent need to talk and work with private companies as they can offer satellite data services or products 

which might be useful to manage Big Data and offer solutions. This section provides some examples 

of private EO data sources; however this is by no means an exhaustive list.  

There are an increasing number of companies that are investing in both satellites and the resulting data, 

although there is also a wave of consolidation occurring with companies merging. At the same time 

technology accelerators such as nanosats, cubesats, microsats etc. are evolving rapidly and augmenting 

the space agencies and companies that have been launching and operating large systems with long 

lifetimes.  Thus, there is now a scale of operation of building and launching satellites of 100s to 1000 

kilograms with long lifespans and very accurate measurements to smallsats or cubesats that weigh one 

to a few kilograms but have limited lifespans.  

This chapter provides information on available web based resources for the plethora of satellites 

available and some guidelines on how to select the right satellite for the job at hand. The CEOS and 

OSCAR databases focus more on the public sector systems. 

Some of the private companies that provide highly relevant services are presented here but only as a 

snapshot and without the intent of being complete. Some larger companies with a track record of 

providing high spatial resolution and/or globally relevant data sets are: 

• Digital Globe (https://www.digitalglobe.com/) 

• AIRBUS Industries (http://www.satimagingcorp.com/satellite-sensors/other-satellite-sensors) 

• Planet (https://www.planet.com/) 

• Google Terra Bella (https://terrabella.google.com) 

https://www.digitalglobe.com/
http://www.satimagingcorp.com/satellite-sensors/other-satellite-sensors
https://www.planet.com/
https://terrabella.google.com/
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 Many smaller dedicated companies exist that may have their own satellites such as the hybrid of space 

agency and industry; the Chinese-Brazilian Earth Resources Satellite Program (CBERS) and the 

collaboration between ISRO and ANTRIX in India. As a trend, increasingly space agencies are creating 

joint venture type activities with private companies. 

Open data policies are welcomed when it comes to public entities. Private satellite data providers are 

generally not adopting the same policy because they can profit from selling such data. However, things 

might change in that sector. In September 2015Will Marshall, CEO of Planet, announced  the company 

would open the access (under CC BY SA 4.0 open licence) to some high resolution satellite data 

acquired by its constellation of microsatellites. Marshall made the announcement at the UN Assembly, 

talking about how the data would contribute to the UN SDGs. In other words, their data can be used for 

free, but whatever is produced using it must be made open in the same way (and this applies to value-

added products as well)13. 

DigitalGlobe is a US leading global provider of commercial high‑resolution Earth imagery products 

and services. It has activated FirstLook, the subscription service that provides emergency management 

and humanitarian workers with fast, web-based access to pre and post event images of the impacted 

area.  DigitalGlobe provides images to help humanitarian crisis through Tomnod, another project that 

uses crowdsourcing to identify objects and places in satellite images. 

Therefore these companies acknowledge that while satellite imagery on its own is useful, greater benefit 

comes from extracting meaningful information that can be used by first responder and recovery 

agencies. 

Another type of approach is by companies that have no space assets at all but harvest, harness and 

display EO data from the actual providers such as Google Earth Engine, Amazon Web Services, 

Facebook etc.  Facebook's Internet.org project (population map) is an example that aims to beam 

internet access to areas of the world that lack broadband access via drones and satellites. This internet 

access can then be used access processed EO data providing geospatial information. 

2.16 Future sensors and data architectures 

The WMO OSCAR and CEOS EO sensors databases also include a comprehensive inventory of future 

EO sensors.  

In general EO sensors are becoming more sophisticated due to technological developments in the actual 

sensors on the satellite platforms, the platforms themselves, the electronics, on board compression and 

downlink rates to ground stations etc. These developments also lead to miniaturisation. Miniaturisation 

leads to either enhanced capabilities in equal sized satellites (typically 500 to 1000 kg) or smaller 

satellites right down to nano satellites or cubesats weighing only a few kilograms.  

Another development in LEO sensors is the race between publicly funded and publicly available EO 

data streams, and the commercial EO satellite sensors. In general, the coarser resolution sensors (pixel 

size above 20 m) has been made available for free by most space agencies, and higher resolution data 

has been provided at commercial rates. However, a gradual shift in publicly available spatial, temporal 

and spectral resolution is going on: e.g. until the advent of Sentinel-2 in 2015 with freely available 10 

m spatial resolution, Landsat with its 30 m pixels was the highest resolution free data. Thus commercial 

operators now need to provide sub-10 m data to be competitive. The currently highest spatial resolution 

                                                           
13 http://www.eurisy.org/article-free-and-open-satellite-data-private-companies-join-in-the-game_18#sthash.0VQ20Ubf.dpuf 
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on offer from a commercial company is the WorldView-3 0.4 m panchromatic and the 1.3 m 

multispectral and SWIR data. 

Temporal resolution and area coverage are other areas of competition. Providing imagery on a ‘wall-

to-wall” basis,  Landsat overpasses once every 16 days whereas Sentinel-2 (once both satellites 2A and 

2B are launched) will provide imagery approximately once every 5 days world-wide. Spectral 

resolution is also increasing, which will culminate in a shift from multispectral sensors (with typically 

4 to 13 spectral bands) to imaging spectrometers (with 100s of spectral bands). Commercial operators 

are providing increased temporal resolution by either having their EO sensors be pointable in all 

directions in space, or by launching “swarms” of sensors such as the RapidEye constellation and 

increasingly cubesat and nanosat constellations such as the SkySat constellation of 7 high resolution 

satellites  complementary to Planet’s existing medium resolution 60-satellite fleet. The former 

enable regular, rapidly updated snapshots of select areas of the globe at sub-meter resolution; the 

latter regular, global coverage at 3-5 meter resolution. 

Geostationary sensors, which were exclusively the domain of meteorological coarse scale 

measurements, are now providing higher spatial resolution imagery with more spectral bands, 

especially adding bands in the blue and green wavelengths, making them much more useful for non-

meteorological use. The thermal bands are also becoming finer in resolution. The most recent type of 

advanced GEO sensor is the Himawari-8, satellite from Japan which is positioned over Indonesia at 

36000 km. It views half of the globe every 10 minutes, with spatial resolution of 500 to 2000 m pixels. 

Several more Himawari type sensors (known as the GOES-R series, with a first launch for the Americas 

accomplished late 2016) will be placed in geostationary orbits to cover the Americas and Africa and 

Europe. There is fast progress in developing non-meteorological use of this advanced type of 

geostationary EO data. 

The potential new data architectures are also critical for the future of EO and the benefits of the use of 

data. EO programmes of space agencies are facing a number of trends which are driving the need for 

change in the ways in which data are processed, analysed and distributed. As the change is becoming 

crucial, the CEOS Chair (CSIRO) for 2016 has proposed to study the issues around next-generation EO 

data system architectures (CEOS Future Data Architectures (FDA) ad-hoc team), and the opportunities 

offered by approaches such as the Data Cube (see2.17) and commercial cloud storage and processing 

solutions. The ad-hoc team looked at the relevant current initiatives undertaken by CEOS; lessons 

learned from early prototypes, identified the key challenges and expressed some recommendations.  An 

interim report is now available on CEOS website14. A more comprehensive report will be delivered in 

2017. 

Maximising the value of EO is actually a fundamental driver for space agencies. In recent years there 

has been a steady trend across space agencies toward a greater integration of diverse EO data for various 

applications in land, water, climate issues. The increased integration produced a more diverse range of 

applications, which leads to complexity in the value chain when observations are combined with 

analytics to meet multiple user requirements.  

Another key message for NSOs is that, in addition to free and open data, space agencies realise how 

desirable it becomes now to get free and open access to analysis software and tools that facilitate the 

                                                           
14 CEOS Future Data Access and Analysis Architectures Study - Interim Report (October 2016): http://ceos.org/meetings/30th-ceos-

plenary/ and more precisely here: http://ceos.org/document_management/Meetings/Plenary/30/Documents/5.2_Future-Data-Architectures-

Interim-Report_v.1.pdf 

https://www.youtube.com/watch?v=UL1aAwGW7VQ&feature=youtu.be
https://www.planet.com/pulse/firehose/
http://ceos.org/meetings/30th-ceos-plenary/
http://ceos.org/meetings/30th-ceos-plenary/
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use of EO data. The CEOS Data Cube initiative, based on the Australian Geoscience Data Cube 

(AGDC), see section 2.17) is an example of that trend. The project relies on open source software for 

the creation of data cubes (ingesting satellite data) and the interaction with data cubes (application 

programming interfaces= APIs). Open source software would undoubtedly stimulate application 

innovation and the increased use of satellite data since these advanced technologies can be utilised 

globally and even by developing countries that are not traditional users of satellite data, 

This FDA report stressed that CEOS agencies will need to continue working on that issue given its 

stakes. “Future work should help users benefit from all relevant CEOS data at all stages – 

complementing past efforts which have emphasised unity of ‘discovery’, without fully addressing the 

significant challenges in the analysis and exploitation of disparate or incompatible data after discovery.” 

 

Figure 14: Future Global Data Flow Options for National Forest Monitoring Systems 

2.17 Example: Data Cube initiatives  

Australian Geoscience Data Cube 

The Australian Geoscience Data Cube (AGDC) is a new collaborative approach for storing, 

organising and analysing the vast quantities of satellite imagery and other Earth Observations, making 

it quicker and easier to provide information on issues that can affect all Australians. The AGDC is 

developed and maintained by a partnership between Geoscience Australia, the Commonwealth 

Scientific and Industrial Research Organisation (CSIRO), and National Computational Infrastructure 

(NCI). 

The AGDC makes standardised and calibrated satellite data available in structures on a range of 

processing platforms which can be either local, remote or cloud based. The AGDC software is also 

optimised for use by High Performance Computing facilities, such as the ‘Raijin’ facility at the National 

Computational Infrastructure in Australia. The AGDC is composed of a series of data structures and 
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tools which facilitate the efficient analysis of very large standardised and calibrated gridded data 

collections, like satellite data, for multiple purposes (Figure 15). This enables a user to easily apply the 

full potential of satellite data to real-world challenges like agricultural productivity and monitoring of 

industrial impact on the landscape.   

 

 Figure 15: The Data Cube provides a common analytical framework to allow multiple data sources 

(on the left) to produce information for multiple uses (on the right) 

Standardisation and calibration increases the value which can be derived from EO, and other sources of 

large gridded datasets.  It allows for the rapid development of information products to enable informed 

decision making across government and industry.   

This standardisation and calibration is important for another reason.  It means that products created by 

different users to address different problems can be integrated. This ability to integrate information will 

be critical to solving big national challenges.  For example, efforts to improve agricultural productivity 

are more effective if soil moisture information can be integrated with information on crop health and 

on forecast precipitation. 

Proving the concept 

The AGDC has been used to complete analyses that were previously impractical. For example, a 

recently completed study mapped observations of surface water across all of Australia for the period 

1998 to 2012 at a nominal 25 metre resolution.  This analysis would have taken 4-8 years under a 

traditional model, but can now be produced in less than 4 hours using the AGDC.   This product is now 

an information source for the National Flood Risk Information Portal (Figure 16) helping communities 

understand, and plan for, potential future flooding. 

The section of land in Figure 15 shows the channel country adjacent to the Simpson Desert with 

infrequently observed water in red through to permanent water bodies in blue. 
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Figure 16: Water Observations from Space (WOfS) mapped surface water observations for all of 

Australia at 25 metre resolution using data from 1998 to 2012.  

Key characteristics 

The use of standardised and calibrated data is a key characteristic of the AGDC. In the past the 

calibration of EO data has been performed on a per-application basis for subsets of data.  This can be 

inefficient and results in large overheads. By calibrating all data to the same standard it becomes 

immediately usable by many different user groups, eliminating up to 80% of the non-productive ‘start 

up’ activity often required in a traditional approach.   

Another key characteristic of the data cube is it maintains every unique observation and makes it 

available for analysis. This contrasts with traditional approaches where technical limitations mean only 

small subsets are used. This enables the full ‘time series’, all of the observations acquired by the 

satellites over many years, to be put to work.  This is critical because many important phenomena only 

become apparent when monitored regularly over time.  

The final key characteristic of the AGDC is its ability to deliver ‘economies of scale’.  The same costly 

supercomputing facilities and data stores, the infrastructure that enables these levels of performance to 

be achieved, can be used for multiple purposes.  The ability to realise these economies of scale is of 

increasing importance.   

Data volumes that are already impossible to manage on a per-agency basis are scheduled to grow 

exponentially as new satellites from the USA, Europe, Japan and elsewhere give us access to more data 

than ever before.  An approach which enables investment in shared infrastructure will be critical if we 

are to benefit from this data. 

The unique way in which the AGDC organises data enables it to be rapidly manipulated in a single high 

performance computing environment (Figure 17) for many different purposes. The AGDC organises 

images from multiple sources and times, such as the images on the left, into stacks of tiles (on the right). 

The top of the stack is the most recent observations. As a result, the AGDC can help us embrace the 

‘data deluge’.  
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Figure 17: AGDC organisation process 

More information can be found at www.datacube.org.au and the source code is available on GitHub at 

https://github.com/data-cube/agdc-v2. 

Role of CEOS and the Data Cube technology 

Many countries lack the knowledge, infrastructure, and resources to access and use space-based data. 

Countries have expressed a desire for support from CEOS by providing search & discovery tools, cloud-

based storage and processing, and training & capacity building.  

CEOS is leading several projects to demonstrate data services tools and build an architecture that 

supports a growing volume of data. Some countries (Kenya and Colombia) have already asked CEOS 

to help them building such an environment to manage Big Data on EO, and making them active pilot 

projects for the Data Cube. The objective is these pilot projects will provide a solid foundation for future 

operational systems to be funded and managed by UN organisations and individual countries.   

While providing architecture and tools for countries to access and utilise satellite data, and also the 

training and capacity building necessary to use those tools and manage satellite data, CEOS is 

developing prototype projects to demonstrate those tools and services. CEOS is evaluating advanced 

technologies in its architecture and tools, such as Data Services Platforms and Data Cubes based on 

cloud computing. 

Countries and regions with on-going and future Data Cube projects: 

• Australia 

• Kenya 

• Colombia 

• Switzerland 

• South East Asia  

 

NSOs interested in these future data programs are strongly encouraged to get in touch with the CEOS 

Systems Engineering Office as they are building a global system to organise the implementation of Data 

Cubes in countries. 

 

http://www.datacube.org.au/
https://github.com/data-cube/agdc-v2
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2.18 Recommendations on selecting appropriate EO sources  

As EO transforms from relying on a few publicly available well defined EO sensors, such as MODIS 

and Landsat sources, to a much larger array of sensors with significantly enhanced specifications, the 

trend will be towards more data, with greater accuracy and precision being a part of the new Era of Big 

Data. 

Before using EO satellite data, NSOs need to consider some key questions (cf. decision tree in Figure 

33, Chapter 5) to decide whether or not using EO will assist in achieving their objectives and outputs 

effectively. The research question can guide the user to decide what EO data sources might be 

appropriate and useful.  

If EO data is chosen as a data source, consider the best sensors to use (cf. CEOS or OSCAR of WMO 

databases), depending on various previously defined criteria. The global initiative GFOI is a good 

example of land surface monitoring, as a core data stream that has been well defined and is currently 

operational.  

Even though the accuracy is generally lower for one pixel than with a field data measurement for the 

same field plot, EO products should still be considered an important alternative data source, as EO 

imagery can provide information with greater spatial extent, spatial density, and/or temporal frequency 

than any field-based (point-based) observation networks. The cost per unit area sampled and per 

variable will significantly reduce, as EO satellite data become more prevalent.  

By using smart methods for retrieving more and more valid information from EO data, the emphasis 

can shift increasingly from field data to EO data. NSOs can benefit from using more EO data, where 

relevant and appropriate, to replace or complement their results and analysis. 

Another point to highlight is the importance of the public data provided by all national space agencies. 

More and more private companies invest in satellites and launch their own missions to respond to 

immediate, punctual and operational requests from their users. Despite the great interest in these new 

activities in space, it is important to stress here the global coverage and continuity in time (missions 

planned for the next decades); two main characteristics that were only provided by public and national 

space agencies until now.  

This fundamental aspect certainly needs to be taken into account for NSOs if they wish to use EO 

satellite data in certain situations. For example, if the area of interest is how a relevant process, such as 

erosion, land degradation, crop types, forest cover, wetlands extent, evapotranspiration, urban 

expansion has developed over the last 30 years it is evident that the Landsat time series is the only 

source of data. However, for example if the issue of interest is recent coal seam gas extraction has 

caused any subsidence, then public or private high resolution SAR images in interferometric mode 

would be most appropriate. These sources would give accuracies of millimetres deformation at any 

temporal scale captured since the launch of the satellites. If an environmental or natural resources 

baseline geospatial map is required, it could be best to opt for the highest spatial resolution imagery 

accessible. 

With the concept of ARD global coverage and continuity are important issues that involve a significant 

amount of resources to create an ARD type EO Data Cube. This is only worthwhile if there will be 

multiple uses made of the data for the past, present and future. 



 56 

2.19 Illustrations 

The United Nations has identified 17 Sustainable Development Goals (SDGs) to address challenges of 

economic and social development and environmental sustainability. For each of the SDGs, the UN has 

identified multiple targets and is developing indicators countries will use to track and report progress. 

To achieve the SDGs, geospatial information and Earth observations, collected at local, national and 

global levels, and supported by the best science, tools and technologies, can serve critical, insightful 

roles in monitoring targets, tracking progress, and helping nations make mid-course corrections. 

Combined with demographic and statistical data, these sources help enable nations to analyse and model 

conditions, create maps, and monitor change over time in a consistent and standardised manner 

(http://www.earthobservations.org/). 

Below 2 SDGs are illustrated, which have an identified earth observation measurable component. 

Examples of utilisation of EO satellite data for the UN SDGs (2030 Agenda) 

 

 

 

 

http://www.earthobservations.org/
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SDGs and EO data: satellite data used in a varied range of applications (GEO document) 15 

                                                           
15 GEO “Supporting Official Statistics in Monitoring the SDGs”, March 2016 – 47th UN Statistical Commission in NYC. More here: 

http://www.earthobservations.org/documents/meetings/201603_eo_sdgs_ny/2016_geo_un_flyer.pdf and  here as well: 

http://www.earthobservations.org/geo_sdgs.php 

http://www.earthobservations.org/documents/meetings/201603_eo_sdgs_ny/2016_geo_un_flyer.pdf
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Source: CEOS/GEO EO4EDGs Initiative, 2017  

1.4 1.5 1.4.2

2.3 2.4 2.c 2.4.1

3.3 3.4 3.9 3.d 3.9.1

5.a 5.a.1

6.1 6.3 6.4 6.5 6.6 6.a 6.b 6.3.1 6.3.2 6.4.2 6.5.1 6.6.1

7.2 7.3 7.a 7.b 7.1.1

8.4

9.1 9.4 9.5 9.a 9.1.1 9.4.1

10.6 10.7 10.a

11.1 11.3 11.4 11.5 11.6 11.7 11.b 11.c 11.1.1 11.2.1 11.3.1 11.6.2 11.7.1

12.2 12.4 12.8 12.a 12.b 12.a.1

13.1 13.2 13.3 13.b 13.1.1

14.1 14.2 14.3 14.4 14.6 14.7 14.a 14.3.1 14.4.1 14.5.1

15.1 15.2 15.3 15.4 15.5 15.7 15.8 15.9 15.1.1 15.2.1 15.3.1 15.4.1 15.4.2

16.8

17.2 17.3 17.6 17.7 17.8 17.9 17.16 17.17 17.18 17.6.1 17.18.1

Sustainable Development Goals

Earth Observations in Service of the Agenda 2030

Direct measure or indirect support 

Indicator

Goal
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3. Methodology 

3.1 Introduction 

This chapter presents an overview of methodology for using spectral bands or frequencies generated 

from earth observation (EO) data to estimate quantities of interest to NSOs. The chapter follows on 

from Chapter 2, which describes the sources of EO data, and addresses the question, ‘now that we have 

the data, how do we use it?’. 

EO images, and the data that are extracted from them, fall into the category of ‘big data’. This term is 

generally used to describe large datasets that are challenging to store, manage and analyse. For many 

NSOs, traditional data management and analysis tools are inadequate. Other issues include choice of 

appropriate statistics, consideration of the quality and accuracy of the data and results, and validation 

and interpretation of the outputs.    

The development of techniques and tools for the analysis of EO data has been occurring for over a 

decade. However, the increasing resolution and availability of EO data has meant that it is now feasible 

for organisations and agencies such as NSOs to consider including this data source in their systems.   

This chapter commences in Section 3.2 with a discussion of the types of estimates relevant to NSOs 

that can be derived from EO data. These include official statistics for use at a national level, as well as 

statistics related to the 2030 Agenda for Sustainable Development. An overall description of the 

approach to analysing EO data is provided in Section 3.3. Three broad steps involved in this approach 

include pre-processing the images and data, analysing the data to obtain the required estimates, and 

validating the results.  These steps are described in more detail in Sections 3.4 to 3.7. The chapter closes 

with a summary in Section 3.8.  

3.2 EO data and official statistics 

Sustainable Development Goals 

The use of EO data for official statistics conforms to the 2030 Agenda for Sustainable Development, 

through the use of a wider range of data to support implementation of the Sustainable Development 

goals, targets and indicators (http://unstats.un.org/sdgs/indicators/indicators-list/). As described in 

Section 2.19, EO data can contribute to many of the SDG targets and indicators. Examples of SDG 

targets and indicators that are directly relevant to EO data include the following:  

• 2.4 By 2030, ensure sustainable food production systems and implement resilient agricultural 

practices that increase productivity and production, that help maintain ecosystems, that 

strengthen capacity for adaptation to climate change, extreme weather, drought, flooding and 

other disasters and that progressively improve land and soil quality.  

o 2.4.1 Proportion of agricultural area under productive and sustainable agriculture. 

• 6.3. By 2030, improve water quality by reducing pollution, eliminating dumping and 

minimising release of hazardous chemicals and materials, halving the proportion of untreated 

wastewater and increasing recycling and safe resuse globally. 

o 6.3.2 Percentage of bodies of water with good ambient water quality. 

• 6.6 By 2020, protect and restore water-related ecosystems, including mountains, forests, 

wetlands, rivers, aquifers and lakes.  

o 6.6.1 Change in the extent of water-related ecosystems over time.  

http://unstats.un.org/sdgs/indicators/indicators-list/
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• 15.1 By 2020, ensure the conservation, restoration and sustainable use of terrestrial and inland 

freshwater ecosystems and their services, in particular forests, wetlands, mountains and 

drylands, in line with obligations under international agreements.  

o 15.1.1 Forest area as a proportion of total land area.  

o 15.1.2 Proportion of important sites for terrestrial and freshwater biodiversity that are 

covered by protected areas, by ecosystem type. 

• 15.2. By 2020, promote the implementation of sustainable management of all types of forests, 

halt deforestation, restore degraded forests and substantially increase afforestation and 

reforestation globally. 

o 15.2.1 Forest cover under sustainable forest management. 

o 15.2.2. Net permananet forest loss. 

• 15.3 By 2030, combat desertification, restore degraded land and soil, including land affected 

by desertification, drought and floods, and strive to achieve a land degradation-neutral world.  

o 15.3.1 Proportion of land that is degraded over total land area 

Anderson et al. (2017) provide a number of examples that illustrate the use of EO in the service of the 

2030 Sustainable Development Goals. The following advantages are highlighted: enablement of 

informed decision-making and monitoring of the expected results; improvement of national statistics 

for greater accuracy; assurance that the data are “spatially-explicit”; fostering of synergy between the 

SDGs and multilateral environmental agreements by addressing cross-cutting themes such as climate 

and energy; and facilitation of countries’ approaches for working across different development sectors. 

3.2.1 Environmental and agricultural statistics 

A current major focus of EO data analysis is on deriving environmental and agricultural statistics. Three 

specific examples of statistics that can be derived from EO data are land cover, land use and land cover 

change. These are defined in the FAO Global Strategy16 report as follows: land cover is the observed 

(bio) physical cover on the Earth’s surface; land use is the use made of land by humans; and land change 

studies attempt to describe where and what change is occurring over time, at what rate and perhaps 

why. 

Other agricultural statistics include crop identification and crop yield. Crop identification and crop yield 

case studies are detailed in Chapter 4. For further information about using EO data for crop 

identification and crop yield, refer to the FAO Handbook on Remote Sensing for Agriculture Statistics.  

These statistics can be tabulated or displayed graphically, as illustrated in Figure 18 for Chiapas, 

Mexico.  

                                                           
16 Global Strategy 2017. Handbook on Remote Sensing for Agricultural Statistics. Rome, www.gsars.org, 250pp. 

http://www.gsars.org/
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Figure 18: Examples of geographic display of statistics relevant to the SDG indicators that can be 

obtained in full or in part by EO data. Use of INEGI’s Land Use and Vegetation Map Series in the 

Digital Map of Mexico (various scales available). Left: Indicator 15.2.1 Progress towards sustainable 

forest management. Right: Indicator 15.2.2 Net permanent forest loss, estimated changes in tropical 

broadleaf evergreen forest in Chiapas based on satellite images from 2006 to 2013.  

Source: Figures extracted from Integrating Statistical and Geospatial Information: Experience in Mexico. Presentation by Mr. Rolando 

Ocampo, Vice President, INEGI, Mexico. Meeting organised by UNSD on Geospatial Information and Earth Observations: Supporting 

Official Statistics in Monitoring the SDGS, New York, 7th March 2016. 

Another example of graphically displaying environmental and agricultural statistics derived from 

satellite imagery is the Global Forest Change map by Hansen, Potapov, Moore, Hancher et al (2013). 

Forest loss, forest cover loss and gain and percentage of tree cover are identified from time series 

analysis of Landsat images and depicted on an interactive global map in Google Earth Engine. A section 

of the map is below in Figure 19.  

 

Figure 19: Global Forest Change map view of South America  
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See https://earthengineparnterns.appspot.com/science-2013-global-forest for more information and to 

view the map.  

3.2.2 Other statistics 

Many other statistics of interest to NSOs can be obtained from EO data. Examples that address the 

SDGs include water quality detection (Dekker et al., 2016), urban change (Taubenboch et al.,2012; 

Esch et al., 2012) and natural disaster risk assessment (Geib and Taubenboch, 2013). Anderson et al. 

(2017) also describe examples of global crop monitoring (by GeoGLAM), electricity access (visualised 

using night time satellite imagery to assess the location and spread of electric lighting) for SDG 7.1, air 

quality (by monitoring aerosols, hot spots and forest fires , SDG11.6) and biodiversity (by EO 

monitoring of protected areas and potential criminal activity, SDGs 14 and 15).   

Different forms of EO data can be combined to provide relevant statistics. For example, drones are now 

being used extensively as EO data sources in their own right and in combination with satellite and radar 

data. They are also being used in combination with traditional data sources such as surveys, and with 

other big data sources such as mobile phone and social media data. For example, Steele et al. (2017) 

give an example of combining EO and mobile phone data to obtain poverty estimates. 

It is important to note that different definitions of quantities of interest can affect the calculation of the 

estimates. This is described in the FAO Global Strategy report for the case of land cover change: 

substantial differences were found in 11 cover classes derived from four different global databases. The 

report notes (p. 23) that “this does not mean that the figures are inaccurate (as they relate to different 

definitions of class membership); rather, they are inconsistent, especially where few classes are used.” 

For this reason, a common Land Cover Classification System (LCCS)17 has been developed by the FAO 

and UNEP, as detailed in the report18. The SEEA Central Framework19 is a useful international standard 

for environmental accounting and its land cover classification is based on the set of rules and classifiers 

set out in the LCCS.  

3.3 General approach to analysing EO data 

3.3.1 Steps in the analysis of EO data 

The analysis of EO data can be divided into three broad steps, as follows: 

 

The Pre-processing step is critical to successful analysis of big data, and the quality and integrity of 

the obtained estimates. This step involves the following considerations: 

                                                           
17 Also refer to the LCCS2 http://www.fao.org/docrep/008/y7220e/y7220e00.htm  and LCCS3 http://www.fao.org/3/a-i5232e.pdf) 

18 Report reference: (http://gsars.org/wp-content/uploads/2016/08/TR_Information-on-Land-in-the-Context-of-Ag-Statistics-180816.pdf, 

Information on Land in the Context of Agricultural Statistics, Technical Report Series GO-15-2016). 
19 SEEA Central Framework https://unstats.un.org/unsd/envaccounting/seearev/seea_cf_final_en.pdf 

Pre-processing Analysis Evaluation

https://earthengineparnterns.appspot.com/science-2013-global-forest
http://www.fao.org/docrep/008/y7220e/y7220e00.htm
http://www.fao.org/3/a-i5232e.pdf
http://gsars.org/wp-content/uploads/2016/08/TR_Information-on-Land-in-the-Context-of-Ag-Statistics-180816.pdf
https://unstats.un.org/unsd/envaccounting/seearev/seea_cf_final_en.pdf
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• Data storage: This includes storage of the EO images and/or extracted data, and of the statistics 

and derived products obtained from the analysis of the data. 

• Data management: This includes management of the EO images and extracted data. 

• Data quality: This includes critical evaluation of the data extracted from the EO images with 

respect to its overall capacity for analysis and ability to provide reliable, accurate statistics. 

• Other information sources: This includes identification, collation, storage, management and 

evaluation of other supporting data that can be used in the analysis step.  

• Software: Based on the above considerations, this includes identification of appropriate, 

available software products that can be employed to help with the pre-processing step. 

The Analysis step involves the following considerations: 

• Overall aim: This includes defining the overall aim, such as provision of particular national 

statistics or a SDG indicator; and defining the corresponding statistical estimates, predictions 

or inferences that are to be obtained from the analysis. 

• Data: This includes determining which subset of the stored data will be used in the analysis, 

and whether the analysis will be based solely on the EO data or in combination with other data 

sources.  

• Analytic method: This includes selection of a general approach and specific technique for 

extracting the required quantities, based on the aim and available data.   

The Evaluation step involves the following considerations: 

• Critical assessment of the results: This step involves collating, assessing and interpreting the 

results of the analysis.  

• Accuracy assessment: This includes a comparison between observed values and predicted 

estimates where possible, assessment of the uncertainty or precision of the results, and 

evaluation of the replicability of the results.  

• Other concerns: This includes consideration of any other potential biases or concerns with the 

results and their interpretation. 

These steps are described in detail in Sections 3.4 to 3.7. 

3.3.2 Implementation of methodology 

Various NSOs have devised plans for implementing the analysis of EO data. These plans incorporate 

the above steps in different ways.  

As illustration, Figure 20 shows the template proposed by Denmark to facilitate the pathway from EO 

data collection to estimation of relevant statistics and integration into NSO operations.   
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Figure 20: Template proposed by the Agency for Data Supply and Efficiency in Denmark.  
Source: Presentation by Mr. Morten Nordahl Moller, Head of Division. Meeting organised by UNSD on Geospatial Information and Earth 

Observations: Supporting Official Statistics in Monitoring the SDGS, New York, 7th March 2016. 

3.4 STEP 1: Pre-processing 

The considerations to be addressed in the Pre-processing step include (1) storage of the EO data, (2) 

management of the data, (3) assessment of data quality, (4) identification of other information sources 

and (5) choice of software products to assist in this step. These considerations are now discussed in 

detail. 

3.4.1 Storage of EO data 

Traditionally, NSOs have collected sample data to produce statistical outputs and make inferences about 

broader populations. Big data sources, such as EO, present opportunities to access larger volumes of 

data that are timelier, and often at a lower cost. However, EO data sets are large and therefore 

appropriate storage approaches are necessary. Guidance on storage solutions and approaches is beyond 

the scope of this report, so a few options are briefly mentioned here.   

Storage options for NSOs include: 

• storing the data onsite; 

• outsourcing the data storage.  

Storage of data onsite will usually require some form of High Performance Computing (HPC) 

environment. HPC clusters and distributed computing techniques allow large datasets to be split into 
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blocks and run simultaneously on multiple nodes for faster computational time. Results from each node 

are then combined in statistically sensible ways.  

Setting up a HPC system that is capable of dealing with current – and future – EO data can be expensive 

in terms of infrastructure, training, upkeep and currency. For these reasons, outsourcing data storage is 

an appealing alternative. For example, there are various cloud-based storage solutions such as those 

offered by Microsoft and Amazon Web Services, or local trusted companies can be considered.  

 

Another option is to use third party or open data. Open EO data are becoming increasingly prevalent 

and are now part of the remit of many EO data sources (e.g., Copernicus). Using analysis-ready data 

can further simplify the process by eliminating not only problems of storage but also most of the pre-

processing burden. Data Cubes described in Chapter 2, for example, have HPC capability, and make 

standardised and calibrated satellite data available in structures available on a range of processing 

platforms which can be either local, remote or cloud based. Online and free data catalogues combined 

with on-line modelling platforms such as the GEE – Code Editor may also be applicable. 
 

3.4.2 Management of EO data 

Management of EO data typically involves processing images to analysis ready data (ARD). 

As described in Chapter 2 and in the previous section, some countries have a Data Cube or other sources 

of ARD available. This can usually be analysed without further pre-processing. However, it is important 

that other considerations, such as assessment of bias and validation of results, are still undertaken. These 

issues are described in more detail in subsequent sections of this chapter. 

For many NSOs, ARD data may not yet be available. As discussed in Chapter 2, raw EO data are not 

able to be used for analysis unprocessed because this would lead to inaccurate results based on varying 

sun-angles and sensor geometries, noise, haze and distortion of the underlying imagery data. Different 

pre-processing levels are conducted in order to increase the quality of the imagery data.  

The goal of the pre-processing is to extract the pure spectral information reflected from the surface of 

the earth and recorded by the sensor without any obscuring aspects. This is done through so-called 

correction algorithms, namely, geometric correction and radiometric correction. These algorithms filter 

out and correct for specific and defined noise parameters. The goal of the geometric correction is to 

improve the accuracy of surface spectral reflectance, emittance, or back-scattered measurements ob-

tained using a remote sensing system. This pre-processing step is also known as detector error 

correction, or atmospheric and topographic correction. The radiometric correction deals with 

atmospheric particles which can obscure spectral information. 

In addition to these Top of Atmosphere satellite imagery corrections, “masking” of data is also required. 

Masking refers to the process of detecting and then “masking” out obscuring artefacts such as cloud 

cover, cloud shadow, fire clouds, water, and so on. All these corrections are an integral part of creating 

Analysis Ready Data (ARD). 

With some investment of time and skills, NSOs can set up a system to process raw satellite imagery 

data to the ARD stage using either proprietary or open-source software. 

Open-source software is potentially less expensive to set up and has the advantage of providing 

independence from proprietary systems. This has advantages of allowing the software to be customised 

and linked to a broader range of software products and systems that are already embedded in the 
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organisation. Moreover, there is often a large open source community that can provide support and 

solutions to problems. On the other hand, proprietary software can be seen to be more reliable from the 

client or consumer’s perspective, and may have the advantage of greater technical support. (Trevithick 

and Gillingham, 2009). Software products are discussed further in Section 3.4.5. 

A detailed system that uses open-source software to process raw satellite imagery data to ARD is 

described in Section 3.4.6. This system was developed by the Remote Sensing group in the Queensland 

Department of Science, Information Technology and Innovation (DSITI) in Australia. The system was 

developed prior to the creation of the Australian Data Cube and has been actively used for more than a 

decade. It uses Landsat data available from the United States Geological Survey (USGS) website and 

applies a number of open source software packages that translate data formats, make atmospheric 

corrections and program the image-processing. An example of how this processed data is used to 

identify cropping activity and land use is outlined as a case study in Chapter 4.  

3.4.3 Quality assessment of EO data 

Traditionally, NSOs have collected sample data to produce statistical outputs and make inferences about 

broader populations. Big data sources, such as EO, present opportunities to access larger volumes of 

data that are timelier, and often at a lower cost.  

There is a misconception that big data sources, such as EO, will be statistically valid simply due to the 

magnitude of data available. Although increasing sample size can reduce sampling errors, it does not 

reduce other sources of statistical bias such as measurement error. Further, data sets derived from these 

sources are not necessarily random samples of the target population NSOs want to make inferences 

about, therefore increasing the size of the dataset may not reduce sampling error or improve the quality 

of the estimates.  

In addition, big data sources have their own specific issues which can impact on statistical validity. 

These include accumulation of errors (noise) and potential spurious correlations, as well as algorithmic 

instability that can lead to inaccurate estimates. The different sources of data, and their aggregation, can 

also lead to statistical biases (Fan, Han and Liu, 2014). 

Some of these challenges of using big data for statistical purposes can be addressed by using appropriate 

methodologies, depending on the data source and intended outputs. Examples of different 

methodological techniques for EO data specifically are described in this chapter. However, it should be 

noted that these methodologies will not counter issues related to data quality, data representativeness 

or other related issues. This is discussed further in Section 3.7.3. 

3.4.4 Other information sources 

EO data can be analysed on its own, or with other datasets. The choice of other datasets depends on 

the following considerations: 

• Aim: Different datasets will be required for different purposes, based on the required 

estimates, selected method for analysis, spatial and temporal resolution and scope of the 

analysis, quality of the available EO data, and so on. 

• Access: Datasets can include existing resources held by the NSO and/or they can be obtained 

from external parties. Access considerations also include intellectual property, confidentiality, 

cost, reputation, and continuity of access. 
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• Content: A wide range of data can potentially complement EO data in an analysis, such as 

censuses, household or agricultural surveys, administrative data, environmental and 

meteorological data. 

 

The FAO report on a Global Strategy for Improving Agricultural and Rural Statistics (2016) provides 

advice about constructing and maintaining a Minimum Set of Core Data (MSCD) that includes EO and 

other spatial and non-spatial information in a Master Sample Frame (MSF) database. The MSF is 

constructed by combining satellite images classified by geo-referenced land use and digitised 

administrative data, digitised enumeration areas, and overlaying this with population and agricultural 

census data, other relevant data such as a register of commercial farms, and an area frame.  

 (http://gsars.org/wp-content/uploads/2016/08/TR_Information-on-Land-in-the-Context-of-Ag-

Statistics-180816.pdf, Information on Land in the Context of Agricultural Statistics, Technical Report 

Series GO-15-2016) 

Many NSOs are in various stages of implementing systems to integrate EO data with other data for 

official statistics and SDGs. For example, Table 5 shows how Mexico envisages the use of different 

resolutions of satellite imagery for national statistics and to support the related SDGs. These statistics 

can be geographically displayed as illustrated in Figure 18. 

 Table 5 Integrating Statistical and Geospatial Information: Experience in Mexico.  

 

Source: Presentation by Mr. Rolando Ocampo, Vice President, INEGI, Mexico. Meeting organised by UNSD on Geospatial Information and 

Earth Observations: Supporting Official Statistics in Monitoring the SDGS, New York, 7th March 2016. 

http://gsars.org/wp-content/uploads/2016/08/TR_Information-on-Land-in-the-Context-of-Ag-Statistics-180816.pdf
http://gsars.org/wp-content/uploads/2016/08/TR_Information-on-Land-in-the-Context-of-Ag-Statistics-180816.pdf


 70 

3.4.5 Software products 

There is a range of proprietary and open source software products available for working with EO data. 

The products can be used to assist with preparation, storage and management of data. This chapter does 

not make recommendations on software product because the most appropriate tool will vary for 

individual NSOs.   

When choosing a product, NSOs should consider the capabilities and experience of their staff using 

different software, cost if choosing a commercial product, and long term accessibility if choosing an 

open source product. For example, if the NSO built a statistical collection around data produced using 

an open source product, how would they be impacted if the provider started charging for access and 

have contingency plans in place.   

The list of software available is increasing rapidly. Some popular products that are available now are 

briefly described here. 

Hadoop is a popular technology related to big data management (Scannapieco, Virgillito and Zardetto 

(2013). It is an open-source software project, developed by the Apache Software Foundation, 

targeted at supporting the execution of data-oriented application on clusters of generic hardware. 

The main components of Hadoop are HDFS, which sends tasks to multiple cores for processing, 

and MapReduce, which keeps track of the data packets and combines the results of the processes. 

Many products are now available that use Hadoop as a platform and provide improved interfaces 

for easier engagement by end-users. Popular current examples include Spark and its derivatives 

(such as Sparkling Water and Steam), and Tensor Flow.  

 

GDAL/OGR - Geospatial Data Abstraction Library (reading and writing raster and vector geospatial 

data formats) - most of the commonly used geospatial software applications use GDAL/OGR. 

GDAL supports more than 140 raster formats; OGR supports over 80 vector formats (see Warmerdam 

et al. (2016) for more information). 

Some software packages (e.g. raster in R (R Core Team, 2016)) allow manipulation of data too large to 

load into memory in its entirety by only creating structure information about the data, and processing 

in chunks when manipulating the data itself. 

GIS - System for Automated Geoscientific Analyses (SAGA) SAGA is open source software which 

is intended to give scientists an effective but easily learnable platform for implementing geoscientific 

methods and enables the user to perform vector and raster based spatial analysis, edit and manipulate 

diverse data and store it in a format which allows sharing with other GIS communities and commercial 

software packages. Further, it can perform interpolations using triangulation, nearest neighbour, inverse 

distance and other metrics. SAGA GIS can be downloaded at http://www.saga- gis.org/en/index.html. 

SAGA has a fast-growing set of geoscientific methods and is written in C++. It was developed at the 

Department of Physical Geography at the University of Gottingen, Germany and is now being 

maintained and extended by an international developer community. The initial release was in 

February 2004. 

 

 

http://www.saga-gis.org/en/index.html
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Google Earth Engine 

As described in Section 3.2.1, Google Earth Engine can be used to display and interpret EO data. 

Landsat data is now available in Earth Engine through collaboration with USGS and NASA. Earth 

Engine provides this data in its raw form, as a TOA-corrected reflectance and in various ARD computed 

products such as NDVI and EVI vegetation indices. See https://earthengine.google.com/datasets. 

Extensions to existing software products 

A growing number of software products that traditionally dealt only with databases are now providing 

big data capability and data management tools. Examples include SAP (Hana) and HPE (Vertica). 

Similarly, statistical and mathematical modelling packages such as R, Matlab, Stata and SAS now 

provide big data management tools, often based on Hadoop and similar frameworks.  

Bespoke data management tools can also be found, and/or written in programming languages such as 

R (see, for example, RStoolspack) and Python.  

Further examples of software used to pre-process EO data are discussed in the case study described in 

the next section. 

3.4.6 Case Study: Data Pre-Processing 

In Australia, the Queensland Department of Science, Information Technology and Innovation (DSITI) 

created a system using open-source software to process raw satellite imagery data to ARD. This was 

prior to the creation of the Australian Data Cube.  

The software packages which are crucial to the process are GDAL, 6S and Python. These programs are 

open source. GDAL is a translator library for raster and vector geospatial data formats. 6S is 

atmospheric radiative transfer modelling software which is used to make atmospheric corrections. 

Python is a programming language used for the majority of the image-processing in this study.  

 First, raw Landsat data is obtained for the entire state of Queensland from the United States Geological 

Survey (USGS) website. The Landsat data is included if it has <80% cloud cover.  The data in the files 

is then unpacked into reflective, thermal and panchromatic components and saved as ERDAS Imagine 

(.img) files. Other GDAL software readable formats could also be used. The processing for the thermal, 

panchromatic and reflective components is briefly described below, in no particular order.  

 

Thermal component 

The thermal component is adjusted for temperature, and cloud and shadow masks are automatically 

applied. Next, snow, cloud and cloud shadow masks are automatically applied. This masked data is then 

included in the automatic seasonal fractional cover step in the reflective component process. It is an 

input to the cloud and cloud shadow masks that are applied to produce the ARD. 

Panchromatic component 

This is a one step process in which the raw data is processed in python to produce a panchromatic 

image. This component is not used further in analysis.  

Reflective component 

From the raw Landsat data, a scaled top-of-atmosphere radiance image is automatically produced. This 

top-of atmosphere radiance image is then corrected for atmospheric effects and saved as an .img file. 

https://earthengine.google.com/datasets
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According to Flood et al (2013) “atmospheric effects on the signal include a range of scattering and 

absorption processes, and are a function of the various angles relating the sun, surface and satellite. 

These effects are assumed to be well modelled by widely available atmospheric radiative transfer 

models” (p. 86). 

 

In the DSITI process, the Second Simulation of the Satellite Signal in the Solar Spectrum (widely 

known as 6S) model is used to apply atmospheric corrections and produce the atmospherically corrected 

.img file. For further details on the 6S model application, see Flood et al (2013) section 2.2. 

 

The atmospherically corrected .img file, with various cloud cover, cloud-shadow, incidence, topo-

shadow and water masks applied, is the resulting ARD used in analysis.  

 

Once these processes are completed the data is ready for analysis. Note that only the reflective 

component is included in the ARD, and within that only a subset of reflectance images with <60% cloud 

cover. 

3.5 STEP 2: Analysis 

Prior to undertaking the analysis, the following questions should be considered: 

1. What measures are required? 

2. What statistics will be used to estimate these measures? 

3. What data are required to obtain these statistics? 

The first two questions have been addressed above in the context of NSOs and SDGs; see, for example, 

Section 3.2. In addressing the third question, it is important to recognise that not all of the available 

data are required for a particular analysis. A good data management structure will allow either the 

aggregation of relevant data for analysis, or alternatively provide the tools to access datasets from 

different databases stored in different (virtual) locations. There are advantages and disadvantages of 

both of these approaches. Identifying only relevant data for the analysis helps to guard against the 

generation of spurious results due to the inclusion of superfluous information. 

3.5.1 Analytic Approach 

In addition to identifying the type of analytic problem, it is necessary to choose an analytic approach 

(or combination of approaches). As discussed in Section 2.4, analytic approaches can be categorised 

into five types of methods: 

 



 73 

 Figure 21: Analytic approaches for analysis of EO and other data 

The choice of analytic approach depends on the available data and degree of understanding of the 

physical processes underlying the relationship between the EO inputs and the target estimates. For 

example, if there is a strong understanding of the biological or physical processes, then a physics-based 

approach is appropriate, otherwise an empirical or machine learning approach may be adopted. If data 

are available and there is knowledge of the process, then semi-empirical methods can be used.  

Although the five methodological approaches have distinct characteristics, there is substantial overlap. 

For example, although empirical approaches focus more on the model and machine learning approaches 

focus more on the algorithm, both approaches aim to create relationships based on the observed data 

and they share a common set of methods to achieve this. Similarly, mathematical and statistical models 

tended to be treated as distinct, but it is now common to merge mathematical or physics-based methods 

with statistical models and simulation where this is relevant. For example, a mathematical 

representation of a process can be combined with statistical descriptions of less well known parts of the 

process and/or uncertainty in input parameters. Simulation can then be included to describe more 

complex components or further evaluate uncertainty in inputs and outputs, or evaluate ‘what if’ 

scenarios. 

Empirical methods 

Empirical methods are defined in Chapter 2 as cases where a statistical relationship is established 

between the spectral bands or frequencies used and the variable measured (field-based) without there 

necessarily being a causal relationship. This relationship can be parametric, semi-parametric or 

nonparametric. 

The main advantages of empirical (statistical model-based) approaches are they provide a 

mathematically rigorous way of describing sampling and model error, estimating and predicting 

outcomes of interest and relationships between variables, and quantifying the uncertainty associated 

with these estimates and predictions. They can also be used to test hypotheses under specified 

assumptions. Disadvantages are they often include assumptions about the data generating process 

(unlike many of the machine learning methods) and require in-situ data (unlike the physics-based 

models). This reliance on in-situ data also means they may be difficult to extrapolate or transfer to other 

contexts (Dekker et al. 2013). 

Beyond the spatial scope, many forms of remotely sensed data (particularly from satellites) are collected 

over time. Although adding a temporal dimension increases the data size substantially, this can be 

managed by careful selection of data (for example, based on a priori knowledge regarding particular 

crop growth cycles). Including a temporal dimension in the analysis can add a wealth of useful insights, 

such as substantially more accurate crop classification as well as estimation and prediction of and crop 

yield.  

Semi-empirical methods 

Semi-empirical methods combine knowledge about the process with statistical models. This knowledge 

can be about the process itself or about the variables that are included in the process. 

These methods have been used for EO data analysis for over a decade. For example, Phinn et al. (2005) 

used Landsat 7 Enhanced Thematic Mapper image data to map selected water quality and substrate 

cover type parameters. More recently, Dekker et al. (2013) describe a semi-empirical approach to water 

quality detection, in which knowledge about the spectral characteristics of some of the parameters is 
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used to refine the statistical model. In their example, only a subset of variables is used in the model, 

with well-chosen spectral areas and appropriate wavebands or combinations of wavebands. The authors 

highlight the popularity and utility of these approaches, but also caution that they still require in-situ 

data. Thus while they are arguably more transferable than purely empirical models (since they contain 

information about the process), they can still be limited by the generality of the data used to build them.  

Tripathy et al. (2014) also use a semi-empirical method which incorporates physiological measures, 

spectral measures and spatial features for estimating wheat yield. The authors note that while spectral 

(empirical) and physics-based (mechanistic) models based on vegetation indices are widely used, they 

are respectively limited by being data-intensive and complex. Their semi-empirical approach is 

proposed as an intermediate method. 

Physics based methods 

As outlined in Chapter 2, physics based models are based on detailed knowledge of the system that is 

being modelled. They can be built without data, or data can be used to calibrate the model parameters. 

This method is suitable for automation across large areas, provided the model is appropriately and 

accurately parameterised.  

Biophysical and geophysical models that utilise EO data have been developed and applied to a wide 

range of problems for over 15 years. An early example is the extension of a PHYSGROW plant growth 

model to include NOAA and NASA satellite data products in order to create forage production maps 

for a large landscape. The EO derived inputs were gridded daily temperature, rainfall and a Normalised 

Difference Vegetation Index (NDVI), with cokriging to take advantage of spatial autocorrelation 

(Angerer et al., 2001). The authors concluded that the mapped surfaces of the cokriging output could 

successfully identify areas of drought and argued these maps could be used as part of a Geographic 

Information System (GIS), ‘which could then be linked to economic models, natural resource 

management assessments, or used for drought early warning systems’.  

Phinn et al. (2005) pioneered the use of these methods in a marine context, using Landsat 7 Enhanced 

Thematic Mapper image data to map selected water quality and substrate cover type parameters. A 

more recent physics-based method for detecting water quality using EO data is described by Dekker et 

al. (2013). There are now many examples of these types of models. For instance, Watts et al. (2014) 

extended a terrestrial flux model that allows for satellite data as primary inputs to estimate CO2 and 

CH4 fluxes, and Gow et al. (2016) combined satellite observations of land surface temperature with a 

surface energy balance model to estimate groundwater use by vegetation. 

These physics-based approaches are typically based on sophisticated algorithms that take into account 

sensor performance, multiple environmental impacts from the atmosphere and sea surface, as well as 

the optical properties of the water body and seafloor. For more information, see Wettle et al (2013).  

Object based image analysis 

Two types of object based image analysis are field-based aggregation approaches and contextual 

classification approaches. 

The simplest approach is field-level aggregation. This method aggregates pixels up to “fields” (per-

field classification) or “objects” (object- oriented classification) and then estimates or classifies at this 

new, aggregated level. These approaches spatially smooth the data by averaging over all pixels within 

a field or object. This is computationally efficient and has also been shown to produce more accurate 

and robust outputs than pixel-based approaches, particularly with fine resolution spatial data. For 
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example, Hoque et al. (2016) and Hoque et al. (2017) employ field-level approaches for modelling 

cyclone impacts, with the latter paper evaluating cyclone risks for present and future climate change 

scenarios.  

Contextual techniques explicitly acknowledge and incorporate spatial dependencies between 

neighbouring pixels. They may make use of spatial smoothers, Markov Random Fields, and spatial 

statistics and models in combination with classification techniques. Estimation or classification occurs 

either after spatial dependencies are accounted for (pre-smoothing) or before (post-smoothing). 

Artificial intelligence and machine learning methods 

Machine learning methods, also called artificial intelligence (ML) methods, use algorithmic models to 

analyse data. These methods treat the way in which the data were generated or relationships between 

the variables as unknown (Breiman, 2001).  

There are many ML algorithms that perform different tasks. Some of the algorithms that are relevant to 

EO data applied to SDG targets are listed in the following figure, and are grouped according to four 

main analytic aims: classification, clusting, regression and dimension reduction. These aims are 

described in Sections 3.5.2 and 3.5.3. Details of the algorithms are presented in the Appendix. 

 

Figure 22: Empirical and machine learning methods for analysis of EO and other data, collated 

according to the analytic aim. 

Ensemble Approaches 

Recent trends in ML and remote sensing analyses centre around the combination of multiple ML and 

empirical methods to form hybrid approaches. These ensemble approaches are also known by other 

names, such as Multiple Classifier Systems for classification problems (Du et al., 2012; Woźniak et al., 

2014). Ensemble methods fall into two categories: serial (or concatenation) and parallel.  

Serial combination refers to the methods being combined in a serial fashion - the results of the first 

analysis are used as inputs into the next analysis, and so on. The final output (classification, estimate, 

clustering, dimension reduction, etc) is determined by the output of the final method in the series.  
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Parallel combination refers to the approach that applies multiple methods to the data simultaneously; 

with the final output determined using some kind of decision rule. The most popular decision rule for 

continuous outcomes is the simple average of all of the methods. For Multiple Classifier Systems, the 

most popular rule is the majority vote, whereby the final class membership is the one which the majority 

of classifiers predict. The output of the methods can also be weighted by its estimated accuracy using a 

training set. Other decision rules include Bayesian averaging, fuzzy integration, and consensus theory 

(Due et al., 2012). 

Examples of recent work in the remote sensing literature utilising a Multiple Classifier Systems 

approach include: Briem et al. (2002), Huang and Zhang (2013), Zhang et al. (2015b), Li et al. 

(2012b), Roy et al. (2014), Bigdeli et al. (2015), Wu and Gao (2012), Samat et al. (2014), Clinton et 

al. (2015), Han and Liu (2015), Li et al. (2014), Zhang and Xie (2014). 

 

3.5.2 Analysis of static data 

Static data refer to data obtained for a single time period (dynamic analyses, which refer to analysis of 

data over time, are discussed in Section 3.5.3.)  As indicated in the figure above, four of the most 

common aims of static analyses are classification, clustering, regression and dimension reduction. 

Classification is applicable if the overall aim is to accurately allocate objects to a discrete (usually 

small) set of known classes, or groups. This allocation is based on a set of input variables (also called 

explanatory variables, factors, predictor variables, independent variables, covariates or attributes). A 

set of data containing input variables and the output variable (the corresponding classes are used to 

develop or ‘train’ the model). This model can then be applied to test datasets that contain only the input 

variables.  

An example is the categorisation of pixels in an image into crop types, based on a training dataset that 

contains variables extracted from the images (the input variables) and ground-truth crops (the output 

variable) at a set of sites. The crop classification model that is developed can then be applied to the rest 

of the image where ground-truth data are not available.  

Clustering is applicable if the aim is to combine objects into groups or classes based on a set of input 

variables. Unlike classification, we don’t know the output variable, or classes, even in the training 

dataset. Therefore we need to work out a measure of similarity between the objects and a way of 

grouping them according to these similarities. We can specify the number of groups (clusters), or also 

make this unknown and estimate the number of groups as part of the analysis. The analysis can be used 

to make decisions about the objects that were clustered, or to predict cluster membership for new 

objects. An example is the allocation of pixels into groups based on a set of input variables extracted 

from an image. These groupings can then be inspected, described and compared in terms of their 

characteristics.   

Regression is applicable if the aim is estimation or prediction of a response (output) variable based on 

a set of covariates or explanatory (input) variables. This is similar to classification methods, but the 

response is continuous instead of categorical. Like classification methods, the regression model is 

developed or trained based on set of input variables for which the response is known. The model can 

then be used to predict responses for test datasets (with input variables but no response variable), 

identifying which input variables are most important in providing good estimates or predictions, or 

inspecting the relationships between the input variables. An example of regression is accurately 
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estimating or predicting crop yield based on variables extracted from an EO image. In this case, crop 

yield is a continuous variable, rather than the crop type classes described as in the above classification 

example.  

Dimension reduction is applicable if there are many variables that can be extracted from EO data (and 

other data sources), and the aim is to construct a small set of new variables that contain all (or most) of 

the information contained in the original (large) set of input variables. These new variables can be used 

as inputs into other analyses, or they can be end products in their own right. For example, they may be 

inspected to gain a better understanding of important variables, or interpretated as ‘features’ or ‘indices’ 

(e.g., two satellite reflectance variables are combined to give a single Vegetation Index variable, VI). 

This is an unsupervised learning process, since there is no response variable to estimate. 

3.5.3 Analysis of dynamic data 

Dynamic data are data collected over time. Analysis of dynamic data is important for measuring 

progress of SDG targets. The number of time periods might be small or large, depending on the analytic 

aim. Examples of these aims are: 

• Comparison of before-after outcomes, for example comparing water quality or forest cover as 

a result of an extreme weather event.  

• Estimation and/or comparison of trends over time, for example, monitoring annual land use 

change over decades or crop growth over a number of seasons.  

If the aim is the comparison of before-after outcomes, then it is typical to have a small number of (EO 

and other relevant) datasets corresponding to a small number of time periods. For these types of data, 

two common approaches are as follows. 

• Analyse the data for each time period separately using the methods described in Section 3.5.2 

and compare the results. 

• Take the difference in pixel or object values between the EO (image) data for two periods of 

interest, and analyse the differences using the methods described in Section 3.5.2. 

• Include time period as a covariate (input) in the methods described in Section 3.5.2. 

If the aim is to estimate or compare trends over time, then it is typical to have a larger time series of  

datasets. For example, the aim may be to monitor land use changes or urban expansion over a decade, 

changes in water bodies during and after an extreme weather event, and so on.  

There are many approaches to analysing time series data. Fulcher et al (2013) analysed over 9000 time-

series analysis algorithms and annotated collections of over 35,000 real-world and model generated 

time series. They developed a resource which automates selection of useful methods for time-series 

classification and regression tasks. Examples of the types of questions that can be answered using this 

resource are shown in the figure below.  
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Figure 23: Types of analysis questions answered by Fulcher et al (2013) 

Source: Fulcher et al (2013). A compound methodological eye on nature’s signals. Retrieved from http://systems-

signals.blogspot.com.au/2013/04/a-compound-methodological-eye-on.html 

The different methods for analysing dynamic data can also be classified according to whether the aim 

is classification, clustering, regression or dimension reduction.  

Classification In order to classify dynamic series, it is necessary to establish how to compare them. A 

common approach to comparing curves is through alignment matching. Two methods for alignment 

matching is instance-based comparison, which involves computing the distance between the series at a 

set of points along the series, and feature-based comparison, which involves comparing a set of features 

such as those obtained by principal components analysis.  

Other approaches for classifying curves can be categorised as comparative approaches and model based 

approaches.  

• Comparative approaches, e.g. cluster analysis and principal components analysis;  

• Model-based approaches, e.g. cubic splines, harmonic analysis and state space models.  

These methods and published examples of their application to EO data are described in the appendix.  

Clustering As previously described in Section 3.5.2, the overall aim is to combine objects into groups 

or classes based on a set of input variables. Three main groups of methods for clustering time series 

data are as follows (Rani and Sikka, 2012):  

• Work directly on time series data either in frequency or time domain.  

http://systems-signals.blogspot.com.au/2013/04/a-compound-methodological-eye-on.html
http://systems-signals.blogspot.com.au/2013/04/a-compound-methodological-eye-on.html
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The most common similarity measures used for direct comparison of time series include 

correlation, distance between data points and information measures. Hierarchical clustering and 

k-means methods are then applied to these measures.  

• Work indirectly with features extracted from time series. 

The most common features extracted from time series data include points identified visually, 

via transformations of the data, or via dimension reduction. The most common distance 

measure is the Euclidean distance, although Kullback-Liebler and geometric distances are also 

used.  

• Work with models built from the time series. 

The most common time series models include moving average (MA), autoregressive (AR) and 

autoregressive moving average (ARMA) models and variants, hidden Markov models (HMM)  

and fuzzy set methods.  

Regression Time series regression aims to predict a future response based on the response history from 

relevant predictors. Two common methods that are used for this purpose are parametric time series 

models that capture temporal dynamics are listed above (MA, AR, ARMA and HMM) and 

nonparametric convolutional neural networks which are an extension of static neural networks, adapted 

to describe data over time. 

Another common aim for time series regression is interpolation of missing data within the spatial and 

temporal span of the data. For example, cloud cover is a common reason for missing data in EO images. 

Splines are widely used for both spatial and temporal interpolation.  

Dimension reduction A common approach to dimension reduction of temporal data is principal 

components analysis (PCA). This approach is described in the Appendix. An example of PCA applied 

to a time series of Enhanced Vegetation Index (EVI) values is described in Potgieter et al (2007). EVI 

from 16-day MODIS satellite imagery within the cropping period (i.e. April–November) was 

investigated to estimate crop area for wheat, barley, chickpea, and total winter cropped area for a case 

study region in North East Australia. The PCA classification method, and others used in the study, were 

trained on ground truth data collected from the study region. In this study, principal component analysis 

was used to reduce the EVI time series at each pixel from the 23-image sequence into a smaller set of 

transformed variables or principal components (PC), which explained 90% or more of the temporal 

variability in the series. Overall, PCA correctly classified 98% of pixels as wheat, barley, chickpea or 

non-cropping. This example is discussed further in the Appendix. 

3.5.4 Choice of method 

The choice of method used for analysis of EO data depends on a number of factors: 

• The nature and amount of training data 

• The amount of calibration (ground-truthed, in-situ) data 

• The type of estimates and inferences required 

• The availability of software for modelling and analysis 

• The expertise of the team performing the modelling and analysis 

The following overall statements can be made: 

• Empirical methods are useful if there is sufficient training and calibration data, if a model-based 

approach is required, and if the assumptions of the models are tenable. 
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• Semi-empirical methods are useful if the conditions for empirical methods are fulfilled and if 

there is some expert knowledge about the input variables and system. 

• Physics-based methods are useful if there is a deep knowledge about the system under 

consideration and/or if there is a lack of calibration or training data. 

• Machine Learning models are useful if there are data available to train the models and evaluate 

their fit, but there is an inability or unwillingness to make model-based assumptions or develop 

physics-based processes.  

A review of studies that have compared different statistical and machine learning algorithms for the 

analysis of static EO data is provided in the Appendix. 

For dynamic EO data analysis, the Australian Bureau of Statistics (ABS) has recommended the use of 

state-space models for the analysis of dynamic EO data. See Tam, S-M. (2015). A Statistical 

Framework for Analysing Big Data for more information. These are described in the Appendix. 

3.6 STEP 3: Evaluation 

The considerations to be addressed in the Evaluation step include (1) critical assessment of the results, 

(2) assessment of the accuracy of the results, and (3) assessment of other potential biases or concerns 

with the results or their interpretation.  

3.6.1 Critical assessment of results 

As with any statistical analysis, it is essential to critically review the results with respect to whether 

they are sensible from both statistical and domain-knowledge perspectives. This is particularly 

important with estimates derived from big data or multiple data sources. Evaluations can include: 

• Inspection of the overall magnitude of the results, and identification of results that are outside 

expected ranges, etc.;  

• Inspection of the precision of the estimates, the size of the prediction intervals and other 

measures of variability of the results; 

• Comparison of the results with other relevant results; 

• Evaluation of whether any assumptions in the model or the modelling process have been met. 

3.6.2 Accuracy assessment 

Accuracy “is a relative measure of the exactness of an estimate and accounts for systematic errors also 

referred to as bias. Therefore, an accurate estimate does not systematically over or underestimate the 

true value” (FAO 2016, p. 1).  

When considering accuracy assessment, it is important to recognise that sampling effort (accuracy and 

representativeness of sampled data used for training) as well as the analytical technique(s) utilised play 

important roles. These issues have been described above.  

Good practice involves reporting details of these processes, as well as details of the model fit, the 

accuracy of the estimates or predictions obtained from the model, and quantification of uncertainty of 

these estimates and predictions (Olofsson et al., 2014). These issues are now discussed in more detail. 

Model assessment 

Regardless of the type of model (empirical, semi-empirical, physics-based, machine learning), the 

goodness of fit of the model is typically assessed by comparing the estimated or predicted values 

obtained from the model with the observed values, if available.  
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Statistical models are typically subjected to further goodness of fit evaluations using criteria such as 

AIC, BIC, likelihood ratios for nested models, and traditional hypothesis tests (if available and 

applicable). Where possible, estimates obtained from the model are typically compared with the 

observed data, using measures such as misclassification rates for categorical responses and mean 

squared error of prediction for continuous responses.  

Depending on the available data, a typical statistical practice is to define complementary training and 

testing datasets by randomly partitioning the original data (for example, randomly splitting the dataset 

into a 75% training set and a 25% testing set). A model is then built using the training data, which is 

then assessed for accuracy in various ways on the test dataset. For example, for classification models, 

misclassification rates and/or positive predictive value (PPV) could be used to assess how well the 

training data predict the test data, and hence how well the trained model may be expected to perform 

on new, unknown samples.  

Another commonly used approach is cross-validation techniques. Cross-validation is often used in 

situations where partitioning the data as described above would significantly hamper the training and/or 

testing of the model (for example, smaller datasets where partitioning would leave either the test or 

training data sample size too small). The idea of cross-validation is to repeat the validation procedure 

described above, using different data subsets each time. The measured fit (for example, the 

misclassification rate) is then averaged across these repeats to provide a more accurate measure of the 

predictive capabilities of the model under investigation. Cross-validation techniques can generally be 

classified into two groups: Exhaustive (all possible splits of the data are undertaken – for example leave-

one-out and leave-k-out cross validation) and Non-exhaustive (not every partition of the data is 

computed – these cross-validation approaches can be considered approximations to the leave-k-out 

cross-validation technique). Which approach is taken often simply comes down to computational 

burden. 

Accuracy assessment of map data 

An example of accuracy assessment practices for EO data analyses is given by the FAO Map Accuracy 

Assessment and Area Estimation Practical Guide (FAO, 2016, http://www.fao.org/3/a-i5601e.pdf).  

The following information is extracted from the FAO report, pp. 6, 17. 

In an accuracy assessment of map data, the map is compared with higher quality data. The higher quality 

data, called reference data, is collected through a sample based approach, allowing for a more careful 

interpretation of specific areas of the map. The reference data is collected in a consistent manner and is 

harmonised with the map data, in order to compare the two classifications. The comparison results in 

accuracy measures and adjusted area estimates for each map category. This process is broken down into 

four major components: (i) a map, (ii) the sampling design (iii) the response design and (iv) the analysis. 

http://www.fao.org/3/a-i5601e.pdf
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Figure 24: The main four steps of an accuracy assessment: Obtaining and finalising the map data, 

sampling design, response design and analysis. The symbols show the software that can accomplish 

that step: 1 is R, 2 is QGIS, 3 is Excel, and 4 is Collect Earth. 

In an analysis step, an error matrix is produced. The error matrix is a cross-tabulation of the class labels 

allocated by map and reference data. It is derived as a q x q matrix with q being the number of classes 

assessed. The elements show the number of data points which represent a map class i and reference 

class j (nij). Usually the map classes are represented in rows and the reference classes in columns. The 

diagonal of the matrix contains the correctly classified data points, whereas the cells off the diagonal 

show commission and omission errors.  

 

The accuracy measures are derived from the error matrix and reported with their respective confidence 

intervals. They include overall accuracy, user’s accuracy and producer’s accuracy. The overall accuracy 

is the proportion of area classified correctly, and thus refers to the probability that a randomly selected 

location on the map is classified correctly (see equation 3). User’s accuracy is the proportion of the area 

classified as class i that is also class i in the reference data (see equation 4). It provides users with the 

probability that a particular area of the map of class i is also that class on the ground. Producer’s 

accuracy is the proportion of area that is reference class j and is also class j in the map (see equation 5). 

It is the probability that class j on the ground is mapped as the same class. 
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For all three accuracy measures, the confidence intervals need to be derived as well. The formula for 

the variance are presented in equations  5, 6 and 7 in Olofsson et al. (2014), and the 95% confidence 

interval can be calculated by multiplying the square root of the variance by 1.96. 

 

FAO has applied these accuracy assessment steps to measure forest area and forest area change. These 

measures are important for countries with reporting requirements to access results based payments for 

reducing emissions from deforestation and forest degradation.  

 

Interpretation of accuracy estimates 

 

For map accuracy judgement on the validity of the data depends on the purpose of the map and should 

be assessed on a case by case basis. The following discussion is extracted from the FAO (2016) report, 

pp. 20, 21. 

 

For example, for land cover change, it is necessary to look at the accuracy of change and not at the 

accuracy of two single land cover maps. Even if both land cover maps have high accuracy measures for 

a single point in time, it does not provide any information about the accuracy for change classes. A new 

change analysis using remote sensing images is necessary rather than comparing maps from different 

times.  

 

The overall map accuracy is not always representative of the accuracy of individual classes (GFOI, 

2013). High overall map accuracy does not guarantee high accuracy for forest loss. Therefore, both 

producer’s and user’s accuracy for all single classes need to be considered. 

 

Additionally total sample size, the number of strata and the allocation of the total sample size to the 

strata can favour one accuracy measure over the other. Accuracy is usually higher for stable classes 

than for change classes. Furthermore, accuracy is variable in different landscapes. The steps of the 

accuracy assessment described in the FAO practical guide need to be considered when assessing 

accuracy value.  

 

Reporting accuracy assessment results 

 

Again, extracting from the FAO (2016) report, p. 23: 

 

When reporting the results of accuracy assessment, the report should not only include the estimates of 

accuracy assessment, adjusted area and their respective confidence intervals but also the assumptions 

implied by several elements of the accuracy assessment. The assumptions can influence the level of 

accuracy, and include, but are not limited to: 

1. the minimum mapping unit and the spatial assessment unit 

2. the sampling design 

3. the forest definition 

4. the source of reference data 

5. the confidence level used for calculating the confidence intervals (typically 95 %). 

 

The estimates always need to be reported with their respective confidence intervals. Additionally, it is 

recommended to present the error matrix in terms of estimated area proportions instead of absolute 

sample. 
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For details of the practical application of accuracy assessment, see the Global Forest Change (GFC) 

example in the FAO Map Accuracy Assessment and Area Estimation Practical Guide 2016. 

 

3.6.3 Other concerns 

Other concerns about the results of EO data analyses can include: 

• bias in the data used to generate the model estimates. 

• assumptions underlying the adopted model. 

• influence of the choice of method of estimation of the quantities of interest. 

• potential misinterpretation of the results. 

• bias of area estimates directly computed from classified images. 

The first two points have been addressed earlier in this chapter, and the last point has been discussed 

above. The concern about the choice of estimation method is important since it raises the question of 

the margin for subjectivity of the results. Given the wide range of image classifiers and analytic 

methods, there is a concern that they can be ‘tuned’ to get the ‘right’ results, for example a desired 

proportion between classes, and hence that an analyst could choose/tune the algorithm to obtain the 

figure that better corresponds to their a priori belief. 

Another concern is the accuracy of the bias correction depends on the sample size of the field data used. 

A consequence of this is the value added of remote sensing is generally proportional to the effort put 

on the field survey, with the exception of some classes for which identification in the image is 

particularly reliable. 

These issues can be resolved in large part by following good practice guides – see, for example, the 

GEOSS guide by Gallego et al. (2008) – and by promoting transparent reporting, open data,open models 

and results and replication of results by independent groups.  

3.7 Summary 

This chapter has described a range of methodologies for analysing EO data. Following a discussion 

about the type of estimates that can be obtained from EO data, the focus turned to the three broad steps 

of pre-processing the data, techniques for analysing the data, and the critical evaluation of the analysis 

results. 

A range of references has been provided to indicate the relevance of the methods described and their 

practical application to EO data. The areas of application range across agricultural and environmental 

statistics to other fields such water quality detection and urban growth. The relevance of these estimates 

for the 2030 Sustainable Development Goals is a focus of the chapter, as described in Section 3.2.  

References have also been provided for the technical details of the methods described here. Further 

details are provided in the Appendix for selected methods. 

In addition to providing references, the chapter has also highlighted a case study for each of the three 

broad steps. These include details of a practical approach for pre-processing the data (developed and 

used by DSITI, Australia, for over a decade), a state space model for analysing time series of remotely 

sensed images (recommended by the Australian Bureau of Statistics) and good practice guidelines for 

accuracy assessment based on FAO (2016), and GEOSS (2008). More detailed case studies that employ 

the methods described in this chapter are presented in Chapter 4.  
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4. Pilot Projects and Case Studies 

A number of pilot projects were formulated under the umbrella of the Task Team, covering a range of 

applications. These projects are aligned with the mission and strategies of the Task Team; to contribute 

to the improvement of official statistics through the use of satellite imagery data, as well as supporting 

the monitoring of SDGs. 

Pilot projects can be considered examples of how the Task Team is working on its four specific 

activities:  

• Identify reliable and accurate statistical methods for estimating quantities of interest; 

• Suggest approaches for collecting representative training and validation data of sufficient 

quality; 

• Research, develop and implement assessment methods for the proposed models including 

measures of accuracy and goodness of fit; 

• Establish strategies to reuse and adapt algorithms across topics and to build implementations 

for large volumes of data. 

Naturally, progress achieved to date is not homogeneous.  Pilot projects show different levels of 

development. Three of the more mature projects are showcased in this chapter: 

Pilot Project 1: Application of satellite imagery data in the production of agricultural statistics, 

undertaken by the Australian Bureau of Statistics (ABS). 

Pilot Project 2: Study on Skybox Commodity Inventory Assessment, led by UNSD and undertaken 

by Google.    

Pilot Study 3: Study on the use of satellite images to calculate statistics on land cover and land use, 

undertaken by DANE, Colombia. 

Each report describes the processing techniques, data sources, selection criteria, and quality issues 

associated with data, as well as the analyses and results obtained at the time of this report. 

In addition to the pilot projects, five case studies are included in this chapter to complement the Task 

Team Pilot Projects. The case studies are as follows: 

Case Study 1: an evaluation of the implementation of various machine learning techniques for 

analysis of EO data for crop classification, undertaken by the Department of Science 

Information Technology and Innovation (DSITI) Australia and Queensland University of 

Technology (QUT) Australia. 

Case Studies 2 and 3: two published implementations of EO data analyses for estimation of crop 

yield. 

Case Studies 4 and 5: two fully operational methods developed for the analysis of EO data to derive 

official statistics. These have been developed by the National Statistics Office in Canada and 

the DSITI in Australia, respectively. 
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4.1 PILOT PROJECT 1: Application of satellite imagery data in the production of 

agricultural statistics (Australia) 

The Australian Bureau of Statistics Pilot Study for the application of satellite imagery data in the 

production of agricultural statistics outlines the outcomes for the study to be: “(…) to assess the 

feasibility of statistical methodology for classifying satellite surface reflectance data to crop type and 

estimating crop production”. This project was based on an empirical approach. The full paper is 

available on request through the Australian Bureau of Statistics (Marley et al 2014).  

Data specifications 

ABS acquired Landsat 7 imagery data from Geoscience Australia (GA) since this was the active Landsat 

satellite collecting data during the period for which they had ground truth data. Since the pilot was 

conducted, it would be recommended to use Landsat 8 or Sentinel 2 data as sources. The Landsat 

imagery data in the Australian Geoscience Data Cube (AGDC) is stored in one-degree latitude and 

longitude tiles.  Each tile is approximately 100km x 100km, with each pixel representing a 25m x 25m 

area of land.  Each pixel has six reflectance measurements associated with it, corresponding to six 

distinct bandwidths on the electromagnetic spectrum, namely red, green, blue, near infra-red (NIR), 

short-wave infra-red (SWIR) 1 and SWIR 2. Landsat 7 revisits the same area of land, on average every 

16 days, meaning that most pixels have a set of six reflectance measurements every 16 days. 

ABS acquired satellite imagery data from the AGDC for the 2010-12 calendar years. The Landsat data 

was used for crop classification. The extent of missing data in Landsat 7 imagery is a key quality issue, 

which is described in 4.1.4. For future projects this issue could be overcome by using Landsat 8 or 

Sentinel 2 data. Since there is a significant amount of missing data, a possible line of future research is 

to investigate possible methods for adjusting or imputing for the missing data. A possible solution is 

the use Model Data Assimilation approaches described in Chapter 2. 

Several MODIS data products are available at the Commonwealth Scientific and Industrial Research 

Organisation (CSIRO) and those that were of particular interest to the pilot study are listed in Table 6. 

Data from the MOD13Q1.005 product was used to investigate the feasibility of crop detection, which 

is measuring the presence or absence of crops, regardless of crop type. Product MOD13Q1.005 contains 

the Enhanced Vegetation Index (EVI) layer and the two main quality layers of interest; namely, the 

pixel reliability layer and Vegetation Index (VI) quality layer.  

The EVI is an example of the semi-empirical algorithm type referred to in Chapters 2 and 3, as the 

spectral bands used are known for having a relationship with chlorophyll and thus a measure of 

photosynthesis in plants, as well as the nearby infrared reflectance peak caused by healthy leaves.  

 

Product Description 

MOD09A1.005 500m pixels 

8 day composites20 

Band 1 to band 7 plus quality layers 

MOD09GA.005 500m pixels 

Daily 

                                                           
20 Products described as being 8 or 16 day composites indicates that the data provided for each image pixel are the best quality 

measurements from an 8 or 16 day period.  In these cases, an additional variable is included, specifying the exact day of the year that the 
data was measured. 
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Band 1 to band 7 plus quality layers 

MOD09Q1.005 250m pixels 

8 day composites 

Band 1 and band 2 (red and NIR) 

MOD11A1.005 1000m pixels 

Daily 

Land surface temperature/emissivity 

MOD11A2.005 1000m pixels 

8 day composites 

Land surface temperature/emissivity 

MOD13Q1.005 250m pixels 

16 day composites 

Vegetation indices (EVI, NDVI) plus quality layers 

Table 6:  MODIS data products used in the ABS pilot study 

 

Data processing 

This investigative pilot study develops various processing techniques to prepare data for use in 

accurately classifying satellite imagery as different crop classes and producing quality crop area 

statistics. The technical tasks were preparation and exploration of training data for crop type 

classification and preparation of training data for crop detection. 

Training data is the data used to build classification models; it is the product of integrating satellite 

imagery data and ground truth data and matches satellite land surface reflectance measurements to land 

cover or land use classes.   

Starting with the ground truth dataset from the Queensland Department of Science, Information 

Technology and Innovation (DSITI) the technical tasks, the preparation of training data for crop type 

classification consisted of two parts. Firstly, determine the field boundaries and secondly, the estimation 

of field-level sowing and harvest dates.  

Field boundaries were determined around the observed latitude and longitude points, to capture within 

field variation.  Manual inspection of satellite imagery data and drawing of boundaries using geo-spatial 

software was the most accurate and time-efficient means for determining field boundaries for this small 

scale feasibility study. 

For each pixel within the manually derived field boundaries, the Landsat 7 reflectance measurements 

were extracted for all the time points available from 2010 to 2012 using an internally developed R code. 

From this integrated dataset, the next task was to determine the sowing and harvest dates that define the 

growing season for each field.   

The estimation of field-level sowing and harvest dates was as follows; 

• Calculate the median pixel-level EVI value for each field, at each observed time point; 

• Fit a smoothing spline to the irregular time series of field-level median EVI values; then the 

dates associated with the nearest local minima either side of the date when the ground truth data 

was observed were labelled as the sowing (left side) and harvesting (right side) dates. 

A number of business rules were incorporated for fields for which the ground truth data had insufficient 

satellite imagery data (due to missing data, poor quality data and cloud cover) to support confident 
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estimation of sowing and harvest dates.  Out of 962 ground truth sites, this automated method 

determined the sowing and harvesting dates for 414 sites. These 414 fields only included those with a 

seasonal reflectance pattern that showed distinct peaks and troughs. For future studies, the variance of 

the fitted spline could be calculated.  

To create the final training dataset, these estimated sowing and harvest dates were used to strip down 

the intermediate, integrated dataset to only those pixel reflectance measurements that corresponded to 

the growing season of the crop that was observed. A second training dataset was also created, which 

contained the smoothed median EVI values at regular intervals over the estimated growing season of 

each observed field. 

Exploratory data analysis was undertaken on the training data to identify suitable covariates that would 

enhance the predictive power of a crop classification model, using repeated measures ANOVA on EVI 

and other measurements. Repeated measures ANOVA at the pixel level, with random effects for crop 

class and field, was conducted to test the variation of reflectance measurements and the EVI between 

crop classes (namely, maize, sorghum, barley and wheat).  In the absence of random field effects, an 

ANOVA analysis showed that mean reflectance measurements were significantly different between 

crop types.  However, when random field effects were included, these differences dissipated.  While 

there was significant variation within and between fields, the variation between crops was not 

statistically significant. 

The strength of relationships between soil and landscape characteristics available in CSIRO’s Soil and 

Landscape Grid (SLG) data and EVI values were explored via various visualisation techniques 

including density plots, box plots and scatter plots.  The visualisations demonstrated there is not enough 

evidence to indicate the SLG variables have significant relationships with the satellite reflectance 

measurements. Random forests were also considered for variable selection. As a result of this brief 

investigation, only a small number of significant relationships were found. For example, wheat crops 

require deeper soils with higher levels of clay. However, the results showed the inclusion of the soil 

and landscape variables actually increased prediction error; hence this was not considered further.  

A number of phenological characteristics were derived from the field-level smoothed EVI curves, to 

use in crop classification models, including length of a crop growth cycle in days, number of days taken 

to reach maximum EVI since sowing, areas under the curve in different growth phases and within field 

EVI distributional measures such as range, maximum, minimum, kurtosis, skewness and variance. A 

major limitation of crop growth curve characteristics for statistical modelling is a potential high degree 

of multi-collinearity between variables.  Multi-collinearity can be overcome by dimension reduction 

techniques, such as principal component analysis (PCA). An alternative methodology, functional data 

analysis, was also trialled which created functional forms from the entire (smoothed) EVI series for the 

growing season. This approach avoided problems in model variable selection of suitable phenological 

characteristics and the issue of multi-collinearity. 

Next training data was prepared for crop detection. It started with building a crop detection model, 

which served to create a crop mask. To create a crop mask, ground truth data containing sites that have 

been and have not been used for cropping is required. The north-west region of Victoria was chosen as 

the pilot region for this exercise, for which ground truth data was available from the Australian Ground 

Cover Reference Sites Database (AGCRDS) and the ABS 2010-11 Agricultural Census. 

The ground truth dataset included 18 unique sites in the AGCRSD within the north-west region of 

Victoria, and nine sites from the 2010-11 Agricultural Census respondents in the study area. Additional 
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sites that were used for non-cropping land use (such as bodies of water, national parks, forests, etc.) 

were required to give balanced ground truth data, and these were selected manually by eye using Google 

maps. The bounding latitudes and longitudes of the selected sites were recorded in the ground truth 

dataset, along with the crop status and the season; only the year that the ground truth data was collected, 

in which the ground truth observation occurred.   

Data selection 

To satisfy the project purposes, different data sources were included; satellite imagery (mainly MODIS 

and Landsat); ground truth data (agricultural census, reference sites and roadside observation data 

collected by DSITI). In future work, these datasets may be complemented with additional data sources 

such as Sentinel-2, VIIRS, Sentinel-3, Synthetic aperture radar data from Sentinel-1, SLG data, and 

meteorological and climate data.  

Nevertheless, there is a key issue concerning the availability and suitable quality of EO data sources; 

freely and commercially available data have restrictions related to missing values, periodicity and 

quality. Two ways to overcome these issues were considered. The first was validation and 

standardisation. This involved comparing data from the same source at different times, and/or 

comparing between several sources. The AGDC Landsat data for Australia has been pre-processed and 

calibrated to the same standard across time. CSIRO’s MODIS data has been similarly standardised, 

however other satellite imagery sources would need to be standardised before usage in crop detection 

and classification analysis. The second issue was capacity. Even freely available data and tools require 

qualified personnel (e.g. data scientists) to properly extract the wealth of information contained in them. 

This process may nevertheless be quite resource intensive and needs to be planned for in any Big Data 

undertaking.  

4.1.4 Quality issues 

Missing data was a key quality issue for this pilot project. There are two main sources of the missing 

data: 

1. Landsat 7 images are plagued with stripes of missing data, caused by a malfunction of the scan 

line corrector on board the satellite since May 2003.  The stripes are regularly spaced following 

the edge of Landsat’s scan and should not be correlated with the type of agriculture grown in 

the pixels affected; hence it should not lead to statistical bias except in terms of reducing the 

effective sample size.  This is not a problem for other satellites, in particular Landsat 8 which 

is now in use and retrieving data and Sentinel-2 which is now collecting more frequent data at 

10 m resolution.  

2. GA supplied a quality layer with the satellite imagery data, treating any pixels labelled as poor 

quality as unusable.  The main causes of poor quality are cloud cover or cloud shadow. This 

approach prevents poor quality pixels affecting results.  

There is also significant variation in satellite reflectance patterns between different fields growing the 

same crop type. Obtaining additional predictor variables that explain these variations from one area to 

another might help improve the classification model’s prediction accuracy, however this has proved to 

be a significant hurdle to obtaining more statistically accurate results. This problem is associated with 

the empirical approach, but potentially could be overcome by using biophysical approaches which were 

not in scope of this pilot project.  
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4.2 PILOT PROJECT 2: Skybox Commodity Inventory Assessment- now part of Planet 

(UNSD and Google) 

The Google pilot project explored the estimation of crude oil inventory using analytics derived from 

satellite imagery as a means to promote economic transparency. 

The pilot specifically focused on quantifying volumes of base commodities, namely crude oil, using 

satellite imagery. The trade of this commodity, though vital to the global system and central to the 

economies of numerous emerging countries, is often inaccessible or inaccurate. 

By measuring the shadows on floating lid crude oil tanks, Skybox attempted to assess the volume of 

inventory present in a given tank. This was done using fairly straightforward trigonometry, taking into 

account the target’s latitude & longitude, the time of day, and the satellite’s collection angle. 

To assess the accuracy of the core methodology, Google conducted analysis of the Cushing, Oklahoma, 

USA oil storage site. This is the largest oil storage facility in the world, and the EIA conveniently 

publishes weekly data on oil inventory stored there. By analysing the difference between Google 

estimates and official reporting, one should be able to assess the accuracy of approach. 

Data specifications 

Panchromatic  450 – 900nm 

Blue  450 – 515 nm 

Green  515 – 595 nm 

Red 605 – 695 nm 

NIR  740 – 900 nm 

Panchromatic GSD      90 cm at nadir 

Multispectral GSD      2 m at nadir  

Swath Width               8 km at nadir  

File Format                 16 – bit Geo TIFF 

Table 7: Imagery specifications 

Colour  Panchromatic 

Duration Up to 90 seconds 

Frame Rate 30 frames per second 

GSD  1.1 m at nadir  

FOV 2 km by 1,1 km 

File Format MPEG – 4 (H 264 

encoding) 

Table 8: Video specifications 

 

Data processing 

Normal issues such as cloud cover were presented and solved by a combination of human and automated 

processing. Further details about data processing techniques were not included due to commercial 

sensitivities related to the project.  
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Data selection 

Data were adequate to fit the purpose of the project. In this case, a single source has been used; SkyBox 

(now Planet) imagery sub-meter accuracy. 

The data used by Google focused on monitoring specific targets with high economic importance; the 

major refineries, metropolitan areas, mines and maritime ports, among others. 

Quality issues 

Google used images from Skybox. Regarding the crude inventory assessment, Skybox leveraged a 

proprietary combination of fully-automated and human-refined processes. The error in the 

measurements is being researched on an ongoing basis, but potential sources include relatively high 

solar angle during summer months, image processing methodology, signal to noise ratio, facility and 

infrastructure idiosyncrasies, and satellite collection angle.  

In some cases there were gaps in collection due to cloud cover. However, with a full constellation of 24 

satellites, Skybox will be able to observe any location on earth between five and seven times per day. 

This could help significantly to overcome missing data issues. 
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4.3 PILOT PROJECT 3: Use of satellite images to calculate statistics on land cover and 

land use (Colombia) 

DANE conducted a pilot project with the aim to propose a method to calculate SDG indicator 68 "Ratio 

of land consumption rate and population growth rate", and seeks to obtain an estimation of land use 

efficiency, through monitoring the relationship between land consumption and population growth 

(SDSN, 2016): 

“(…) this indicator benchmarks and monitors the relationship between land consumption and 

population growth. It informs and enables decision-makers to track and manage urban growth at 

multiple scales and enhances their ability to promote land use efficiency. In sum, it ensures that the 

SDGs address the wider dimensions of space and land adequately and provides the frame for the 

implementation of several other goals, notably health, food security, energy and climate change”. 

The objectives of the project were; 

• To assess the feasibility of applying remote sensing methods for the estimation of land 

consumption rate, and Geographic Information Systems (GIS) based spatial analysis for the 

calculation of the relationship between land consumption and population growth in 

metropolitan areas; 

• To evaluate the methodology by its application to the Barranquilla metropolitan area, through 

satellite images and population data for the years 2005, 2010 and 2015. 

Data Specifications 

To calculate the indicator, the time interval of five years was chosen. This criterion was considered 

appropriate to see the evolution in the population and to have adequate imagery coverage. The years 

included in the analysis are 2005, 2010 and 2015. 

The criteria to choose the images were: 

• Availability 

• Cloud coverage under 10% of the study area 

• Same month for each year to minimise the changes generated by rainy or drought seasons, 

phases of crops and others 

• Full coverage of the metropolitan area to avoid image mosaics 

• Similar spectral bands. 

Free Landsat images were used, and were downloaded from the United States Geological Survey 

(USGS) Earth Explorer website (http://earthexplorer.usgs.gov/). The study area is covered by the 

Landsat path-row 9-52. Table 10 shows mission, date and file name for each image used in the pilot 

project.  

Path-Row Mission Capture date File 

9-52 Landsat 7 January 7 2005 LE70090522005007ASN00 

9-52 Landsat 7 February 8 2005 LE70090522005039EDC00 

9-52 Landsat 5 January 29 2010 LT50090522010029CHM01 

9-52 Landsat 8 January 11 2015 LC80090522015027LGN00 

Table 10:  Landsat images included in the pilot project  

For 2005, two scenes were collected. This was necessary to perform an enhancement on the image. The 

process is described in the processing section. 

http://earthexplorer.usgs.gov/
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Data processing 

Processing techniques involved two steps; imagery pre-processing and change detection 

(image segmentation and classification). Imagery pre-processing included procedures to prepare 

the images for the classification process; filling the gaps (for the year 2005 image), radiometric 

resolution scaling (for the year 2015 image), cartographic projection, subset image creation and layer 

stacking. To fill the gaps, the USGS Gap-Fill Algorithm was used to improve 2005 images Landsat 7 

ETM+ due to lack of Scanning Line Corrector (SLC). A radiometric resolution scaling was carried out 

for the 2015 Landsat 8 image.  

 

Subsets of the images were generated covering a buffer of 500 meters around the metropolitan area of 

Barranquilla. This distance is a compromise between the coverage of the surrounding areas and the 

spatial limitation of the 2010 Landsat 5 image, which is smaller than those from the other missions. The 

transition from Landsat 5 to Landsat 7 and then to Landsat 8 included the addition of new bands (layer 

stacking) and some previously defined were sub-divided. Even so, most of them are comparable.  

The second process carried out was change detection. It was used for post-classification comparison. In 

this method, each date of rectified imagery is independently classified to fit a common land type schema 

(equal number and type of land-cover classes). The resulting land cover maps are then overlaid and 

compared on a pixel-by-pixel basis. The result is a map of land-cover change. This per-pixel comparison 

can also be summarised in a ‘from-to’ change matrix, also called a transition matrix. The ‘from-to’ 

change matrix shows every possible land cover change under the original classification schema. 

Image classification is the process used to produce thematic maps from imagery. Since one of the 

objectives in the pilot project was to identify urban settlements and given their spectral response is very 

similar to that from barren or minimal vegetation, the OBIA method was used in order to include 

additional features to the spectral ones and to improve the thematic accuracy. To perform the process, 

the open-source INTERIMAGE was used (no license payment). The image to be classified, and the 

semantic network (hierarchical entities that will be identified in the image) were entered to 

INTERIMAGE as input. Then, the methods and operators that allow the generation of objects and their 

classification were defined. 

Figure 25 describes the components of the interpretation process on INTERIMAGE. The system 

implements a specific interpretation control strategy, guided by a structured knowledge model through 

a semantic net (hierarchical entities that will be identified in the image). The interpretation control is 

executed by the system core, which uses as input a set of geo-referenced images, SIG layers, digital 

elevation data or other geo-registered data. Through the interpretation of the scene, input data are 

processed with the help of top-down and bottom-up operators. 
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Figure 25: INTERIMAGE flow chart for object-based classification. 

Top-down operators are responsible for the partition of the scene into regions, considered as object 

(segmentation). This process creates objects by grouping similar pixels. It starts with each pixel forming 

one image object, which is sequentially merged to form bigger ones. The Normalised Difference 

Vegetation Index (NDVI) numerical indicator and TA Baatz Segmenter algorithms were used to 

obtain the image segmentation.   

After defining the segmentation algorithms, decision rules were introduced for each node of the 

semantic network. These rules allow filtering, from the set of objects, those that belong to the class of 

interest.  In a decision rule, it is possible calculate a variety of attributes based on spectral values, shape, 

texture and topological characteristics of image segments. These attributes can be used to select objects 

within a set, with a user-defined threshold. Objects that are not within a threshold are evaluated in a 

different class according to the order defined in the semantic network. If an object meets the criteria for 

more than one class, it is assigned to that with the higher reliability. 

Top-down operators are responsible for the partition of the scene into regions, considered as object 

hypotheses (segmentation). This is a preliminary classification which identifies segments with the 

potential to belong to each class. The bottom-up operators refine the classifications produced in the top-

down step (confirming or rejecting) and solving possible spatial conflicts between them. At the end of 

the interpretation process, the hypotheses become validated object instances (classification). 

The image to be classified, and the semantic network (hierarchical entities that will be identified in the 

image) are entered to INTERIMAGE as input. Then, the methods and operators that allow the 

generation of objects and their classification are defined. 

The project’s semantic net was created based on the previous knowledge of the study area and taking 

into account the Landsat imagery land cover classification from the project GeoCover21. 

                                                           
21 http://www.mdafederal.com/geocover 
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Finally, the Normalised Difference Vegetation Index (NDVI) numerical indicator and TA Baatz 

Segmenter algorithms were used to obtain the image segmentation   

Data selection 

Despite some quality issues, the Landsat data was fit for the purposes of the project because it was 

freely available and there are several tools to solve quality issues. For future projects using EO data 

sources such as Landsat 8 and Sentintel-2 could overcome quality issues associated with Landsat 7 

data.  

The second source of data was population data. Considering that 2005 was the last year a census was 

carried out in Colombia, population projections were used. This could affect the quality of the results, 

but is the most common available option to have population information during inter-census periods.  

This data source was adequate to meet the project´s goals. 

Criteria to select data were related to free availability and opportunity. In this sense, they were 

appropriate. A possible search of additional sources can be done in future exercises with MODIS, 

Sentinel-2 Landsat 8, Sentinel-3 VIIRS imagery, for instance, and emerging processing tools like 

Google Earth Engine.  

Quality issues 

After using the USGS Gap-Fill Algorithm, the improved Landsat 7 images showed enough quality for 

the study purposes. A confusion matrix was calculated using Google Earth images and orthophotos 

for reference. This matrix, as mentioned previously in Chapter 3, allows assessment of the 

classification quality. 
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4.4 CASE STUDY 1: Application of machine learning techniques to satellite imagery data 

in the production of agricultural statistics (Australia) 

As an extension of the ABS pilot project for the task team, researchers at the Queensland University of 

Technology (QUT) in Australia applied a range of machine learning techniques to the problem of crop 

classification, using the same data that were acquired for Pilot Project 1. The aim was to evaluate the 

ease of application of the methods and compare the resultant estimates. 

The machine learning methods included neural networks, boosted regression trees and regularised 

multinomial regression. These methods are described in the Appendix. Two types of regularisation were 

used as forms of variable selection, with Ridge regularisation shrinking the coefficients of ineffective 

variables substantially, and Lasso regularisation shrinking  them to zero  and hence effectively 

excluding them from the analysis.  

Data specifications 

This case study used the Landsat data from the ABS pilot project. Data specifications are described in 

Section 4.1.1.  

The response variable was crop type. The ground truth dataset comprised seventeen (17) crop types: 

bare soil, barley, barley, cotton, leucaena,  lucerne, maize, millet, mungbean, oats, improved pasture, 

natural pasture, peanut, sorghum, forage sorghum, sunflower, wheat and woody vegetation.  

The six spectral bands from the Landsat data, as well as the month and year of the observation, were 

used to predict the crop type.  As no time series method was incorporated here the data set was reduced 

to only those months known to have ground truth values (March 2011, September 2011 and February 

2012). A ground referenced dataset of land cover categories for 1186 sites was available to construct 

and evaluate the models. 

Data processing 

Ground referenced observations of land cover typically were for areas spanned by multiple pixels of 

Landsat 7 imagery. Thus the 1186 ground referenced observations of land cover categories expanded 

to 247 210 pixels of satellite imagery. These ground referenced pixels are referred to as observations.  

The proportion of pixels corresponding to each crop type in the ground referenced dataset varied widely. 

Dominant crop types were cotton (28%), sorghum (22%), natural pasture (13%) and wheat (11%). Nine 

(9) crop types had less than 1% of the total number of ground referenced pixels. 

An  80/20 training/validation split was used for all analyses (i.e., a random sample of 80% of the ground 

referenced observations was used to construct the model and the predictive capability of the model was 

then assessed using the remaining 20% of the data). The number of repetitions (runs) with different 

training/validation samples varied for the different machine learning methods, and was generally small 

because the large volume of data meant that runs were computationally prohibitive and that the variance 

in results between runs was minimal. 

Various vegetation indices (VIs) were calculated as functions of the Landsat imagery data. As described 

earlier in this chapter, VIs are designed to highlight the contrasts between bands that may be indicative 

of vegetation characteristics. The functions that define VIs can be more complex than the products and 

polynomial terms typically used for covariates in regression analyses.  There is a range of software to 

calculate VIs from reflectance data; see, for example, the R packages ‘hsdar’ Meyer and Lehnert (2016) 

and ‘RStoolbox’ Leutner and Horning (2016). However, given the apparent internal inconsistencies in 

the ‘hsdar’ package and the requirement of the ‘RStoolbox’ package of reflectance data in raster format, 
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selected vegetation indices were calculated by hand using the formulae in the RStoolbox package and 

constants provided by Ahmadian et al. (2016) and She et al. (2015). 

Implementation of Methods 

All analyses were undertaken using the R statistical software. The parameters of the neural network and 

boosted regression trees were tuned by hand to provide optimal results.  The neural network was fitted 

using the H2O package with the ‘rectifier’ activation function and hidden layer layout of 200 nodes in 

layer 1, 100 nodes in layer 2 and 15 nodes in layer 3. The boosted regression tree was fitted using the 

‘gbm’ package. Both ridge and LASSO regularised multinomial logit regression models were fitted 

using the  R package ‘glmnet’ with 100-fold cross validation. Since cross validation on data with 

extremely rare categories is problematic, the regression models were restricted crops with at least 

10,000 observations (bare soil, cotton, maize, natural pasture, peanut, sorghum and wheat). 

For the regression methods, since there was considerable collinearity among the original imagery bands 

and vegetation indices, the design matrix was filtered to enforce a maximum correlation coefficient 

magnitude between remaining covariates of 0.85. The retained variables were Landsat bands 1, 3, 4 and 

5, the Normalised Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index, Modified 

Normalised Difference Water Index (MDWI) and Simple Ratio Vegetation Index (SR). All covariates 

were re-centred and re-scaled (to column means of zero and column Ll norms of one). Linear, pairwise 

interactions and polynomial terms up to polynomial order four were included in the regression models. 

Two different approaches were used to assess the results, namely a confusion matrix and a Receiver 

Operating Characteristic (ROC) curve. In the confusion matrix, the predicted crop classes are compared 

with the actual classes. The ROC shows the correct classification rate of a binary classifier as the 

discrimination threshold is varied.  

Results 

The neural network configuration resulted in an overall misclassification rate of approximately 26% 

averaged over 10 iterations. The variance for these iterations was less than 8.3e-06. However, the 

misclassification rates for specific classes were far worse. There was a fairly clear correlation between 

the accuracy for a given class the overall proportion of that class in the sample. One potential method 

to address this would be to use a more even sample distribution by class which is non representative of 

the true ratios. Alternatively, a small proportion of classes could be dropped or combined into a single 

‘other’ class.  

The boosted regression tree approach revealed the domination of one variable, band 5 of the Landsat 

imagery, in discriminating between the crop types. The relative influence of this band compared with 

the other five bands is shown below. Band 5 (1.55 - 1.75u m) is sensitive to the turgidity or the amount 

of water in plants. In other environmental studies band 5 has separated forest lands, croplands, and 

water bodies. Forests have appeared as a comparatively darker tone than croplands (light grey) and 

grass lands (lighter tone). No improvement was gained by including the derived vegetation indices. It 

is likely that any complex relationship captured by a pre-processed VI could be similarly represented 

by the original variables in the boosted regression tree analysis and therefore adds little value.  
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Figure 26: Relative influence of Landsat imagery bands, obtained from the boosted regression tree 

analysis. 

The Lasso regularised multinomial logistic regression models were able to correctly categorise 78% of 

the Landsat pixels. The nonlinear and interaction terms contributed less than half a percent to overall 

classification accuracy, but they improved the classification of particular crop types. For example, under 

the Lasso models the inclusion of these terms provided much better classification of maize.  

The Ridge models achieved an overall correct classification rate of 68.5% using only linear effects. In 

contrast to the Lasso models, the Ridge models assigned no pixels to maize and very few to wheat, and 

were also substantially less accurate in classifying peanut and natural pasture. The addition of nonlinear 

and interaction terms increased the overall correct classification to 75%, with substantial improvement 

in classification of wheat, maize and peanut. In contrast to the Lasso models which by construction 

eliminates uninformative variables, all covariate terms are retained in the Ridge models. 

Discussion 

This study achieved its aim to implement a range of machine learning methods for analysis of EO data. 

For all methods, there were challenges in managing large datasets and correctly classifying a large 

number of crop types, some of which are very small. While the methods are readily available in software 

such as R, these challenges meant that considerable time and effort was required to implement and tune 

the methods. Nonetheless, the study confirmed the conclusions of other published papers, that these 

methods hold great promise for automatic crop type identification. 

 Some improvements to the implementation of the methods were noted. First, in the current analysis the 

cross validation folds were constructed by random subsetting of the full data set using the default 

method supplied in the ‘glmnet’ package. A better strategy would be to use a set of folds constructed to 

ensure that each fold contains approximately the same proportion of observations of the different 

response categories as are present in the complete data. Second, the challenge of identifying rare 

responses could be better addressed by artificially inflating the number of observations in these 

categories using bootstrapping or subsampling techniques, or by enforcing different degrees of 

coefficient shrinkage for the various response categories. Third, additional model diagnostics could 

assist in better understanding the misclassification rates for different crop categories and hence reducing 

them. Fourth, additional covariates could be considered, such as MODIS derived variables and tasselled 

cap indices. Fifth and last, other regularisation methods for the regression models, such as elastic net, 

could be evaluated, taking into account the different computational burdens. 
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4.5 CASE STUDY 2: Crop yield prediction (USA) 

This study, reported by Gao et al (2017), aimed to derive crop growth stage and predict yield from 

remotely sensed data, to contribute to more efficient management of irrigation, improved food security 

and efficient commodity trading.  

The EO data were intended to supplement ground based observation on crop progress and condition 

currently published by USDA NASS. Under this system, reporters provide visual observations and 

subjective estimates of crop progress, which are published weekly in the NASS Crop Progress reports.  

Gao et al extend the application of data fusion down to sub-field scales for phenology mapping over 

agricultural landscapes. The main objective was to test the ability of this Landsat-MODIS data fusion 

methodology to map crop phenology at 30-m resolution, where crop growth stages for different crops 

can be distinguished. Maps of crop progress were produced across an intensively cropped area in central 

Iowa.  

Data specifications 

The study area was in central Iowa, in a rain-fed agricultural area in the U.S. Corn Belt region. Corn 

and soybean are the major crop types.  

Nine years of Landsat and MODIS data from 2001 to 2014 were chosen to generate the fused Landsat-

MODIS reflectance time-series for crop phenology mapping. 

Other data sources included in the study are briefly summarised here:  

• The cropland data layer (CDL). NASS CDL 30-m resolution data from 2001 to 2014 were 

downloaded and used to analyse the crop phenology patterns for major crop types over the 

study area. 

• Flux tower data. In-situ meteorological and surface flux measurements were collected over a 

pair of adjacent agricultural fields north of Ames (near Buckeye), IA in Hardin County. 

• Field biophysical data. Field observations of crop progress were conducted during growing 

seasons from 2010 to 2013, sampling two observation sites in Dallas County, Iowa located 

within the study area. 

 

Data processing 

The analyses conducted in this study include two core components: data fusion and phenology 

extraction. The entire processing flow chart is shown below.  For further details see Gao et al (2017).  
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Crop phenology data processing and analysis flow chart. Rectangles indicate data products and ellipses 

represent processing steps/modules 

Source: Gao et al (2017). Toward mapping crop progress at field scales through fusion of Landsat and 

MODIS imagery. Retrieved from:  

http://www.sciencedirect.com/science/article/pii/S0034425716304369 

Data selection 

Only mostly clear Landsat scenes were used as fine resolution images to pair with MODIS data as input 

to STARFM. Partially clear Landsat images were not used in the data fusion process. Landsat 7 images 

that suffer SLC failure after May 2003 were not used as input pair images since SLC-off gaps will 

remain in the fused images and affect the subsequent phenology mapping. However, all valid and clear 

pixels (as identified in the cloud mask) from all available Landsat images, including partially clear and 

Landsat 7 SLC-off images, were used in the phenology mapping itself.  

Method 

The STARFM approach was used to produce multi-year daily 30-m surface reflectance and NDVI time-

series which captured spatial and seasonal variability between the corn, soybean and forested vegetation 

classes that characterise this region. The STARFM data fusion approach has been described in detail in 

Gao et al. (2006).  
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Two approaches (MODIS and TIMESAT) were applied to extract crop phenology from the daily time-

series NDVI. The TIMESAT approach relies on a pre-defined threshold (percent change of the seasonal 

amplitude between minimum and maximum NDVI values) to determine the start of the season, the end 

of the season, and the length of the season. The MODIS phenology approach uses curvature analyses 

to identify inflection points in the fitting curve. A double logistic function was selected to fit time-series 

NDVI for both approaches. 

Crop phenology metrics retrieved from the fused Landsat-MODIS data were compared to crop growth 

stages reported at district and county levels from the NASS CP reports. Observations at the field scale 

were examined using the corresponding Landsat pixels. 

The figure below shows the fitted NDVI curves from 2011 for corn and soybean pixels at the two South 

Fork flux tower sites, overlaid with the crop growth stages from NASS county-level CP reports. Also 

shown are daily NEE and GPP estimates derived from eddy covariance measurements during the 

growing season in 2011. The general correspondence in the time behaviour of the NDVI and crop 

carbon uptake curves demonstrates that the NDVI time-series appears to be behaving reasonably in 

these two fields in relationship with the NASS CP stages. 

 

Figure 27: NDVI curves for corn (a) and soybean (b) pixels compared to daily NEE and GPP (secondary 

axis, only measured during vegetative growing season) and crop growth stages from NASS county-

level reports in 2011 (red vertical lines). Clear correspondences can be identified among time-series 

NDVI, NEE and GPP during crop vegetative stages at the Landsat pixel resolution. 
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Source: Gao et al (2017). Toward mapping crop progress at field scales through fusion of Landsat and MODIS imagery. Retrieved from: 

http://www.sciencedirect.com/science/article/pii/S0034425716304369 

Quality issues 

Application of these methods in real-time is another area that requires additional research. 

Operationally, crop growth stages and conditions need to be reported weekly throughout the current 

growing season. The phenology programs used in this paper were not designed to map within-season 

crop phenology using partial years of data. However, the growth-shape model approach of Sakamoto 

et al., 2010 and Sakamoto et al., 2011 may be adaptable for real-time field-scale applications using 

fused Landsat-MODIS time series. 

Results 

The STARFM approach was used to produce multi-year daily 30-m surface reflectance and NDVI time-

series which captured spatial and seasonal variability between the corn, soybean and forested vegetation 

classes that characterise this region. Biases between fused and observed Normalized Difference 

Vegetation Index (NDVI) were between − 0.011 to 0.028 and mean absolute differences were < 0.083 

for all years from 2001 to 2014. These biases are due in part to sensor, waveband, and view angle 

differences between Landsat and MODIS acquisitions, and it was demonstrated that it is important to 

characterise these biases to fully understand performance of the fusion output. 

Using time-series of 30-m resolution NDVI maps derived from Landsat-MODIS data fusion, crop 

phenological metrics were extracted using two established phenology programs (MODIS and 

TIMESAT). While both approaches generated comparable metrics, the MODIS curvature approach was 

deemed most practical for operational applications because it does not necessitate specification of pre-

defined thresholds, as required by the TIMESAT approach.  

The results of the study suggest there is utility for robustly backcasting emergence from remote sensing, 

e.g. as input to crop simulation models. This study demonstrated that time-series data from multiple 

remote sensing sources can be effectively integrated and used to detect major crop physiological stages 

at the field scale. At 30-m resolution, the phenology for corn and soybean crops can be clearly separated 

and quantified for field sizes typical in the United States. This capability has applications in farmland 

management and yield prediction. However, routine mapping of crop growth stages within the season 

is still challenging due to the fact that only a partial year of data is available for near real-time mapping. 

Real-time applications will require an appropriate phenology approach and frequent clear-sky remote 

sensing imagery. Satellite image data fusion can play a significant role in achieving this goal. 
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4.6 CASE STUDY 3: Monitoring crop development (South Korea) 

The aim of this study was to investigate the applicability of high-temporal-resolution Geostationary 

Ocean Colour Imagery (GOCI) satellite data for monitoring the development of paddy rice in South 

Korea. The monitoring  measures included spectral analyses and vegetation index profiles. GOCI 

launched successfully on 27 June 2010. It is designed to detect, monitor, and predict regional ocean 

phenomena around Korea and is equipped with eight spectral bands (six visible, two near infrared). 

Data specifications 

In this study, two paddy rice areas were selected; one was located in Kyehwa and corresponds to a 

GOCI pixel with coordinates of 35°46′37N and 126°41′03E (Figure 1b). The other was in Kimjae and 

corresponds to a GOCI pixel with coordinates of 35°44′59N and 126°52′15E (Figure 1c). 

The study site at Kimjae represents the double cropping of barley and early maturing rice cultivars, and 

the site in Kyehwa represents the most popular paddy rice agriculture with an intermediate-late-

maturing rice cultivar. As these study sites are relatively homogeneous, despite the small paddy units, 

the temporal dynamics of different crops should be recognisable in the daily satellite image data 

analysis.  

 

 

Figure 28: Study area. (a) Red Green Blue (RGB) colour composite image from the Geostationary 

Ocean Colour Imager (GOCI) acquired on 1 April 2011. The red rectangles, (b) and (c), in (a) are shown 

in (b), and (c), respectively, giving detailed views using high-resolution RapidEye multispectral data 

obtained on 5 August 2011 (b), and 11 October 2011 (c). The blue rectangles in (b), and (c) are 

geometrically matched with corresponding satellite observation pixels. 

Source: Yeom, J-M., and Kim, H-O. (2015) Comparison of NDVIs from GOCI and MODIS Data towards Improved Assessment of Crop 

Temporal Dynamics in the Case of Paddy Rice. Remote sensing (7), 11326 – 11343.  
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Ground measurements were performed using the multispectral radiometer (MSR) to evaluate satellite-

based vegetation profiles for comparative analysis. Field measurements were carried out from June to 

October 2014. To obtain the crop development characteristics of the paddy rice, measurements were 

made on eight dates based on the cultivation schedule, including transplantation and harvest. 

Data processing 

For the GOCI satellite image, further pre-processing, including conversion of digital numbers (DN) to 

radiance, cloud masking, and atmospheric correction, was performed to calculate surface reflectance. 

See Yeom and Kim (2015) for further details.  

 

Data selection 

The study compared two sets of optical earth observation satellite data with the same spatial resolution 

of 500 m; one was from a geostationary (GOCI) and the other from a sun-synchronous satellite 

(MODIS). The fifth and eighth GOCI bands were used for calculating the normalised difference 

vegetation index (NDVI). For comparison, MODIS NDVI products were applied as a reference. This 

study analysed the data for the years 2011 to 2014. 

 

Quality issues 

For the comparison of the NDVI calculated using moderate-resolution satellite data with the field 

measurements, it is necessary to consider the mixed-pixel problem. Because the paddy units in South 

Korea are relatively very small, it is very difficult to observe a non-mixed spectral value for rice paddies 

on the moderate spatial resolution GOCI data. 

Method 

A vegetation index was calculated from GOCI data based on the bidirectional reflectance distribution 

function (BRDF)-adjusted reflectance, which was then used to visually analyse the seasonal crop 

dynamics. These vegetation indices were then compared with those calculated using the Moderate-

resolution Imaging Spectroradiometer (MODIS)-normalised difference vegetation index (NDVI) based 

on Nadir BRDF-adjusted reflectance. 

Results 

The results show clear advantages of GOCI, which provided four times better temporal resolution than 

the combined MODIS sensors, interpreting subtle characteristics of the vegetation development. In 

general, GOCI and MODIS displayed similar temporal variation in NDVI under benign weather 

conditions, because they can secure enough cloud-free observations for full inversion BRDF modelling. 

During the monsoon season, however, with its long periods of rain and many cloudy days, GOCI was 

found to be more useful for extracting cloudless or less cloudy areas by arraying its eight images to 

calculate representative daily data.  

The study also found the GOCI BAR NDVI was more useful for crop signal monitoring than the widely 

used MVC NDVI. The authors concluded the very high temporal resolution of GOCI is very beneficial 

for monitoring crop development, and has potential for providing improved information on phenology. 
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4.7. CASE STUDY 4: An Operational Framework for Large-Area Mapping of Past and Present 

Cropping Activity Using Seasonal Landsat Images and Time Series Metrics (Australia) 

In Queensland, Australia, the Department of Science, Information Technology and Innovation (DSITI) 

have been using satellite imagery for statistical analysis for many years. Although DSITI is not formally 

part of the Task Team, their study is included in this chapter as a case study for NSOs.  

Managing land resources to support the needs of the population is a mandate common to all levels of 

government in Australia, and this study by DSITI uses satellite imagery data to identify actively 

growing crops in Queensland, Australia.  

For the major broadacre cropping regions of Queensland, Australia, the complete Landsat Time Series 

(LTS) archive from 1987 to 2015 was used in a multi-temporal mapping approach, where spatial, 

spectral and temporal information were combined in crop-modelling process, supported by training data 

sampled across space and time for the classes Crop and No-Crop. 

 

Temporal information within summer and winter growing seasons were summarised for each year, and 

combined with various vegetation indices and band ratios computed from a pixel-based mid- season 

synthetic spectral image. All available temporal information was spatially aggregated to the scale of 

image segments in the mid-season synthetic image for each growing season and used to train a number 

of different predictive models for a Crop and No-Crop classification.  

 

The results suggest that, with appropriate training and validation data, the approach developed and 

applied in this study is suitable for large-area mapping of cropping activity using the Landsat archive. 

This approach would be transferable to other satellite imagery with sufficient spatial, spectral and 

temporal resolution to generate the explanatory variables used in this study.  

Data specifications 

The study area was the Western Cropping Zone (WCZ) in the State of Queensland, Australia (see Figure 

29).  

 

Figure 29: Regional subdivision of the WCZ of Queensland into north and south regions: “NW” and 

“SW”. Superimposed is the Landsat data coverage based on the World Reference System 2 (WRS2). 

Source: Schmidt, M., Pringle, M., Rakhesh, D., Denham, R. and D. Tindall. 2016. A Framework for Large-Area Mapping of Past and Present 

Cropping Activity Using Seasonal Landsat Images and Time Series Metrics (http://www.mdpi.com/2072-4292/8/4/312).  

http://www.mdpi.com/2072-4292/8/4/312
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All available Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 OLI data across 27 footprints with cloud 

cover of less than 60% were used. This criterion was chosen to reduce the potential for noise in the data 

due to imperfect cloud/cloud shadow masking and water vapour variations. 

 

All images were cloud-masked with a regionally adapted version of Fmask22 then NBAR-corrected23; 

this latter step converts the units of the imagery to bottom-of-atmosphere reflectance, scaled to the 

interval (0, 1). The high internal geometric consistency of the USGS-based Landsat imagery allows 

further data processing and analysis without further geometric adjustment. 

Data processing 

All archived images were used to generate a synthetic spectral image for each season and year. These 

images were generated per pixel and per spectral band, excluding the thermal band, based on a statistical 

model. Figure 30 provides an example contrived to demonstrate, for a single pixel, how synthetic 

reflectance values for a Landsat band were generated for the midpoint of a growing season, t0, within 

a particular year. Outliers were Winsorised, then the 4 nearest neighbours to t0 were used in a linear 

regression to predict reflectance at t0. For further details see Schmidt et al (2016).   

 

Figure 30: Example of synthetic reflectance value generation process 
Source: Schmidt, M., Pringle, M., Rakhesh, D., Denham, R. and D. Tindall. 2016. A Framework for Large-Area Mapping of Past and 

Present Cropping Activity Using Seasonal Landsat Images and Time Series Metrics (http://www.mdpi.com/2072-4292/8/4/312).  

The most recent Queensland Land Use Mapping Program (QLUMP) mapping was used to mask areas 

from each synthetic image that were associated with land uses that were not of interest for this study, 

such as conservation areas, forestry and intensive uses. Water bodies and travelling stock routes were 

also masked for each synthetic image.  

 

                                                           
22 Flood, N. Continuity of Reflectance Data between Landsat-7 ETM+ and Landsat-8 OLI, for Both Top-of-Atmosphere and Surface 

Reflectance: A Study in the Australian Landscape. Remote Sens. 2014, 6, 7952–7970. 
 

Frantz, D.; Roder, A.; Udelhoven, T.; Schmidt, M. Enhancing the Detectability of Clouds and Their Shadows 

in Multitemporal Dryland Landsat Imagery: Extending Fmask. IEEE Geosci. Remote Sens. Lett. 2015, 12, 
1242–1246. 

 

Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. 
Environ. 2012, 118, 83–94. 
23 Flood, N. Continuity of Reflectance Data between Landsat-7 ETM+ and Landsat-8 OLI, for Both Top-of-Atmosphere and Surface 

Reflectance: A Study in the Australian Landscape. Remote Sens. 2014, 6, 7952–7970. 

http://www.mdpi.com/2072-4292/8/4/312
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To reflect the fact that land is managed in discrete parcels the synthetic images were segmented into 

homogeneous areas using the open-source software package RSGISLib with Python bindings.  

The segmented image was stored in the GDAL-supported KEA image format where the image segments 

are linked with a raster attribute table (RAT) and used as the basis of all further analysis. This step is a 

method of data reduction by moving away from a pixel-based analysis to spatial medians per segment 

for all classification variables. A final step used a 1-s digital elevation model to mask out segments with 

a slope of greater than 10% as cropping is generally not undertaken in steep terrain within the study 

region. 

 

A subset of the mid-season synthetic image for winter 2014 is in Figure 31.  

 

 
Figure 31: Subset of the mid-season synthetic image (R/G/B with Landsat TM bands 4/3/2) for winter 

2014 (a) scene 90/79 and the closest Landsat image (ETM+) (b) to the mid-season interval for winter 

on 20 September 2014. Panel (c) displays the summer 2014 mid-season synthetic image; and (d) the 

closest Landsat image on 8 February (ETM+). Fmask cloud and cloud shadow masks are shown as 

black hatching, the yellow circle in (a) marks a centre pivot irrigation field. 

Source: Schmidt, M., Pringle, M., Rakhesh, D., Denham, R. and D. Tindall. 2016. A Framework for Large-Area Mapping of Past and Present 

Cropping Activity Using Seasonal Landsat Images and Time Series Metrics (http://www.mdpi.com/2072-4292/8/4/312).  

 

Classification variables 

 

A range of variables were calculated in order to capture reflectance signatures and temporal 

characteristics, which were used to classify the image segments (Table 11).  

 

Table 11: Remote sensing variables, computed on a per-pixel basis, that were spatially aggregated and 

added to the raster attribute table of the segmented synthetic images. 

 

Vegetation Indices, Temporal Variables and Band Ratios 

 

1  Normalised Difference Vegetation Index (NDVI)  

2  Modified Chlorophyll Absorption in Reflectance Index (MCARI)  

3  Renormalised Difference Vegetation Index (RDVI)  

4  Triangular Vegetation Index (TVI) 

http://www.mdpi.com/2072-4292/8/4/312
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5  Modified Simple Ratio (MSR) 

6  Normalised Difference Burn Ratio (NDBR) 

7  NDVI seasonal variance (ndviTsVr) 

8  NDVI seasonal minimum (ndviTsMn) 

9  NDVI seasonal maximum (ndviTsMx) 

10  NDVI seasonal coefficient of variation (ndviTsCV) 

11  NDVI seasonal range (ndviTsRng) 

12  NDVI gradient up (first minimum to maximum) (ndviTsGr1) 

13  NDVI gradient down (maximum to second minimum) (ndviTsGr2) 

14  NDVI day of time series maximum (ndviTsDyMx) 

15  b7 _ b3/(b7 + b3) (nr73) 

16  b7 _ b2/(b7 + b2) (nr72) 

17  b5 _ b7/(b5 + b7) (nr57) 

18  b4 _ b5/(b4 + b5) (nr45) 

19  b5 _ b3/(b5 + b3) (nr53) 

20  b5 _ b2/(b5 + b2) (nr52) 

21  b4 _ b2/(b4 + b2) (nr42) 

22  b2/b3 (r23) 

23  b4/b3 (r43) 

 
Source: Schmidt, M., Pringle, M., Rakhesh, D., Denham, R. and D. Tindall. 2016. A Framework for Large-Area Mapping of Past and Present 

Cropping Activity Using Seasonal Landsat Images and Time Series Metrics (http://www.mdpi.com/2072-4292/8/4/312).  

 

Field-based training data, collected between September 1999 and February 2012, were used in the 

study. All records were recoded as either Crop or No-Crop. An additional set of records were generated 

through desktop interpretation of seasonal synthetic images sampled at random over space, growing 

season and years.  

 

Four classification algorithms were applied to the same training data; SVM, multinomial logistic 

regression, decision-tree classifier and RF, all implemented with the R software. Validation revealed 

that the predictive accuracy varied by growing season and region and a random forest classifier 

performed best, with K = 0.88 to 0.91 for the summer growing season and K = 0.91 to 0.97 for the winter 

growing season, and are thus suitable for mapping current and historic cropping activity. 

 

Data selection 

All available Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 OLI data since 1987 across 27 footprints 

with cloud cover of less than 60% were used. For the majority of seasons there are 10 or more Landsat 

images with less than 60% cloud cover. This threshold was applied to reduce the risk of image artefacts 

from imperfect cloud and cloud-shadow masking, thin undetected clouds and water vapour variations 

which can influence an individual pixel’s reflectance values. High levels of cloud cover also impacted 

the geometric accuracy of Landsat 5 data. The data were fit for purpose for the study.  

Quality issues 

A relatively minor issue is the image segments for the cropped field may not always be sharp on the 

field boundaries so some discrepancies with the true field outlines are apparent. Also, the comparison 

of the mid-season synthetic image is effective if the crops are greening-up during the particular time, 

but if the crop is planted late it might not appear green in the synthetic image. This could lead to 

misclassification of segments as no crop in some cases.  

 

http://www.mdpi.com/2072-4292/8/4/312
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Recently, the authors have used a similar framework and expanded the mapping approach to broad crop 

types (Pingle et al, 2018). This approach includes all available Landsat imagery dating back to 1987 

until current, and incorporates additionally Sentinel-2 imagery (from 2015 onwards). In case of large 

temporal gaps where also MODIS imagery used as a backup option. In this updated approach a temporal 

adaptive seasonal image composite at the time of the maximum EVI was used as input for GEOBIA, 

followed by a tree based image classification algorithm of phenological metrcis. The crop types of (i) 

Cereal crop (wheat, barley, oats), and (ii) Pulse crop (chickpea) for winter, as well as (i) Coarse-grain 

& Pulse (sorghum, maize, mungbean, soybean), and (ii) Cotton crop for summer were compared with 

values of official statistics (Figure 32). 

 

 
Figure 32: The area devoted to the different groups in each growing season, as predicted by the DSITI 

model (lines). When available, independent Queensland-wide values are presented (points). The solid 

line is the total for the entire study region; the broken line is the total associated soley with a land-use 

cropping.  

Source:  Pringle, M., Schmidt, M. and Tindall, D. (2018): Multi season, multi sensor time series modelling based on geostatistical concepts - 

to predict broad groups of crops. Submitted to Remote Sensing of Environment.  
 
 

For the summer cropping season appears to be an excellent correspondence between state-wide 

averages of the crop type maps and official commodities data (ABARES, 2016). The over-prediction 

of of the class 'Cereal' seem to be a similar to the under-predction of the class 'Pulse'. The authors have 

found little difference between the crop-related summations for their study region. 

 

4.8 CASE STUDY 5: An Operational Approach to Integrated Crop Yield Modelling Using 

Remote Sensing, Agroclimatic Data and Survey Data (Canada) 

Statistics Canada is an NSO which has used remote sensing data since the early 1980s for applications 

such as census and survey validation, crop mapping and area estimation and support program 

development. In 2016 they became the first NSO to replace a statistical survey with a remote sensing 

model-based approach. The goal of the model was to produce a preliminary estimate of the expected 

harvest yield of the crops in late summer using information from existing data sources. 

Although Statistics Canada did not produce a pilot project as part of the Task Team, their case study is 

included as an example of an NSO using EO data to produce official statistics in practice.  
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Statistics Canada investigated the use of remote sensing, agroclimatic and survey data to model reliable 

crop yield estimates as a preliminary estimate to the November Farm Survey estimates, an occasion of 

the Crop Reporting Series at Statistics Canada.    

Initially these estimates were made available before the September Farm Survey estimates were 

released. However, since 2016 the farm survey has not been conducted and only the model based 

estimates are published. The process prior to 2016 is described in this case study to demonstrate the 

process Statistics Canada used to achieve replacing survey collected estimates with model based 

estimates. The work was completed by the Remote Sensing and Geospatial Analysis Section, 

Agriculture Division, and by the Business Survey Methods Division at Statistics Canada in 

collaboration with Agriculture and Agri-Food Canada (AAFC).  

Data specifications 

A methodology for modelling crop yield was developed and tested on the crops that are typically 

published at the provincial and national levels by the September Farm Survey, as shown in Table 12. 

The five provinces listed account for approximately 98% of the agricultural land in Canada, across a 

diverse range of climate zones and soil types. The crops that account for approximately 85% of the 

revenue for the 19 crops listed are referred to as the seven major crops.  

 

Source: Statistics Canada (2015). Integrated Crop Yield Modelling Using Remote Sensing, Agroclimatic Data and Survey Data. Retrieved 

from: http://www23.statcan.gc.ca/imdb-bmdi/document/5225_D1_T9_V1-eng.htm 

Table 12: Crops typically published in the results of the September Farm Survey, by province 

Table summary 

Crops typically published in the results of the September Farm Survey. The information is grouped 

by Crop type (appearing as row headers), Province (appearing as column headers).  

Crop type Province 

Quebec Ontario Manitoba Saskatchewan Alberta 

7 major crops   

Barley X X X X X 

Canola X X X X X 

Corn for grain X X X     

Durum wheat       X X 

Oats X X X X X 

Soybeans X X X     

Spring wheat X X X X X 

12 additional crops   

Canary seed       X   

Chickpeas       X X 

Coloured beans   X X     

Fall rye   X X X X 

Field peas     X X X 

Flaxseed     X X X 

Lentils       X   

Mixed grains X X X X X 

Mustard seed       X X 

Sunflower seed     X     

White beans   X X     

Winter wheat X X X X X 

Note: Fodder corn is typically published in the September Farm survey. However, it was not 

modelled due to a lack of July Farm Survey yield estimates.  
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The modelling methodology used three data sources: 1) the coarse resolution satellite data used as part 

of Statistics Canada’s Crop Condition Assessment Program; 2) Statistics Canada’s Crop Reporting 

Series data, and 3) agroclimatic data for the agricultural regions of Canada.  

Data processing 

     Normalised Difference Vegetation Index (NDVI)  

A spectral vegetation index, the NDVI, was used as a surrogate for photosynthetic potential. NDVI is 

the normalised ratio of the Near-Infrared (NIR) to Red (R) reflectance (NDVI = (ρNIR − ρR)/(ρNIR + 

ρR)) and varies from −1 to 1, with values close to one indicating high vegetation content and values 

close to zero indicating no vegetation over bare ground.  

The NDVI data were processed on a continuous basis throughout the agricultural growing season (April 

to October) for the entire land mass of Canada. Statistics Canada has a time series of NDVI data from 

1987 to present, which includes years of severe drought and record production. The daily NDVI images 

were processed into seven-day composites as described by Latifovic et al. (2005) and the methodology 

was further refined by Statistics Canada to minimise or eliminate NDVI errors introduced by the 

presence of clouds (Bédard 2010). 

Cropland NDVI statistics by census agricultural region (CAR) were computed and stored in a relational 

database for each weekly NDVI composite. Only NDVI picture elements, or pixels, that geographically 

coincide with an agriculture land cover database produced by AAFC as part of an annual crop inventory 

were extracted to generate the mean NDVI value for cropland within each of the CARs. The agriculture 

land cover file and the associated metadata file produced by AAFC were accessible at 

www.geobase.ca/geobase/en/data/landcover/index.html. 

After the mean NDVI values were computed they were imported as one of the input variable databases 

to the crop models as three-week moving averages from week 18 to 36 (May to August). 

     Survey area and yield data 

Statistics Canada’s Field Crop Reporting Series surveys were another dataset used in the model. These 

surveys obtain information on grains and other field crops stored on farms (March, July, September and 

December Farm Surveys), seeded area (March, June, July, September and November Farm Surveys), 

harvested area, expected yield and production of field crops (July, September and November Farm 

Surveys). These data provide accurate and timely estimates of seeding intentions, seeded and harvested 

area, production, yield and farm stocks of the principal field crops in Canada at the provincial level.  

For abundant crops, CAR level crop yield estimates from the July and November Farm Surveys from 

1987 to present were used as input variables for the models while yield estimates from the September 

Farm Survey and the November Farm Survey were used to verify the accuracy of the yield model 

results. For less abundant crops, the survey data were compiled at the provincial level.  

     Agroclimatic indexes 

The climate data collected during the growing season were the third data source used for modelling 

crop yields. The station-based daily temperature and precipitation data provided by Environment 

http://www.geobase.ca/geobase/en/data/landcover/index.html
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Canada and other partner institutions were used to generate the climate-based predictors (Chipanshi et. 

al. 2015).  

Average values of the indexes at all stations within the cropland extent of a specific CAR were used to 

represent the mean agroclimate of that CAR. If a CAR lacked input climate data, stations from 

neighbouring CARs were used.  

To form a manageable array of potential crop yield predictors, AAFC aggregated the daily agroclimatic 

indexes into monthly sums and means for the months of May to August. Their standard deviations (Std) 

over the month were also calculated and included in the modelling methodology (Newlands et al. 2014; 

Chipanshi et al. 2015). The Std value shows how the daily index varies over the one-month period. The 

larger the Std, the higher the variability of the parameter in that month.  

Data selection  

For abundant crops, CAR level crop yield estimates from the July and November Farm Surveys from 

1987 to present were used as input variables for the models while yield estimates from the September 

Farm Survey and the November Farm Survey were used to verify the accuracy of the yield model 

results. For less abundant crops, the survey data were compiled at the provincial level. 

The model was selected by first reviewing the existing models, then by assessing the models available 

in SAS. Modelling was done at the smallest geographic level for which historical survey data were 

available. Only the five main crop-producing provinces (Quebec, Ontario, Manitoba, Saskatchewan and 

Alberta) were modelled. 

After comparing results with other models, including a step-wise non robust model and a least-angle 

robust model, Statistics Canada made the decision to adopt a SAS LASSO robust model. See Statistics 

Canada (2015)24 for more details.  

Quality issues 

The November Farm Survey estimates are considered the most accurate estimate of yield for a given 

year, due to the fact that the data are collected after the majority of harvesting is completed and the 

sample size is the largest of all six of the survey occasions. The results of the September Farm Survey 

can be considered a preliminary estimate of the November results. Therefore, the goal of the modelled 

yield is not to replicate the results of the September Farm Survey but rather to obtain a sufficiently 

accurate yield estimate in advance of the November survey results. 

The relative difference (presented as a percentage) between the yield estimate of a given method (i.e., 

September Farm Survey or the yield model) and the November Farm Survey yield estimate was the 

measure of accuracy. A negative relative difference indicated that the given yield estimate was smaller 

than the November Farm Survey estimate, while a positive relative difference indicated that the given 

yield estimate was larger than the November Farm Survey estimate.  

 

                                                           
24 Integrated Crop Yield Modelling Using Remote Sensing, Agroclimatic Data and Survey Data. Retrieved from: 

http://www23.statcan.gc.ca/imdb-bmdi/document/5225_D1_T9_V1-eng.htm for more details. 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 100 ∗
𝐺𝑖𝑣𝑒𝑛 𝑦𝑖𝑒𝑙𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 − 𝑁𝑜𝑣𝑒𝑚𝑏𝑒𝑟 𝐹𝑎𝑟𝑚 𝑆𝑢𝑟𝑣𝑒𝑦 𝑦𝑖𝑒𝑙𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒

𝑁𝑜𝑣𝑒𝑚𝑏𝑒𝑟 𝐹𝑎𝑟𝑚 𝑆𝑢𝑟𝑣𝑒𝑦 𝑦𝑖𝑒𝑙𝑑 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒
 

http://www23.statcan.gc.ca/imdb-bmdi/document/5225_D1_T9_V1-eng.htm
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Larger relative differences were observed in the model estimates for crops that have a limited amount 

of historical data available. Estimates derived from models that were constructed with only a limited 

number of data points were at risk of being statistically unreliable.  

Statistics Canada has established three criteria based on the availability of the input data, as well as 

quality indicators that must be met to ensure the statistical integrity of the estimates and to determine 

which of the modelled crop yields were of acceptable quality to be published at provincial and national 

levels. For each year, the yield model estimates for each crop would be evaluated to determine whether 

their quality is sufficient for publication. 

Results 

The estimates produced by the SAS LASSO robust model were comparable to those produced by the 

September survey in terms of relative difference from the November survey estimates for the seven 

major crops and many of the 12 additional crops published in September. On rare occasions, both the 

model and the September survey produced extreme relative differences from the November survey 

estimates, but not necessarily for the same crops/years. These extreme relative differences tended to be 

larger for the model than for the September survey. 

The model produced yield estimates of similar accuracy to the survey based estimates. The modelled 

estimates were able to be released earlier, resulted in cost savings to Statistics Canada and reduced 

respondent burden. Since 2016 the farm survey has not been conducted and only the model based 

estimates are published.  
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5. Guidelines for NSOs considering the use of EO for official statistics 

EO data and big data more broadly represent significant opportunities for complementing and 

enhancing official statistics. However, there are also challenges in implementing these data sources for 

statistical purposes. As outlined in this report, it is important for NSOs to identify the algorithmic 

approach and statistical applications that are most suited to the use of EO data, based on clear 

organisational benefits, feasibility of methods and likely cost savings. It is also worth considering the 

range of statistical applications that benefit from EO data is more likely to increase with time as the 

quality, coverage, frequency and bandwidth resolution of available satellite imagery increases. Given 

this, it is important for NSOs to critically assess whether using big data generally, and EO data 

specifically, is appropriate for their statistical purposes. 

This chapter provides recommendations to assist NSOs to complete this assessment, however it is not 

intended to be a one size fits all guide. 

5.1 Potential applications of EO data for official statistics 

EO data and other big data sources can be applied to improve or replace some NSO processes which 

produce official statistics. The following applications are suggested by Tam and Clark (2015) by 

drawing parallels with well-established uses of administrative data for official statistics: 

• sample frame or register creation – identifying survey population units and/or providing 

auxiliary information such as stratification variables; 

• partial data substitution for a subgroup of a population – reducing sample size; 

• partial data substitution for some required data items – reducing survey instrument length, or 

enriching the data set without the need for statistical linking; 

• imputation of missing data items – substituting for same or similar unit; 

• editing – assisting the detection and treatment of anomalies in survey data; 

• linking to other data – creating richer data sets and/or longitudinal perspectives; 

• data confrontation – ensuring the validity and consistency of survey data; and 

• generating new analytical insights – enhancing the measurement and description of economic, 

social and environmental phenomena. (p. 442).  

This is a selection of applications for EO data and other big data sources, and not necessarily an 

exhaustive list. As NSOs become more experienced in using EO data for official statistics, more 

applications may emerge.  

5.2 Cost-benefit analysis 

Conducting a cost-benefit analysis is useful to decide whether to use EO data for statistical applications.  

Big data sources, including EO data, should only be used if there is a strong business need, and if it will 

improve statistical outcomes based on objective cost-benefit criteria.  

According to Tam (2015)  

Big Data should only be used if it can; 

• improve the product offerings of statistical offices e.g. more frequent release of official 

statistics, more detailed statistics, more statistics for small population groups or areas, or filling 

an important data gap – business need; or 
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• improve the cost efficiency in the production of official statistics – business benefit (p.4). 

According to Tam and Clarke (2015)  

The costs and benefits of using the new data source need to be assessed in terms of factors such as 

reduction in provider load, sustainability of new source, as well as the accuracy, relevance, consistency, 

interpretability, and timeliness of those outputs stipulated in Data Quality Frameworks (p.8).  

An example of making these assessments is given, using the ABS agricultural pilot project described in 

Chapter 4.  

The full data substitution of survey-based with satellite sensing data for producing agricultural statistics 

– such as land cover and crop yield – can be assessed as follows: 

• Costs: What are the likely costs for acquiring, cleaning and preparing the satellite sensing data 

in a form suitable for further official processing, noting that the computational demands of 

acquiring, transferring, processing, integrating and analysing large imagery data sets are 

presently unknown, but are likely to decline over time? What are the costs for the development 

of a statistical methodology to transform the satellite sensing data into crop yields; and the 

development of a statistical system to process and dissemination satellite sensing data?  What 

are the costs of obtaining ground reference information (e.g. ABS ground reference data 

covering ~1k locations? LUCAS survey covering all over Europe ~ 270k locations)? What are 

the equivalent costs for direct data collections, and how they compare with one another? 

• Reduction in provider load: How much reduction in provider load would result if direct data 

collection is replaced by satellite sensing data? How important is it to have this reduction, based 

on existing provider experience, and prevailing Government policy on reduction of regulatory 

“red tape”? What is the current degree of cooperation from the farmers and how likely is this 

degree change for the better, or worse, in the future? What are the data otherwise obtained e.g. 

by farmers obtained electronically such as yield? 

• Sustainability of the statistical outputs: Is the data source available to official statisticians for 

the regular production of official statistics? What is the likelihood that the data source will 

continue into the future and maintain the current level of quality? 

• Accuracy, relevance, consistency, interpretability, and timeliness: How does the new 

source of data compare with the current source, against the criteria outlined in Data Quality 

Frameworks (referred to in Chapter 2)? Whilst optical satellite sensing provides accurate 

measurements of “reflectance” – measures of the amount of light reflected from earth back to 

the satellite sensors - there are several other issues. 

• Availability of knowledge for processing of EO data as well as data scientists? 

Are these issues/accuracies bigger, or smaller, than those due to missing data from direct data 

collections? In addition, transforming reflectance into crop production statistics require scientific or 

statistical modelling, an endeavour not commonly adopted by NSOs and may raise interpretability 

issues. On the other hand, the statistical accuracy of prediction estimates made from these models can 

be quantified as well as data quality issues in producing these estimates.  

As satellite sensing data are available on average at any given interval (from 15 minutes over daily to 

monthly), they clearly have a distinct advantage over annual or sub-annual direct data collections in 

terms of the frequency in the availability of crop yield statistics (Tam and Clarke, 2015, p.8). 
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This section has described the questions ABS posed and answered to produce its pilot project using EO 

data for crop identification, and is an example of how other NSOs can approach the decision of whether 

to implement EO data into their statistical outputs.  

5.3 Validity of statistical inference 

If it is determined using EO data will meet a business need or create efficiency, it should also be 

considered whether using EO data will be statistically valid.  According to Tam and Clarke (2015) “the 

proposition that bigger datasets are somehow closer to the “truth” is a not accepted by statisticians, 

since the objective “truth” is very much dependent on how representative a particular Big Data source 

is of the underlying population and the nature of the statistical inference drawn from such data” (p.437).  

 

Under coverage can be an issue for EO data sources because although the datasets are often large they 

don’t necessarily capture the target population the NSO wants to make inferences about. For example, 

if a dataset contained crop yield EO data for Tasmania, this would not be valid to make inferences about 

the whole of Australia.  According to Tam and Clark (2015) in some cases big data sources “might need 

to be supplemented with survey data to obtain coverage of un-represented segments of the population. 

In other cases, it may be useful to publish statistics that describe sub-populations.” (p.442).    
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5.4 Selecting an appropriate EO data set 

When determining whether EO data is appropriate for specific statistical purposes, a key question is 

whether the required data or information products can be generated from EO at all. The decision-tree 

in Figure 33 will help to decide whether it is appropriate and possible to use EO data products. 

Figure 33: CSIRO Decision Tree on usage of EO data for NSOs 

Case studies of implementation of EO data for statistical purposes would be useful in order to further 

assist with making decisions for the business case about methodological feasibility and costs of 

acquiring, preparing and pre-processing this data. Such case studies could then help inform decisions 

for future applications. 
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5.4.1 Minimum data requirements for EO  

To determine minimum EO data requirements, the following questions need to be raised and answered 

before deciding to use EO data: 

Justification Do you need to use EO? Is there a better 

alternative source? 

Suitability Can EO provide the required data 

products? 

Spatial resolution What is the appropriate size of pixel? 

Temporal frequency What is the required frequency of these 

EO data acquisitions? 

Record length How far back in time does your data 

record need to go? 

Reliability Do you need guaranteed continuation of 

data supply into the future? 

Accuracy What degree of accuracy is needed in the 

information product? 

Maturity Do you want to use only information 

products that are well documented and 

are commonly used? 

Complexity What data management, processing and 

analysis capacity is available? 

Figure 34: Requirements for the use of EO 

Besides these traditional EO requirements, other criteria need to be considered.  

5.4.2 Data sources: access and ownership  

Once an NSO has determined that EO data is appropriate to meet their statistical output requirements, 

sources need to be identified and accessed. Chapter 2 outlined a variety of available sources, including 

some freely available and privately owned resources.  

A key risk for NSOs incorporating EO data into their statistical process is they “have little control or 

mandate with respect to big data held by private entities, nor is there an assurance that the company and 

its data will exist into the future. If access is denied in the future, or the data production is terminated, 

then there is a significant risk to data continuity and time-series datasets, especially if existing systems 

have been replaced by the new big data solution.” (Kitchin, 2015). In the literature, it is generally 

thought there is currently a general lack of legislation and a framework for NSOs regarding data 

ownership and access in the big data and EO space.   

This is a consideration for NSOs beginning to work with EO data for the first time and an on-going 

basis. Thought should be given to how the statistical process and outputs would be affected if access to 

the EO source was no longer possible or if the data source content changed. One example is the sudden 
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loss of contact with the over 10 years in operation ENVISAT satellite with 9 instruments on board. 

Another example is that of the two MODIS sensors (Terra and Aqua) that were intended as research 

instruments but where so successful (and outlived their life expectancy two to three fold) that they 

generated a significant operational output. With the advent of the Copernicus Sentinel long-term 

operational satellite missions funded by the European Community and operated by ESA and 

EUMETSAT there is now an opportunity to invest in methods to use this sophisticated EO data for at 

least the next 15 years. 

5.5 Assessing quality 

Data quality depends not only on its own features but also if it conforms to the relevant uses and meets 

business requirements (Cai & Zhu, 2015). Quality is therefore a multidimensional concept which not 

only includes the accuracy of statistics, but also stretches to include other aspects such as; relevance, 

timeliness, accuracy, coherence, interpretability and accessibility. Therefore, the quality assessment 

should include these aspects.  

Commonly, the products obtained using remote sensing must have an accuracy assessment indicator, 

which indicates the degree to which the data correctly describe the phenomenon they were designed to 

measure. The accuracy assessment might require a comparison of the results with another independent 

(but also prone to errors) source of information such as: ground reference data, administrative registers, 

etc.  

According to the GEOSS data quality guidelines (2013), data providers should “address the multiple 

dimensions of quality. The purpose is not to judge or rank data resources, but to describe the 

characteristics needed to be known in order for the user to decide whether he/she should use them” 

(p.1). 

These characteristics include (see Table 1 in Chapter 2):  

• Coverage, including both spatial and temporal dimensions; 

• Consistency, including long-term consistency; 

• Uncertainties estimated and documented, including both spatial and temporal dimensions; 

• Attribution of error sources (frequency and cause of missing values); 

• Validation information, i.e. how the data was assessed for uncertainties by comparison with 

• alternative measurements; 

• Latency from time of observation; 

• Resolution, including both spatial and temporal dimensions; 

• Usability, in the sense of being in form and content convenient to use for the specific purpose; 

• Simplicity, such that the data and the underlying data model are not unnecessarily complicated 

or difficult to understand or manipulate (GEOSS, 2013, p.2); 

5.6 Dissemination of outputs 

The dissemination strategy implemented by the NSO should facilitate access, interpretability and reuse 

of the data. These factors help to strengthen the use of the information. 

Some aspects that could be considered when disseminating results based on EO data are; 

• Estimates based on statistical models and other approaches, outlined in Chapter 3 and the 

supplementary material, should give an associated measure of the statistical accuracy of the 

estimate, using defensible methods that are clearly documented. 
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• The methodology behind the statistical model, inherent assumptions and their likely 

implications, the quality of the EO data and processes undertaken for preparing the data, as seen 

in Chapter 2, should be fully documented in a user guide. 

• Data visualisation: Commonly, products associated with EO data processing have a spatial 

component (maps, images, geographical layers). The use of geographic viewers allows the 

query of this information.  

• Interpretability: With the aim to promote the usefulness of the information, it is recommended 

to provide metadata, which describe the main characteristics of the image used (capture date, 

spatial resolution, sensor), procedures, measures of accuracy and others aspects considered 

relevant. 

• Timeliness: In order to reduce the “time-to-market” of statistical products the delay between 

the reference period (to which the data pertain) and the date at which the data become available 

should be the minimum.  

• Non –proprietary format: If the products are available for download, it is recommended to 

publish in a non-proprietary format. 

• Legal aspects: It should be guaranteed that the information published fulfil legal aspects 

established in the country. 

5.7 Other considerations and issues 

In addition to the issues outlined previously in this chapter, the following should also be considered if 

an NSO chooses to work with EO data.  

• Technological improvements and advancements, such as more sophisticated sensors, will lead 

to new EO data sources over time. NSOs should regularly review and update their data sources 

for statistical outputs as better quality sources become available.  

• Identification of a specific project or group of projects that can be addressed in a reasonable 

time. Under this approach, the NSO aims for manageable outcomes, which are likely to gain 

support from senior management. 

• Estimation of the resources that can be deployed. Issues such as budget, hardware, storage 

devices, software and information policies are determining factors. 

• An objective evaluation of knowledge and skills available at the organisation is a key factor. 

According to the Australian Government Big Data Working Group (2015) “A significant 

constraint on realising value from big data will be a shortage of talent, particularly of people 

with deep expertise in statistics and machine learning, and the managers and analysts who know 

how to operate companies by using insights from big data.” (p.12). Decisions on training and 

development of collaborators improve the sustainability of the initiatives and their success.  As 

was mentioned in Chapter 2, there are more approaches to using EO data than the pure statistical 

approach and in the long term these more physics-based approaches (including model data 

assimilation) may be more amenable to automation and thus reduced costs. The question then 

becomes how NSOs interact with those expert organisations that have the right capabilities. 

• When statistical data and information are geo-referenced or spatially enabled, new or further 

development of skills are required. Skills in spatial thinking and analysis must be improved or 

be acquired in order to answer questions like sample size and distribution, statistical and 

geographical coverage, geographic levels, data capture and dissemination and data 

confidentiality, among others. 

• Active participation in forums like the UN GWG on Big Data makes the transition to utilising 

big data sources and EO data easier. Access to practices, methods, trends and permanent 
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discussion are very important tools to keep the EO based projects 'alive'. Partnering or 

collaborating with the two international organisations that are harnessing and coordinating EO 

data such as GEO and CEOS is recommended. 

5.8 Further Recommendations for practitioners working with their first satellite 

imagery/earth observations data.  

 

Build capability through collaboration with international and national agencies. 

Beginning to work with EO data for the first time can be challenging, so NSOs should learn from the 

knowledge and experience of other agencies. As they become more experienced with EO themselves, 

NSOs should share this knowledge with other organisations in their network, building the capability of 

stakeholders globally over time. Partnerships between data providers, NSOs, private industry and 

academia are important to progress the use of EO data for official statistics. In cases where a NSO does 

not have experience with topics such as geodetic reference systems, map projections, raster and vector 

formats, etc., the data landscape can be challenging. An initial step to overcome the situation is to 

strengthen ties with the national mapping agency of the country. 

Intensive courses  

A tried and successful method to train NSO experts could be to create intensive courses of one to three 

weeks to boost the EO required knowledge to the right level for successful implementation of this data 

for statistical purposes. 

Take advantage of open source information online 

Nowadays, a lot of help is available in websites, blogs, videos, user forums and free courses. This 

information sharing can provide a great advantage and, it could be said that the most of the practical 

issues can be dealt with these tools. 

Identify skills required by the organisation  

As experience is gained in working with EO data, NSOs can identify internal skill gaps where people 

with higher or different qualifications are needed. For example, organisational capacity building 

programs could include education in data science, spatial data infrastructures, remote sensing, spatial 

data analysis and computer science, among others. If an NSO doesn’t have the necessary skills 

internally, it could also consider whether outsourcing some tasks to other organisations with the relevant 

expertise or forming multidisciplinary teams across agencies.  

Engage with the public to improve perceptions of privacy  

When introducing the use of big data such as EO, it is important to engage with the public to ensure 

their trust in the NSO and its statistical outputs is not negatively impacted. There can be concerns in the 

community that by using and combining big data sources for official statistics their privacy will be 

compromised. For NSOs “it is critical that these concerns be addressed through practices such as being 

transparent about what and how Big Data sources are used” (Strujis, Braaksma and Daas, 2014). EO 

data is one of the most acceptable forms of Big Data as it is commonly used through Google Earth and 

the weather forecasts (based on assimilating physics based models with in-situ data and earth 

observation data by meteorological satellites) including rain radars. 
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Consider ethical principles and current privacy legislation 

As legislation has not currently been updated to comprehensively address cases involving Big Data and 

privacy concerns, legal obligations of NSOs are not always clear. Preventing “the disclosure of the 

identity of individuals is an imperative, but this is difficult to guarantee when dealing with Big Data” 

(Strujis, Braaksma and Daas, 2014). NSOs have their own policies and mandates regarding the privacy 

and protection of information they collect and showing reasonable care has been taken to protect the 

identity of individuals and considering ethical standards can serve as a guide. As legislation and 

guidelines are updated, NSOs should update their policies to reflect this. This aspect applies mainly to 

the use of very high (sub metre) resolution satellite data. 

Consider using Analysis Ready Data (ARD) 

The processing required to transform raw EO data to be analysis ready can be time consuming and 

costly. For NSOs new to the practice and lacking the required skills, the costs of this process could be 

prohibitive. If this is the case, NSOs should assess whether acquiring ARD would be more cost 

effective, either by initially seeking ARD or outsourcing the processing of the raw data. For further 

reading on ARD for statistical purposes refer to section 2.7 of this report.  

Disseminate analysis of results and algorithms 

By disseminating results of analysis of EO data, NSOs can help other organisations develop their skills 

working with EO by providing examples, receive feedback and advice from peers and provide value to 

the public through statistical outputs produced with lower provider burden.  

As further exploration is done on the use of earth observations for statistical purposes, if stakeholders 

continue to share their learnings and experiences with others through global channels, such as the UN 

GWG on Big Data and UN GGIM, work in this field will continue to evolve and benefit the global 

community through applications such as measuring populations and monitoring SDGs. Reproducibility 

of the results by sharing workflow/scripts enhances these considerably.   
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6. Conclusion 

The use of EO data for official statistics represents opportunities and challenges for NSOs. This report 

has provided information to guide practitioners through the process of critically assessing their business 

need for EO data, consideration of sources, methodological approaches, examples of case studies and 

guidelines to consult when making decisions about the use of EO data for statistical purposes.  

The use of EO data should be implemented when there is a clear business benefit, and this needs to be 

assessed on a case by case basis. Given this variability for when and how it is appropriate to use EO 

data, going forward sharing information, expertise and lessons learned between governments, private 

businesses and the research community will be essential.  

To this end, the initiatives of the UNSD Global Working Group on Big Data and its task teams, UN 

GGIM, CEOS and GEO will continue to provide a valuable international network of professionals 

sharing knowledge and progressing the potential of using big data sources, such as EO, for statistical 

and policy applications. A highly visible application will be the measuring, monitoring and reporting 

on progress of the 2030 Agenda for Sustainable Development SDGs.  

As use of EO data becomes more prevalent and techniques for using these sources are finessed, further 

applications may become apparent and expand into fields that are not currently anticipated. Throughout 

this process of expansion, open communication and knowledge sharing will continue to be important, 

particularly for the benefit of practitioners new to implementing EO data sources into their organisation.   

  



 125 

 

Appendix. Overview of Statistical and Machine Learning Approaches 

While statisticians are familiar with standard statistical models, they may not be as familiar with 

machine learning methods. The purpose of this Appendix is to describe a range of machine learning 

models that have been used in the analysis of EO data, point to examples of their use in this context, 

and provide references for further reading. The methods are categorised according to the four types of 

analytic aims detailed in Chapter 3, namely classification, clustering, regression and dimension 

reduction. They are also categorised according to whether the focus is an analysis at a single period of 

time (static data) or over time (dynamic data). 

 

A.1 Methods for analysis of static data 

Classification methods 

Logistic and multinomial regression are part of the family of generalised linear models (glm). 

Other examples of generalised linear models that can be used for classification are Poisson regression 

(e.g., for count data) and negative binomial regression (e.g., for more rare spatial outcomes).  Logistic 

regression is used when the output (response) variable is categorical with two levels (vegetation/not 

vegetation, high/low, present/absent). Multinomial logistic regression is used when the response 

variable has more than two levels (trees/grass/bare ground/crop/water, high/medium/low).  

If there is a large number of input variables or some variables are potentially redundant, regularisation 

methods can be employed to reduce or eliminate the effect of variables that do not contribute 

substantially to the analysis. Common methods include ridge and LASSO regularisation and more 

general elastic net regularisation.  Other methods for variable selection include the familiar forward, 

backward and stepwise regression approaches, known as forward feature construction and backward 

feature elimination in the machine learning literature (Silipo, 2015). However, these approaches are 

quite time consuming and computationally expensive, and are practically only applicable to a data set 

with an already relatively low number of input variables. 

An example of the use of logistic regression with EO data is given by Bavaghar (2015). The author 

employs the method to estimate the location and extent of deforestation based on variables such as slope 

and distance to roads and residential areas, and highlights in particular the ability to quantify the 

uncertainty in predictions as a strength of the approach. An overall 75% correct classification rate was 

obtained, with an estimate of 12% deforestation of the total study site over the 27 years from 1967 to 

1994. 
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Figure 35: Probability of deforestation obtained using a logistic regression analysis of EO data. Bhavaghar 

(2015) 

Gaussian maximum likelihood classification is one of the most widely used supervised 

classification techniques with satellite imagery data (Richards, 2013). The goal is to classify 

observations into groups, where observations in each group are considered to have a Gaussian 

distribution. More flexible alternatives based on semi-parametric kernel estimation are also available. 

Maximum Likelihood is also argued to be equivalent to linear or quadratic discriminant analysis 

(Hogland et al., 2013).  

Neural networks are popular classification methods. Neural networks can also be used for 

regression (see below). When represented graphically a neural network is arranged in a number of 

layers. The first layer is the input layer representing each of the predictor variables. This is followed by 

one or more layers of hidden nodes which each represent an activation function acting on a weighted 

input of the previous layers’ outputs. Finally, the output layer may be a single layer in the case of 

regression or in the case of classification will consist of a node for each possible output category. Due 

to the dense connectivity of the nodes in a neural network, the final function can represent complex 

relationships among the input variables, and between the input and output variables. 

Neural networks are typically ‘trained’ or quantified via a back propagation algorithm, which is similar 

to gradient descent, and iteratively adjusts the weights of the graph after seeing each new data point. 

This updating of the weights moves the neural network toward some local minima in the parameter 

space in relation to the training accuracy. Effectively training neural networks generally requires a 

relatively large training data set.  

Deep learning refers to the development of new algorithms to overcome the challenges associated with 

training neural networks, which have many hidden layers. In particular the ‘vanishing gradient’ issue 

which refers to the limitation of traditional back propagation in updating the weights of earlier layers in 

deep networks.  

Neural networks have been used for the analysis of EO data for almost two decades; see studies by  

Chen et al. (1995), Paola and Schowengerdt (1995), Atkinson and Tatnall (1997), Paola and 

Schowengerdt (1997) and Foody and coauthors (1995, 1997, 2001), Kavzoglu and Mather (2003), 

Mertens et al. (2004), Verbeke et al. (2004), Erbek et al. (2004), Kussul et al. (2006) and Kavzoglu and 

Reis (2008). More recent examples of classification using NN of EO data are given by Srivastava et al. 

(2012), Shao and Lunetta (2012) and Wang et al. (2015). 



 127 

For example, neural network techniques have been used to discriminate differences in reflectance 

between wheat and grass weeds by López-Granados et al. (2008). The authors used a preliminary 

computation of the most relevant principal components to considerably improve the correct 

classification rate to between 90% and 100%.  

Classification trees are a supervised classification technique that represents class memberships 

as “leaves” and input variables are “nodes”. Branches are formed from these nodes based on splitting 

the values of the input variables to best group the data.  

A classification tree is a member of the family of decision tree methods, which include regression trees, 

boosted trees, bagged trees, and so on. Classification trees are similar to regression trees (see below), 

the difference lying in the distribution of the response (categorical or continuous). Classification and 

regression trees (CART) are constructed using a recursive partitioning approach whereby variables are 

chosen at each step that best split the data into homogeneous classes. The criteria for choosing the 

variables and deciding the splits is typically a measure of subset homogeneity such as the Gini index or 

entropy or, in the case of regression trees, variance reduction.  

The main advantage of classification trees in particular, and decision trees in general, is that they are 

simple and easy to understand. Due to their computational simplicity they can be applied to large 

amounts of data. However, decision trees can suffer from over‐fitting and often require pruning, which 

in essence is a model selection problem. Furthermore, there is no guarantee of finding the globally 

optimum tree. Popular extensions to decision trees, designed to address these issues of bias and 

variance, include boosting (constructing a sequence of trees, each one built from the misclassified 

observations of the previous tree) and bagging (constructing a set of trees based on random samples of 

the data). A random forest (RF) is a set of ‘shallow’ trees constructed from many random samples. 

Classification trees have been used to analyse EO data for over 15 years. For example, Lawrence and 

Wright (2001) employed this method to classify land cover in the Yellowstone ecosystem in the USA, 

based on Landsat TM imagery. The remote sensing input variables were extracted from two TM scenes 

covering the region, and included bands 1-7 for each data as well as brightness, greenness and wetness. 

Elevation, slope and aspect were extracted from a Digital Elevation Map (DEM), and 30-100 reference 

sample sites were coded from aerial photos. A ‘rule based classification’ was derived from the 

classification tree analysis; an extract of this scheme is shown below. 

 

Figure 36: Extract of a rule-based decision framework constructed using a classification tree based on EO data. 

Lawrence and Wright (2001). 
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More recent references to decision trees and remote sensing include Sharma et al. (2013), Al-Obeidat 

et al. (2015), Chasmer et al. (2014), Otukei and Blaschke (2010) and Peña-Barragán et al. (2011). As 

discussed in the Case Study in Chapter 4 of this report, Schmidt et al. (2016) compared a number of 

methods for classifying crop/no crop in Australia, using Landsat imagery, and found that random forests 

provided the best accuracy and robustness. 

 

Figure 37: Crop/No Crop classification determined from Random Forest analysis of Landsat imagery. Schmidt 

et al. (2016) 

Support vector machines (SVM) are a class of non‐parametric supervised classification 

techniques. In their simplest form, 2-class SVMs are linear binary classifiers. The term “support vector” 

refers to the points lying on the separation margin between the data groups or classes. 

Linear separability is often not achievable (to a desired level of misclassification accuracy) in practical 

data applications, so various techniques have been proposed to overcome this limitation. One of the 

most common is to use kernels to map data to a higher dimensional space in the hope that in this space 

the data become separable (or at least separable to a reasonable level of misclassification). There are 

many potential kernel functions available, though the most common in the crop classification literature 

appear to be the radial basis function and polynomial kernels. The SVM algorithm then constructs a 

(linear) hyperplane in this higher dimensional space to optimally separate the groups, and then maps 

this hyperplane back onto the original space. The result for an image, for example, is a curve that 

allocates observations to classes depending on which side of the line they lie.    

An excellent reference for the use of SVMs for remote sensing is Mountrakis et al. (2011). Some other 

papers that examine the use of SVMs for analysis of EO data include Szuster (2011) for land use and 

land cover classification in tropical coastal zones; Mathur and Foody (2008) for crop classification; 

Huang et al. (2002a) for land cover classification; Melgani and Bruzzone (2004) for remotely sensed 

data; and Shao and Lunetta (2012) for land classification. 

Some of these papers compared various approaches with SVMs. For example, in the paper by Shao and 

Lunetta (202), although the CART models were preferred for speed and ease of use, SVMs and NNs 

were preferred for classification accuracy. 
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Figure 38: Land classification map created from a CART analysis of EO data. Shao and Lunetta (2012) 

Nearest neighbour methods (k-nn) have been used over half a century (Fix and Hodges Jr, 

1951). They are a well-known and popular nonparametric classification technique due to their relative 

simplicity. In their simplest form an object is classified according to a majority vote of its k nearest 

neighbours. That is, an object’s class is assigned to it by the most common class among its k nearest 

neighbours, where k is generally a small positive integer. 

Contributions of neighbours to an object’s class can be weighted (for example by the inverse of their 

distance to the object). Extensions of the method to allow “doubt” options are known as (k, l) rules: 

these rules take a vote among the classes of the k nearest neighbours but do not allocate the majority 

class to the object unless it receives l or more votes (otherwise the class is declared “in doubt”). 

Classification using the k-nn rule can be very dependent on the distance used to determine an object’s 

nearest neighbours, as well as the choice of k. In addition, k-nn is known as a “lazy learner”: it does not 

learn from training data, rather it simply uses the training set to undertake classification of new objects. 

Because of this the method can be very dependent on local data structures, and there can be memory 

overheads to store adequate training data, making it slow. However, data editing can ameliorate these 

issues somewhat by taking advantage of the idea that in many cases only a small subset of the training 

data is necessary to approximate very well the k-nn decision boundary. Many data editing algorithms 

exist: see Ripley (1996) for some examples. 

Some early examples of work in the remote sensing literature using k-nn approaches include Hardin 

and Thomson (1992), Hardin (1994), Franco-Lopez et al. (2001), Ohmann and Gregory (2002), Collins 

et al. (2004), Haapanen et al. (2004), Zhu and Basir (2005), Triepke et al. (2008) and Blanzieri and 

Melgani (2008). 

For example, McRoberts et al. (2007) employed k-nn methodology for forest inventory mapping and 

estimation. The EO data comprised Landsat imagery for 3 dates in 1999-2001 corresponding to early, 

peak and late vegetation green-up. The imagery was used to derive 12 satellite image-based predictor 

variables, NDVI and the TC transformations (brightness, greenness, wetness). These predictor variables 

were then used to estimate four forest attributes: proportion forest area (PFA), volume (m3 /ha) (VOL), 

basal area (m2 /ha) (BA), and stem density (tree count/ha) (D). Multiple pixels were aggregated to obtain 

estimates (mean, variance) for an area of interest (AOI). The authors found that some of the advantages 

of the k-nn approach were small area estimation, multivariate estimation, and both point estimation and 

uncertainty. 
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Although nearest neighbour methods are conceptually appealing and computationally fast, they are not 

always the best model for EO data. For example, ver Hoef and Temesgen (2013) compared k-nn and 

spatial linear models for forestry applications and found that the spatial model was preferred. However, 

their accuracy and predictive capability can be improved by combining them with other models. For 

example, Blanzieri and Melgani (2008) preferred a combination of k-nn and SVM methods for 

classification of remote sensing images.  

Intra-or sub-pixel classification approaches can be used to address the issue of so-called 

“mixed” pixels: pixels that display characteristics of more than one group. Mixed pixels are mainly a 

concern in coarse (eg MODIS) or moderate (eg Landsat) resolution remotely sensed data. In the context 

of crop identification, mixed pixels may contain, for example, field boundaries.  

 

The two most common approaches in the remote sensing literature to the mixed pixel classification 

problem are Spectral Mixture Analysis (SMA) and soft, or fuzzy, classifiers. There is an enormous 

amount of literature on both of these methods. Fuzzy classifiers and their variants are described in a 

recent book by Mather and Tso (2016), along with many other methods for classification for remotely 

sensed data. Details of SMA and its comparative advantages and disadvantages for analysis of remotely 

sensed data are discussed in the book by Thenkabail (2015, p.229). The method is available in many 

software packages, for example the Wiki Landscape Toolbox: 

(http://wiki.landscapetoolbox.org/doku.php/remote_sensing_methods:spectral_mixture_analysis). 

An example of intra-pixel classification is given by Zhang et al. (2015a), who propose a stratified 

temporal spectral mixture analysis (STSMA) for cropland area estimation using MODIS time-series 

data. 

Bayesian networks (BN) are also being used more frequently with EO data for classification. 

A BN aims to develop a set of relationships between the input variables and the output variable 

(response) using the conditional dependence of each attribute on each other attribute. The resulting 

model can be displayed graphically, with input variables as nodes and dependencies between the 

variables as directed arrows that link the nodes. Each node is quantified conditional on the nodes that 

affect it, so that the resultant model is a sequence of conditional probabilities leading to the overall 

probability of the response. The network can inform about the relative importance of variables in 

influencing the response, effects on the response due to changes in input variables given all of the other 

variables in the model, and optimal values of the input variables leading to the best response. BNs have 

been used in the analysis of EO data for over a decade. For example, Stassapoulou et al. (1998) applied 

a BN to GIS data and demonstrated an additional advantage of easily combining multiple data sources 

in a complex modelling framework. A more recent example is given by Mello et al. (2013) who 

employed BNs for soybean crop detection using remotely sensed data, highlighting the ability to include 

expert information in the model to improve classification. 

Clustering methods 

k-means is one of the most common clustering approaches used in machine learning. The 

algorithm assumes the data is drawn from K different clusters and assigns each unlabelled point to the 

closest group centre, which are recalculated until no changes occur.  

k-means can be used for a range of purposes. For example, it is often employed as a dimension reduction 

technique for analysis of EO data: a value of k is chosen, which is large but much smaller than the 

original number of pixels, and the resultant clusters are then used for further classification, regression 

http://wiki.landscapetoolbox.org/doku.php/remote_sensing_methods:spectral_mixture_analysis
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or other analysis. Alternatively, the clusters obtained from a k-means analysis can be inspected to gain 

insight into important factors that differentiate between the groups, or for post-hoc classification. For 

example, Usman (2013) used a k-means approach to classify high resolution satellite imagery data into 

classes which were then determined to farmland, bare land and built up areas.  

  

Figure 39: Example of k-means clustering of satellite data with different values of k. Clusters are classified into 

landuse types.  Usman (2013). 

Agglomerative clustering and its variants (e.g., hierarchical agglomerative clustering) is also a 

very popular approach for clustering. The algorithms starts with each point as its own cluster and 

iteratively merges the closest clusters until a stopping rule is reached. 

Mixture models are a popular method for clustering in both the statistical (empirical) and 

machine learning communities. These models are also known as soft, or fuzzy classifiers.  

Mixture models are based on the premise that observed data arise from various sources, or groups. Each 

group is assumed to have a particular distribution; for example in a Gaussian mixture model the 

observations in a group may be normally distributed with a group-specific mean and variance. The 

mixture model is then a weighted sum of these distributions, where the weights correspond to the 

proportion of observations in the population that belong to that group; this can also be interpreted as the 

probability that an observation belongs to that particular group. Thus in a ‘soft classification’, 

observations are allocated to more than one group with a certain probability; this is in contrast to ‘hard 

classifiers’ such as kNN or k-means (see section on machine learning methods below) in which the 

observation is allocated to only one group.  

In a mixture model, the number of groups, the weights, and the parameters of the distributions that 

describe the groups (e.g. the means and variances of the components of a Gaussian mixture model) may 
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be known or unknown. The analysis then attempts to estimate the unknown components of the model, 

and thus unscramble the data into its constituent groups. These are then interpreted as the clusters. 

Other examples of the use of mixture models for analysis of EO data include de Melo et al. (2003) for 

supervised classification of remote sensing multispectral images in an area of Tapajós River in Brazil., 

and Walsh (2008), who combine secondary forest estimates derived from EO data and a household 

survey to characterize causes and consequences of reforestation in an area in the Northern Ecuadorian 

Amazon.  

More recently, Tau et al. (2016) employed a Gaussian Mixture Model to estimate and map urban land 

cover using remote sensing images with very high resolution. Their conclusion was that “the optimized 

GMM-based method performs at least comparably or superior to the state-of-the-art classifiers such as 

support vector machines (SVMs), characterizes man-made land-cover types better than conventional 

methods, fuses spectral and textural features of VHR image properly, and meanwhile has lower 

computational complexity.” 

Regression methods 

Linear regression is one of the most common empirical models. Here, the response variable is used 

in its natural form or it is transformed to be more symmetric, for example through a log transformation 

if the distribution is very skew. The response is then estimated by a linear combination of predictor 

variables. These predictors can include the original input variables, polynomials (to describe nonlinear 

relationships with the response), combinations of variables (to describe interactions).  

Linear regression can be used in innovative and extended ways to provide official statistics. For 

example, Liao (2017) used the technique to determine the impact of energy consumption on surface 

temperature in urban areas. The focus of the study was on 32 major cities in China. Five steps were 

employed in this analysis: 

1. Obtain data for total nighttime lights and total energy consumption (per province per year). 

2. Use EO data to identify urban areas. 

3. Estimate total energy consumption in urban areas based on total nighttime lights. 

4. Use EO data to develop maps of surface temperature. 

5. Relate total energy consumption to surface temperature. 

6. Extent of urban areas: 

Data sources used in this study included: 

• a land cover/use map of China in 2010, generated by visual interpretations of Landsat 

TM/ETM+ images from the Data Center for Resources and Environmental Sciences, Chinese 

Academy of Sciences, used to identify six land use types: artificial surfaces, cultivated land, 

forest, grassland, water bodies, and unused land.  

• Land surface temperature (LST), obtained from Aqua MODIS 8-day, at spatial resolution of 1 

km, for 2008 to 2012, during daytime and nighttime. 

• Nighttime light (NTL) images from the National Oceanic and Atmospheric Administration 

(NOAA) of the National Geophysical Data Center (NGDC) for 2008-2012. 

• Total energy consumption for each year from 2008 to 2012, for each province in mainland 

China from the China Energy Statistical Yearbook, except for Taiwan and Tibet.  
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A regression model was used to estimate total energy consumption (EC) from sum of nighttime lights 

(NTL) in each province, as illustrated below.  

 

Figure 40: Top left: linear regression analysis to estimate energy consumption from sum of nighttime lights. Top 

right: comparison of actual and estimated energy consumption. Liao (2017) 

The results included estimates of spatial and temporal differences in the correlation between urban-

suburban difference in annual mean energy consumption intensity (ECI) and SUHI. 

 

 

Figure 41: Extracts from Liao (2017) showing a map of differential urban-suburban energy use (left) and linear 

relationship between this estimate and daytime (middle) and nighttime (right) SUHI. 

There are many extensions to linear regression models for analysis of EO data. Three examples are 

described below.  

Generalised linear models (GLMs) can more appropriately incorporate the distribution of the (non-

normal) response variable and flexibly link it to the linear function of explanatory (input) variables (e.g. 

modelling counts as Poisson distributed, with a log link). GLMs can themselves be extended to provide 

further flexibility, for example as generalised linear mixed models (GLMMs) which describe groupings 

in the data. Overviews of the use of GLMs for EO data are provided by Morisette and Khorram (1997) 

and Morisette, Khorram and Mace (1999) in the context of satellite-based change detection.  

Spatial models are extensions of regression models that take into account the fact that sites that are 

geographically close are more likely to be similar than sites that are further away. This spatial 

autocorrelation can be incorporated in the model to improve predictions. In a similar manner, temporal 
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patterns, such as daily peaks and troughs, seasonality or longer-varying trends, can be described in a 

regression model.  

Spatio-temporal models incorporate patterns in the image that vary over space, or space and time, 

respectively. These patterns can be modelled in different ways, for example as temporally varying 

spatial signatures, or spatially varying patterns at different time periods, or as a full interaction between 

the three dimensions. 

Other extensions include support vector regression (SVR), kernel ridge regression (KRR), random 

forest regression (RFR) and partial least squares regression (PLSR).  These are described by Okujeni 

and van der Linden (2014) in the context of quantifying urban land cover from HyMap data at 3.6 and 

9m spatial resolution.  These authors found that SVR and KRR yielded high accuracies for mapping 

complex urban surface types, i.e. rooftops, pavements, grass- and tree-covered areas. 

 

Figure 42: Mean absolute error (MAE%) in object identification (left Roof, right Tree) from various regression 

analyses of EO data.  

Regression trees are a variant on the classification tree methods described in the classification 

approaches section above, but here the response is continuous and the aim is to minimise the difference 

in responses within the groups and maximise the difference in average response between the groups. 

The tree will then predict the expected response for a new object, based on following the branches of 

the tree to the final (terminal) node and calculating the average value of the responses in that group of 

objects. The uncertainty of the prediction can also be estimated by the variance of the responses in this 

group. There are many different kinds of regression trees, including Boosted Regression Trees (BRT) 

and Random Forests (RF) and gradient boosted machines (GBMs). For example, in GBMs, regression 

trees are added together, such that each new tree is trained on the errors of the previous trees added 

together. The sum of these trees is then used to predict the value of new data points. 

An excellent introduction and tutorial on boosted regression trees, with implementation in the R 

statistical software package, is given by Elith, Leathwick and Hastie (2008). 

Spectral angle classification is based on the cosine of the angle between pixels’ reflectance 

spectra. It is also known as the 𝑐𝑜𝑠𝜃 distance metric in other disciplines. More correctly, spectral angle 

is a distance or similarity metric which can be used to assess similarity to reference spectra via an 

appropriate decision rule or criteria. Examples of work using spectral angle approaches in remote 

sensing applications include Sohn and Rebello (2002), Kuching et al. (2007), Petropoulos et al. (2010), 

Yuhas et al. (1992), Sohn et al. (1999). 

Neural networks (NN) are popular regression methods. See the description in the Classification 

section above. An innovative example of the use of NN for regression analysis with EO data is given 

by Xie et al. (2016). These authors employ a ‘transfer learning’ approach, which entails a sequential 

combination of different analyses (one of which is NN), to map poverty in Uganda, based on nighttime 

light intensity derived from satellite imagery. The results are illustrated in the figure below. 
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Figure 43: Estimated (left) and reported (right) probabilities of poverty, based in part on a neural network 

analysis. Xie et al. (2016) 

Dimension reduction methods 

Principal components analysis (PCA) and its variants such as factor analysis (FA) are popular 

empirical and machine learning dimension reduction techniques for analysis of EO data. These 

approaches create linear combinations of the input variables, such that the new combinations (termed 

components, factors, indices, etc.) encapsulate a large amount of the information or variation in the 

data. The PCA analysis, for example, generates an independent set of components, each of which has 

an eigenvalue (‘eigen’ means ‘own’ or ‘specific’) that indicates the proportion of variation explained 

by the component, and a set of weights attached to each input variable (the eigenvector) that indicates 

the relative importance of each variable in the component.  

PCA methods have been applied to EO data for over a decade. For example, Cablk and Minor (2003) 

employed four principal components (PCs), derived from the four multi-spectral bands of the high-

resolution IKONOS satellite, in a study of  South Lake Tahoe, California, in order to determine how 

impervious cover was represented in each of the four PCs. This is critical for assessing impacts on water 

quality, wildlife, and fish habitat. In another paper of that time, Call et al. (2003) tested the hypothesis 

that in-situ spectral signatures, together with water column attenuation measurements, satellite imagery 

and Geographical Information Systems, can effectively differentiate reef substrates. Principal 

components analysis of upwelling radiances indicated that wavelengths from 515–580nm are most 

useful in distinguishing between substrates.  

Three more recent examples are as follows. Curzio and Magliulo (2010) assessed the geomorphological 

effects of soil erosion at the basin scale by integrating Landsat ETM 7+ data and field-surveyed 

geomorphological data. The authors extracted features using PCA on the original data, and constructed 

composite images from these which were then used in a classification algorithm. Lawley et al. (2011) 

applied principal components analysis to 25 years of satellite imagery to identify underlying factors 

influencing patterns of arid vegetation growth, and regions of similar long-term response. Dominant 

factors of variation were identified as the spatial distribution of total vegetation growth, seasonality of 

growth, magnitude of seasonal variability in growth, and regularity of variation in growth. Finally, 

Estornell et al. (2013), analysed three Landsat images selected from two areas located in the 

municipalities of Gandia and Vallat, both in the Valencia province (Spain). In the first study area, one 

Landsat image from 2005 was used. In the second area, two Landsat images were used (from 1994 and 

2000) to identify significant changes in land cover. The authors found the second principal component 
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of the Gandia area image allowed detection of the presence of vegetation. The same component in the 

Vallat area allowed detection of a forestry area affected by forest fire.   

Although PCA is a highly useful and effective method for dimension reduction in satellite image 

analysis, like any dimension reduction method it does possess a shortcoming: the dominant components 

(factors) do not contain all of the information in the data. Thus the common practice of choosing only 

the dominant components and using these for further interpretation and analysis can sometimes lead to 

inaccurate estimation of covariance matrices and may also lead to a loss of spatial information. Other 

caveats for PCA are that it may not be reliable if only a small number of images are available, and it 

can be quite time and resource intensive when applied to large image data. Various extensions to PCA 

have been proposed to overcome some of these issues. 

Independent Component Analysis (ICA) is a technique which finds so-called “independent 

components” of observed data. This data is assumed to be realisations of linear mixtures of unknown 

latent variables (the independent components) which in turn are assumed to be non-Gaussian and 

mutually independent. ICA separates a multivariate signal into additive subcomponents. 

Independent Component Analysis is related, in a certain sense, to both principal component analysis 

and factor analysis. However, one of the advantages of ICA over these techniques is that it will often 

work in situations where the former may fail. 

A.2 Summary of methods for static data 

The following table summarises some of the techniques discussed above and provides some guidance 

in the selection of the most appropriate technique under certain situations. It is important to recognise 

that each technique has its own merits and limitations, and that in any particular application the use of 

more than one technique may provide greater insight than the use of any one in isolation. 
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Technique Parametric? 

Computational 

Load (training 

speed) 

Amount of 

Parameter 

Tuning 

Required 

Probabilities 

of Class 

Membership? 

Spatial and 

Temporal 

Dependencies? 

Small amount of 

Training Data? 

Tendency To 

Overfit? 

SVM No Slow Significant No No Yes No 

Neural 

Networks 
No Moderate Significant No No Maybe Yes 

Decision 

trees 
No Fast Low Yes No No Yes 

Boosted 

Regression 

Trees 

No Fast Low Yes No No Unsure 

Multinomi

al Logistic 

regression 

Yes Slow Moderate Yes Can be modified No 
No, under user 

control 

K-nn No Fast Low No No No Yes 

SSMs Yes Slow Moderate Depends Yes No Under user control 

INLA-

Based 
Yes 

Faster than 

equivalent 

options such as 

MCMC 

Moderate Depends Yes No Under user control 
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A.3 Methods for analysis of dynamic data 

As described in Chapter 3, there is a variety of heuristic, statistical and machine learning methods for 

analysing EO data over time.  

Comparative approaches  

These approaches are popular, as described in Section 3. Fulcher et al (2014) describe how the two 

approaches outlined in that section can be used for classification. By creating a database of known 

time series and their classifications, a new time series can be classified by comparing the distance 

measures between the series in the database. The method proposed by Fulcher et al (2014) learns the 

properties of a given class of time series and classifies new time series according to these learned 

properties.   

 

 

Figure 44: Comparing time series by their structural features 

Source: Fulcher et al (2014). What’s the difference? Telling apart two sets of signals. Retrieved from: http://systems-signals.blogspot.com.au/ 

Cubic splines  

These models are semi-parametric regression equations which fit a series of (cubic) polynomials to 

the temporal data (Pollock, 2009); see, for example Reed et al. (1994) for an example of their use in 

analysis of Normalised Difference Vegetation Index (NDVI) phenological parameters using satellite 

imagery.  

 

Figure 45: Modelling crop growth (left) using a cubic spline model (right) 

Harmonic models  

These models fit more structured sinusoidal (shaped like a sine curve) curves to the data. Here, the 

model parameters are the phase and amplitude. For example, Potgieter and coauthors (2007, 2010, 

http://systems-signals.blogspot.com.au/
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2011) employ these models for crop estimation using EO data. The Enhanced Vegetation Index (EVI) 

from 16-day MODIS satellite imagery within the cropping period (i.e. April–November) was 

investigated to estimate crop area for wheat, barley, chickpea, and total winter cropped area for a case 

study region in northeast Australia. The authors found significant overall capability to estimate total 

winter crop area and high accuracy at pixel scale (>98% correct classification) for identifying overall 

winter cropping. However, discrimination among crops was less accurate.  

  

Figure 46: Illustration of harmonic analysis (left) and its application to MODIS imagery of time series of winter 

crops in 2005 (top right) and 2006 (bottom right). Potgeiter et al. (2007, 2011, 2013) 

Spectral decomposition 

Just as Principal Components Analysis (PCA) and Independent Components Analysis (ICA) are forms 

of dimension reduction for static data, spectral decomposition methods such as Fourier transforms can 

be used as dimension reduction techniques for dynamic data. These methods extract important 

information from high dimensional space to a smaller dimensional space. The analysis can be an end in 

itself, or the smaller dimensional space can then be fed to another statistical or machine learning 

algorithm to form an ensemble approach.  

Following on from the example described above, Potgieter et al. (2007) utilise spectral decomposition 

in the form of the Fast Fourier Transform on MODIS time series data, the results of which are then used 

in a discriminant analysis. A similar approach (spectral decomposition of remotely sensed temporal 

data being fed to a discriminant analysis supervised classification technique) was undertaken in 

Potgieter et al. (2011).  An alternative approach is to fit parametric curves to remotely sensed crop 

growth data (the previous approaches could be categorised as non-parametric in this sense). Potgieter 

et al. (2013) utilise parametric Gaussian functional curves to reduce data dimensionality, and again 

classify the resultant curve parameters via discriminant analysis. It is not always clear whether the 

discriminant analysis assumptions (multivariate normality, for example) are met in these cases.  

  

HANTS (Verhoef et al 1996)
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Functional data analysis (FDA) 

FDA is a nonparametric method for describing and classifying curves, in which each sample point in 

the time series is considered to be a function observed along an underlying continuum (e.g. time). This 

provides great flexibility in describing the underlying curve. 

FDA approaches have been around for over two decades. For example, a FDA method for logistic 

regression was described by Escabias et al. (2005). In this paper, the authors modelled the relationship 

between the risk of drought and curves of temperatures. A functional logistic regression model was also 

employed to predict land use based on the temporal evolution of coarse-resolution EO remote sensing 

data by Cardot et al. (2003).  

A more recent paper on this topic is by Liu et al. (2012) on rotating functional factor analyses to improve 

estimation of periodic temporal trends in EO data. These authors demonstrated their approach on a six-

year time series at 8-day intervals of vegetation index measurements obtained from remote sensing 

images.  

State space models  

State space models have been recommended by the Australian Bureau of Statistics (ABS) for the 

analysis of dynamic EO data. See the paper by Tam and Clark (2015) on “A Statistical Framework for 

Analysing Big Data” for an exposition of the use of SSMs with reference to official statistics. 

State space models are a very common form of spatio-temporal model that can provide a natural setting 

for analysing time series of EO data, particularly if the process to be modelled can be viewed as one 

that is spatially evolving through time. Depending on the nature of the data (geostatistical or 

lattice/areal), various spatial, temporal, and spatio-temporal dependency structures can be incorporated 

into the model. Cressie and Wikle (2011) devote an entire chapter (Chapter 7) to the various 

permutations of spatial and temporal dependency models that can be incorporated into what they denote 

as Dynamic Spatio‐Temporal Models (DSTMs), and a further chapter (Chapter 8) to methods of 

inference for these models. 

By far the most common approach to modelling spatio-temporal data is to assume a spatial process 

evolving through time (e.g. Chen et al. (2006), Waller et al. (1997), Lagazio et al. (2001), Knorr-Held 

and Besag (1998), Mugglin et al. (2002), Jin et al. (2005), Jin et al. (2005), Norton and Niu (2009), 

Allcroft and Glaseby (2003), Zhu et al. (2005), Zhu et al. (2008), Zheng and Zhu (2008), Daniels et al. 

(2006), Ugarte et al. (2010)). As noted in Cressie and Wikle (2011), this approach is conceptually 

reasonable in many applications, and enables the spatio-temporal process to fit within the remit of a 

dynamic spatial modelling approach, or the state space modelling framework. This approach was 

investigated by the Australian Bureau of Statistics as a pilot project. 

A linear Gaussian state space model takes the general form 

 

𝑌𝑡 = 𝐻𝑡𝑋𝑡 + 𝑣𝑡 ,                                            𝑣𝑡 ∼ 𝑁𝑚𝑡
(0, 𝑅𝑡)  

𝑋𝑡 = 𝑀𝑡𝑋𝑡−1 + 𝑤𝑡 ,                                       𝑤𝑡 ∼ 𝑁𝑛(0, 𝑄𝑡) ,  

 

where, for time 𝑡, 𝑡 = 1, ⋯ , 𝑇, 𝑌𝑡 denotes the 𝑚𝑡‐dimensional data vector, 𝑋𝑡 denotes the n‐dimensional 

unobserved “state” vector, 𝑣𝑡 is the serially independent observation error, and 𝑤𝑡 is the serially 

independent innovation error (Shumway and Stoffer, 2011). It is generally assumed that 𝑣𝑡 and 𝑤𝑡 are 

mutually independent. It is also generally assumed that the observation matrix 𝐻𝑡, the state transition 
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matrix 𝑀𝑡 (also known as the evolution or propagator matrix), and the two covariance matrices 𝑅𝑡 and 

𝑄𝑡, are known, although this can be relaxed. 

Typically the main mechanism for incorporating spatio-temporal dependencies is through the 

covariance matrices 𝑅𝑡 and 𝑄𝑡. It is common, for example, to view the states 𝑋𝑡 as being driven not 

only by temporal processes but also by spatial ones, thus some form of spatial structure is placed on 𝑄𝑡. 

This may take the form of one of the common covariance function structures for geostatistical data or 

perhaps a sparse, neighbour-based covariance matrix induced by assuming a Markov random field in 

lattice data. Spatial, temporal, or spatio-temporal structures can also be assumed on the measurement 

structure. 

Extensions to these models include non-Gaussian state-space models, non-linear observation equation 

models, agent-based approaches, generalised additive mixed effects models and multivariate response 

models. Another important area of research in this context is dimension reduction via spectral 

decompositions. Such dimension reduction can substantially reduce computational load when fitting 

these dynamic models to data.  

State space models have been employed for crop estimation and prediction for over 15 years. For 

example, Wendroth et al. (2003) used this approach to predict yield of barley across a landscape. More 

recently, Schneibel et al. (2017) applied the method to annual Landsat time series data with the aim of 

detecting dry forest degradation processes in South-Central Angola.  

An example of using a Hidden Markov Model to analyse EO data is given by Yuan et al. (2015) in the 

context of detecting urban encroachment onto farmland in China. Two sources of data were used in this 

study:  

• MODIS data 2001-2010 (large-scale coverage, high temporal resolution [16 day], open) 

downloaded from the Level 1 and Atmosphere Archive and Distribution System (LAADS) 

website; this provided four spectral reflectance bands for vegetation and land surface, i.e., band 

1 (red: 620–670 nm), band 2 (NIR: 841–875 nm), band 3 (blue: 459–479 nm), band 7 (MIR: 

2105–2155 nm)  

• ESA Global Land Cover (GlobCover) map for 2009, for model training: farmland, built-up 

classes. 

As a pre-processing step, Functional Analysis (via a Fourier model, see above) was used to create high 

quality time series of band reflectances. A k-means analysis was also employed to cluster land use, 

using training data. A sliding window was then used to smooth estimates and a Hidden Markov Model 

was employed to identify change in classes. The authors obtained 96% correct change detection and 

0.04% false alarm. 
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Figure 47: (Top) Functional analysis employed to interpolate EO data time series.  (Middle) K-means clustering 

employed to classify farmland. (Bottom) Hidden Markov model to identify urban encroachment. Yuan et al. 

(2015) 

 

A.4 Choice between methods 

Comparisons between various empirical methods and machine learning approaches have been made for 

over a decade. Advantages and disadvantages of the different methods depend on the nature of the 

problem. Some examples of these comparisons are as follows: 

• A comparison was made by Hogland et al. (2013) between the ML technique and multinomial 

(a.k.a. polytomous) logistic regression for the analysis of remotely sensed data. Their 

conclusion was that the logistic regression methods were less restrictive, more flexible and 

easier to interpret. The authors also referenced papers that show these approaches perform at 

least as well as other machine learning techniques; see below.  

• De Melo et al. (2003) compared ML with Gaussian mixture models for supervised 

classification of remote sensing multispectral images, with a general preference for Gaussian 

mixture models. 

• Shao and Lunetta (2012) compared support vector machines (SVMs) to neural networks and 

CART (classification and regression trees) on limited training data for Land cover 

classification using MODIS time series data.  

• Otukei and Blaschke (2010) considered land cover change assessment using decision trees, 

SVMs (with a radial basis kernel function), and the maximum likelihood classifier and 

concluded that decision trees performed best. 

• Szuster et al. (2011) compared maximum likelihood classification and ANNs to SVMs for land 

use and land cover classification in tropical coastal zones. 
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• Yang et al. (2011) assessed various supervised classifiers using SPOT 5 imagery (a high 

resolution satellite), and found that the maximum likelihood and support vector machine 

techniques performed best of those considered.  

• Huang et al. (2002a) investigated SVMs for land cover classification and compared to neural 

networks, maximum likelihood, and decision trees.  

• Melgani and Bruzzone (2004) considered SVMs for remotely sensed data, comparing their use 

to that of neural networks (radial basis function NNs) and 𝐾‐nearest neighbour (K-NN). They 

concluded that SVMs are a viable option. 

• Yang et al. (2011) assessed various supervised classifiers using SPOT 5 imagery (a high 

resolution satellite and found that maximum likelihood and SVM techniques peformed best.   

 

 

Figure 48: Crop identification using EO data. Yang et al. (2011) 

 

A.5 Combining methods 

Instead of choosing a single method, an increasingly popular approach in the machine learning literature 

is to combine approaches. 

An example of the combination of different methods for improved classification is given by Sweeney 

et al. (2015). These authors combined probabilistic modelling, in the form of logistic regression, with 

traditional remote sensing approaches to obtain maps of small-scale cropland. While the various 

methods are well established, the authors argued that the novelty of their approach is in the sequence of 

their application and the way in which they are combined. 

An example of the combination of different methods for improved clustering in remotely sensed images 

is given by Neagoe and Chirila-Berbentea (2016). In this paper, the authors propose a merger of kNN 

and Gaussian mixture models, whereby the former method is used to identify starting points for the 

latter method and EM (expectation maximisation) is employed for analysis.  
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Löw, F., Schorcht, G., Michel, U., Dech, S. and Conrad, C. (2012). Per-field crop classification in 

irrigated agricultural regions in middle Asia using random forest and support vector machine 

ensemble. In SPIE Remote Sensing, (8538). International Society for Optics and Photonics. 

Lu, D. and Weng, Q. (2007). A survey of image classification methods and techniques for improving 

classification performance. International Journal of Remote Sensing, 28(5), 823–870. 

javascript:openGatewayLink('http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=RID&SrcApp=RID&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000370662200006')
javascript:openGatewayLink('http://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcAuth=RID&SrcApp=RID&DestLinkType=FullRecord&DestApp=ALL_WOS&KeyUT=000370662200006')


157   

Lu, D., Batistella, M., Moran, E. and Mausel, P. (2004). Application of spectral mixture analysis to 

Amazonian land-use and land-cover classification. International Journal of Remote Sensing, 25(23), 

5345–5358. 

Lu, D., Moran, E. and Batistella, M. (2003). Linear mixture model applied to Amazonian vegetation 

classification. Remote sensing of environment, 87(4), 456–469. 

M. K., Plant, R. E. and Six, J. (2011). Object-based crop identification using multiple vegetation 

indices, textural features and crop phenology. Remote Sensing of Environment, 115(6), 1301–1316. 

MacNab, Y. C. and Dean, C. B. (2001). Autoregressive spatial smoothing and temporal spline 

smoothing for mapping rates. Biometrics, 57(3), 949–956. 

Marchesi, S. and Bruzzone, L. (2009). ICA and kernel ICA for change detection in multi- spectral 

remote sensing images. In Geoscience and Remote Sensing Symposium, 2009 IEEE International, 

IGARSS 2009, volume 2, pp. II-980. IEEE. 

Marley, J., Defina, R., Traeger, K., Elazar, D., Amarasinghe, A., Biggs, G., and Tam. S-M. 2016. 

Investigative Pilot Report (unpublished).  

Martino, S., Aas, K., Lindqvist, O., Neef, L. R. and Rue, H. (2011). Estimating stochastic volatility 

models using integrated nested Laplace approximations. The European Journal of Finance, 17(7), 

487–503. 

Martins, T. G., Simpson, D., Lindgren, F. and Rue, H. (2013). Bayesian computing with INLA: New 

features. Computational Statistics and Data Analysis, 67, 68–83. 

Maselli, F., Rodolfi, A. and Conese, C. (1996). Fuzzy classification of spatially degraded Thematic 

Mapper data for the estimation of sub-pixel components. International Journal of Remote Sensing, 

17(3), 537–551. 

Mather, P., Tso, B. (2016) Classification Methods for Remotely Sensed Data, Second Edition. CRC 

Press. 

Mathur, A. and Foody, G. M. (2008). Crop classification by support vector machine with intelligently 

selected training data for an operational application. International Journal of Remote Sensing, 29(8), 

2227–2240. 

McIver, D. K. and Friedl, M. A. (2002). Using prior probabilities in decision-tree classification of 

remotely sensed data. Remote Sensing of Environment, 81(2), 253–261. 

McRoberts et al. (2007) Estimating areal means and variances of forest attributes using the k-Nearest 

Neighbors technique and satellite imagery. Remote Sensing of the Environment 111.  

Melgani, F. and Bruzzone, L. (2004). Classification of hyperspectral remote sensing images with 

support vector machines. IEEE Transactions on Geoscience and Remote Sensing, 42(8), 1778–

1790. 

Mello, M.P., Risso, J., Atzberger, C., Aplin, P., Pebesma, E., Vieira, C.A.O., Rudorff, B.F.T. (2013) 

Bayesian networks for raster data (BayNeRD): plausible reasoning from observations. Remote Sensing 

5(11), 5999-6025. 



158   

Mertens, K. C., Verbeke, L. P. C., Westra, T. and De Wulf, R. R. (2004). Sub-pixel mapping and sub-pixel 

sharpening using neural network predicted wavelet coefficients. Remote Sensing of Environment, 

91(2), 225–236. 

Mishra, N. S., Ghosh, S. and Ghosh, A. (2012). Fuzzy clustering algorithms incorporating local 

information for change detection in remotely sensed images. Applied Soft Computing, 12(8), 2683–

2692. 

Moreno-Seco, F., Inesta, J. M., De León, P. J. P. and Micó, L. (2006). Comparison of classifier 

fusion methods for classification in pattern recognition tasks. Structural, Syntactic, and Statistical 

Pattern Recognition, pp. 705–713. Springer. 

Morisette, J.T., Khorram, S. (1997) An introduction to using generalized linear models to enhance 

satellite-based change detection. Geoscience and Remote Sensing. IGARSS ’97. Remote Sensing – A 

Scientific Vision for Sustainable Development. 1997 IEEE International. 

DOI: 10.1109/IGARSS.1997.609064 

Morisette, J.T., Khorram, S. and Mace, T. (1999) Land-cover change detection enhanced by 

generalized linear models. International Journal of Remote Sensing 20(14), 2703-2721. 

Moser, G. and Serpico, S. B. (2013). Combining support vector machines and markov random fields in 

an integrated framework for contextual image classification. Geoscience and Remote Sensing, IEEE 

Transactions on, 51(5), 2734–2752. 

Moser, G., Serpico, S. B. and Benediktsson, J. A. (2013). Land-cover mapping by Markov modeling of 

spatial–contextual information in very-high-resolution remote sensing im- ages. Proceedings of the 

IEEE, 101(3), 631–651. 

Mountrakis, G., Im, J. and Ogole, C. (2011). Support vector machines in remote sensing: A review. 

ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247–259. 

Muff, S., Riebler, A. and Held, L. (2015). Bayesian analysis of measurement error models using 

integrated nested Laplace approximations. Journal of the Royal Statistical Society Series C: Applied 

Statistics, pp. 231–252. 

Mugglin, A. S., Cressie, N. and Gemmell, I. (2002). Hierarchical statistical modelling of influenza 

epidemic dynamics in space and time. Statistics in medicine, 21(18), 2703– 21. 

Nakamura, R., Osaku, D., Levada, A., Cappabianco, F., Falcão, A. and Papa, J. (2013). OPF-MRF: 

Optimum-path forest and markov random fields for contextual-based image classification. In Computer 

Analysis of Images and Patterns, pp. 233–240. Springer. 

Neagoe, V.-E., Chirila-Berbentea, V. (2016) Improved Gaussian mixture model with expectation-

maximization for clustering of remote sensing imagery. Geoscience and Remote Sensing Symposium 

(IGARSS), 2016 IEEE International, DOI: 10.1109/IGARSS.2016.7729792 

Newlands, N.K., Zamar, D.S., Kouadio, L.A., Zhang, Y., Chipanshi, A., Potgieter, A., Toure, S. and 

Hill, H.S. (2014). An integrated, probabilistic model for improved seasonal forecasting of agricultural 

crop yield under environmental uncertainty. Frontiers in Environmental Science, 2, 17. 

https://doi.org/10.1109/IGARSS.1997.609064
https://doi.org/10.1109/IGARSS.2016.7729792


159   

Norton, J. D. and Niu, X.-F. (2009). Intrinsically Autoregressive Spatiotemporal Models With 

Application to Aggregated Birth Outcomes. Journal of the American Statistical Association, 

104(486), 638–649. 

Ohmann, J. L. and Gregory, M. J. (2002). Predictive mapping of forest composition and structure 

with direct gradient analysis and nearest-neighbor imputation in coastal Oregon, USA. Canadian 

Journal of Forest Research, 32(4), 725–741. 

Okujeni, A.O. and van der Linden, S. (2014)  A Comparison of Advanced Regression Algorithms for 

Quantifying Urban Land Cover. Remote Sensing 6, 6324-6346. 

Olofsson, P., Foody, G.M., Herold, M., Stehman, S.V., Woodcock, C.E. and Wulder, M.A. (2014). 

Good practices for estimating area and assessing accuracy of land change. Remote Sensing of 

Environment, 148, 42-57. 

Otukei, J. R. and Blaschke, T. (2010). Land cover change assessment using decision trees, support 

vector machines and maximum likelihood classification algorithms. International Journal of Applied 

Earth Observation and Geoinformation, 12(SUPPL. 1), 27– 31. 

Pal, M. and Mather, P. M. (2003). An assessment of the effectiveness of decision tree methods for 

land cover classification. Remote Sensing of Environment, 86(4), 554–565. 

Pal, M. and Mather, P. M. (2005). Support vector machines for classification in remote sensing. 

International Journal of Remote Sensing, 26(5), 1007–1011. 

Paola, J. D. and Schowengerdt, R. A. (1995). A review and analysis of backpropagation neural 

networks for classification of remotely-sensed multi-spectral imagery. International Journal of remote 

sensing, 16(16), 3033–3058. 

Paola, J. D. and Schowengerdt, R. A. (1997). The effect of neural-network structure on a 

multispectral land-use/land-cover classification. Photogrammetric Engineering and Remote Sensing, 

63(5), 535–544. 

Pedley, M. I. and Curran, P. J. (1991). Per-field classification: an example using SPOT HRV 

imagery. Remote Sensing, 12(11), 2181–2192. 

Pena et al. (2016) Object based image classification of summer crops with machine learning methods. 

Remote Sensing 6, 5019. 

Peña-Barragán, J. M., Ngugi, M. K., Plant, R. E., Six, J., PeÃ a-BarragÃ n, J. M., Ngugi, Penaloza, M. 
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1. List of acronyms 

9.1 GENERAL TERMS 

DQF (Data Quality Framework) 

EO (Earth Observations) 

NGOs (Non-Governmental organisations) 

NSOs (National Statistics Officers) 

9.2 TECHNICAL TERMS (Remote sensing) 

ARD (Analysis Ready Data) 

GEO (Geostationary) satellites 

GSD Ground Sampling Distance 

LAI (Leaf Area Index)  

LEO (Low Earth polar Orbiting) satellites  

LIDAR (Light Detection And Ranging) 

MEO (Medium Earth Orbit) satellites 

MIR (Mid Infrared) wavelengths 

MODIS (MODerate-resolution Imaging Spectroradiometer) 

NIR (Nearby Infrared) wavelengths 

OLCI (Ocean Land Colour Imager) 

RMSE (Root Mean Squared Error), bias, and CC (Correlation Coefficient) 

SAR (Synthetic Aperture Radar) 

SLAR (Synthetic Aperture Radar Altimeter) 

SLSTR (Sea and Land Surface Temperature Radiometer)  

SWE (Snow Water Equivalent) 

SWIR (Shortwave Infrared) Wavelengths 

TIR (Thermal Infrared) wavelengths 

VIS (Visible) wavelengths 
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9.3 ORGANISATIONS/SYSTEMS AND ONLINE RESOURCES 

CEOS (Committee on Earth Observation Satellites) http://ceos.org/  

CRESDA (Center for Resource Satellite Data and Applications, China)  http://www.cresda.com/EN/  

CSA (Canadian Space Agency) http://www.asc-csa.gc.ca/eng/  

CSIRO (Commonwealth Scientific and Industrial Research Organisation) http://www.csiro.au/  

ESA (European Space Agency) http://www.esa.int/ESA  

EU (European Union) http://europa.eu/index_en.htm  

GA (Geoscience Australia) http://www.ga.gov.au/  

GEO (Group on Earth Observations) https://www.earthobservations.org/index.php  

GEOGLAM (GEO Global Agriculture Monitoring) https://www.earthobservations.org/geoglam.php  

GEOSS (Global Earth Observation System of System) http://www.earthobservations.org/geoss.php  

GFOI (Global Forest Observations Initiative) http://www.gfoi.org/  

GWG (Global Working Group) on Big Data for Official Statistics http://unstats.un.org/unsd/bigdata/  

INPE (Instituto Nacional de Pesquisas Espaciais, the Brasilian National Institute for Space Research) 

www.inpe.br  

JAXA (Japan Aerospace Exploration Agency) http://global.jaxa.jp/  

NASA (National Aeronautics and Space Administration) https://www.nasa.gov/  

NASA Earth Observation: https://earthdata.nasa.gov/earth-observation-data  

OSCAR (Observing Systems Capability Analysis and Review Tool) https://www.wmo-sat.info/oscar/  

OSCAR database: http://www.wmo-sat.info/oscar/spacecapabilities 

UN GGIM (United Nations Committee of Experts on Global Geospatial Information Management) 

http://ggim.un.org/  

UN SC (Statistical Commission) http://unstats.un.org/unsd/statcom  

UN SDSN (Sustainable Development Solutions Network) http://unsdsn.org/  

USGS (United States Geological Survey) https://www.usgs.gov/  

WMO (World Meteorological Organisation) SDGs (Sustainable Development Goals) 

http://public.wmo.int/en/resources/bulletin/wmo-supporting-2030-agenda-sustainable-development  

NCI (National Computational Infrastructure) http://nci.org.au/  

VPAC (Victorian Partnership for Advanced Computing Ltd) 
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