Measuring the Climate Footprint of Tourism in the Nordics with SF-MST

Ms. Kathrine Lindeskov Johansen, Chief Consultant
CRT – Centre for Regional and Tourism Research, Denmark
A common framework is essential

- Measuring GHG emissions attributable to tourism is a complicated task.

- Current findings on GHG emissions attributed to tourism have strived and accomplished the task differently, resulting in **significant differences** in the results, see **figure**.

- Therefore, there is a need for a **common framework**.

- **Recommendation**: Follow the Statistical Framework for Measuring the Sustainability of Tourism by UN Tourism, which utilises well-defined statistical frameworks (TSA, SEEA etc.).

Figure: The proportion of global greenhouse gas emissions attributed to tourism

Source: Own research
UN Tourism Framework: “The must haves”

- **Direct**:
 - Visitors’ direct emission (e.g., driving own vehicle)
 - Transport*
 - Hotels*
 - Agriculture*
 - Electricity supply*

- **Indirect**:
 - Resident economic units
 - Non-resident economic units

- **Imported goods and services**

- **Outbound visitors from country A**
 - Visitors’ expenditure (pre- and post-trip expenditure by outbound visitors) in country A

- **Domestic visitors in country A**

- **Inbound visitors in Country A**

- **International transport to and from country A**

An example of origin, not exhaustive.
UN Tourism Framework: “The full story”

An example of origin, not exhaustive.
Calculations

- CRT has performed calculations for Denmark and Finland.

- For Denmark, our calculations encompass GHG emissions from **direct**, **indirect**, and **imported** flows, alongside the **international transport** of tourists (complete carbon footprint of tourists in Denmark).

- For Finland, we calculate the GHG emissions from **direct** and **indirect** flows.

- In the Danish TSA, both **domestic** and **inbound** tourism are accounted for. In the Finnish TSA, **outbound**, **domestic**, and **inbound** tourism are all encompassed.
Comparison

- Each calculation is **correct and follows the same framework (SF-MST)**.

- Each calculation is **comparable to the TSA** for its respective country.

- However, due to differences in the TSA between Denmark and Finland, the **results for GHG emissions are not comparable** for the direct and indirect GHG emissions from tourism.

- **Key findings**: Harmonizing the carbon footprint of tourism in the Nordics necessitates harmonizing “CO2-ready” TSA populations and harmonizing the solution to common challenges on methodology practices and data gaps.

Figure: GHG emissions from tourism in Denmark and Finland (2019)

Note: The values cannot be shown as the results are still unpublished. Imports and international transport are not included in Finland's calculations.

Source: Centre for Regional and Tourism Research
Big data for international transport: Overview

- This part of the calculation is **not** based on an IO model.

- Instead, the method is **inspired by a study from Norway***, that requires the following information based on the country of origin and type of transport mode used:

 - **Advantage**: Distinguish between different detailed means of transport (e.g., electric cars versus diesel cars).

 - **Disadvantage**: Does not include indirect emissions like an IO-model.

<table>
<thead>
<tr>
<th>Distance</th>
<th>Emission per person km</th>
<th>Number of travellers</th>
</tr>
</thead>
</table>
Big data for international transport: Distance

- For **air travel**, we utilize data from Copenhagen Airport for insights into the origins and destinations of inbound travelers.

- This includes details such as stopovers and the number of business class passengers.

- For **other transport modes**, we use Google Maps (big data) to estimate the distance travelled. The distance is calculated from the largest city to Copenhagen as an estimate of the average distance.

- A trip by a specific transport mode (e.g., car) can involve the use of multiple transport modes (e.g., car and ferry).

Figure: Routes by individual transport (car, etc.)

Table: Distance (in kilometers) for a round trip

<table>
<thead>
<tr>
<th>Nationality of tourists</th>
<th>Car, autocamper, or motorbike</th>
<th>Ferry (incl. transport mode)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Finland</td>
<td>1.825</td>
<td>412</td>
</tr>
<tr>
<td>Norway</td>
<td>1.216</td>
<td>412</td>
</tr>
</tbody>
</table>
TIMELINE OF THE PROJECT

2022

REPORT
A feasibility study for the Nordics countries.

2023

RESULTS
Pilot compilations for Denmark and Finland.

2024

DIRECT AND INDIRECT
Pilot compilations for the rest of the Nordics ready for calculations of direct and indirect GHG emissions by tourism, and feasibility study.

2025

IMPORT AND INT. TRANSPORT (NOT FINANCED)
Pilot compilations of GHG emissions from import and int. transport and other harmonisation needs.

? **MULTI REGIONAL ASPECT (NOT FINANCED)**
Depending on the outcome of regionalizing the TSA across the Nordics.
Thank you for your attention

Please feel free to reach out: kathrine.Johansen@crt.dk, +45 3085 5179