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The values of the Directionality Indicator (“mean_oi_mean”) do not 
clearly follow the initial hypothesis that the higher the metric, the 
higher the deprivation, but the opposite. This can be explained by the 
fact that directionality is only defined by the four neighbouring build-
ings. In highly deprived areas, due the high density and the proximity, 
buildings have low chances to settle freely, so the urban pattern is not as 
organic as parts with greater open spaces. However, it should be noted 
that this indicator has often been used to differentiate formal areas from 
deprived areas, as the fabric is much more organic in the latter (Gomes, 

2015). 
Furthermore, the neighbouring blocks show homogeneity (lower 

values refer to homogeneity with the block studied) from which we can 
derive that the Highly deprived areas are surrounded by high degrees of 
deprivation in the neighbouring blocks (see “sum_area-neig”, “max_-
inn_irr_angle-neig”, “mean_dvl_mean-neig”, “mean_oi_mean-neig” in 
Fig. 18). 

The clustering obtained from the predicted footprints was assessed 
against the “reference clustering”, extracted from the digitised foot-
prints. The overall accuracy was 0.71 (proportion of grids correctly 
classified). The overall F1-score was 0.47, and the F1-score by class was 
0.82 for High Deprivation, 0 for Medium Deprivation, and 0.58 for Low 
Deprivation, which indicates that the model is able to capture high and 
low deprivation but fails to capture medium deprivation (Fig. 17). 

The values metrics (scaled variables) from both datasets were plotted 
in a box plot graphic to illustrate the performance of each metric 
through the deprivation cluster classes (Fig. 18). 

Top: metrics from the manually delineated set. Bottom: metrics from 
the U-net output set. 

It can be observed, that in the predicted clustering, the metric density 
(“area”), and the difference in density of the neighbour’s (“area_neig”) 
define High deprivation in a very precise way, even better than with the 
digitised building metric “sum_area”. The number of clumps 

Fig. 16. All images within Mathare DUA taken by the author. Left: Buildings with walls made of bricks. Middle: Buildings with walls made of iron-sheets. Top- right: 
Iron-sheet wall detail. Bottom-right: Brick wall detail. 

Table 5 
Descriptive statistics of the proximity between buildings (m) measured by 
“mean_dvl_mean” (i.e., the mean per grid of the mean of the four closest 
neighbours per building). Each Deprivation class is represented.  

Descriptive 
Statistics 

All 
grids 

High 
Deprivation 

Medium 
Deprivation 

Low 
Deprivation 

Min. 0.92 0.92 1.07 6.95 
1st Qu. 1.51 1.39 2.88 9.56 
Median 2.18 1.80 3.39 12.17 
Mean 2.93 2.02 3.79 10.74 
3rd Qu 3.37 2.38 4.62 12.64 
Max 13.11 4.55 7.87 13.11  

Fig. 17. Left: 52 grids clustered from the digitised footprint metrics. Right: 52 grids clustered from the predicted footprint metrics.  

A. Abascal et al.                                                                                                                                                                                                                                

PROXIMITY - DISTANCE BETWEEN BUILDINGS

STUDY AREA INTRA-URBAN DIVERSITY IN INFORMAL SETTLEMENTS



55|

23

329

889

8971780 1971

10451773

680

514

1436 720

1421

329

889

8971780 1971

10451773

680

514

1436 720

1421

329

889

8971780 1971

10451773

680

514

1436 720

1421

329

889

8971780 1971

10451773

680

514

1436 720

1421

329

889

8971780 1971

10451773

680

514

1436 720

1421

329

889

8971780 1971

10451773

680

514

1436 720

1421

329

889

8971780 1971

10451773

680

514

1436 720

1421

329

889

8971780 1971

10451773

680

514

1436 720

1421

329

889

8971780 1971

10451773

680

514

1436 720

1421

329

889

8971780 1971

10451773

680

514

1436 720

1421

STUDY AREA INTRA-URBAN DIVERSITY IN INFORMAL SETTLEMENTS



66|

23

PROBLEM

They are more exposed 
to climate and other 
hazards like heat, 
flooding, pollution, fire, 
inadequate housing, 
health risks . They are 
acutely vulnerable and 
have limited capacity 
to cope.
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They are more exposed 
to climate hazards like 
extreme heatextreme heat.. They 
are acutely vulnerable 
and have limited ca-
pacity to cope

City-dwellers in 
face daily significant challenges due to their living conditions.

CLIMATE CHANGE INFORMAL SETTLEMENTS

PROBLEM
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Fletcher, 2019). Such aspects capture the built-up morphology. Recently, there has been a growing body of 
literature that maps DUAs using DL, i.e., by using CNNs (Ajami, Kuffer, Persello, & Pfeffer, 2019; Wang, 
Kuffer, Roy, & Pfeffer, 2019) or FCNs (Wurm, Stark, Zhu, Weigand, & TaubenBöck, 2019).

Several studies have detected DUAs areas mainly at the city scale, focusing on the boundary of the settlements 
(Kohli, Sliuzas, & Stein, 2016; Kuffer & Barros, 2011; Wurm & Taubenb ock, 2018). For this, an automatic 
global process remains a challenge due to their variability in types and definitions between cities (Duque, 
Patino, Ruiz, & Pardo- Pascual, 2015; Kuffer, Barros, & Sliuzas, 2014; Sliuzas & Kuffer, 2008a, 2008b) and 
due to their often-rapid development processes (Liu, Kuffer, & Persello, 2019). Semantic segmentation of 
buildings in DUAs from RS-based methods is still challenging due to the urban complexity (i.e., variety of 
physiognomy and materiality of the roofs of buildings) (Fig. 4.1). CNN building segmentation in a DUAs 
was seen for the first time in Guangzhou City, Southern China (Pan, Xu, Guo, Hu, & Wang, 2020) and in 
Ahmedabad city in Gujarat, India. The U-net architecture was adopted for building segmentation, showing 
robust performance. However, the spatial urban characteristics found in Nairobi City are different from those 
in Guangzhou and in Ahmedabad, where the roofings are more regular, with similar materials and the space 
between buildings is larger.

Computers, Environment and Urban Systems 95 (2022) 101820

3

the street and from space (Naik, Raskar, & Hidalgo, 2016; Sliuzas & 
Kuffer, 2008a) (Fig. 2). 

Although DUAs have existed in cities from their beginning and some 
governments acknowledge their existence (Davis, 2006), deprivation 
research has greatly increased following the third United Nations Con-
ference on Human Settlements (Habitat III) in 2015, calling for an SDG 
assessment. Since then, the scientific literature has become increasingly 
interested in studying deprived urban characterisation (in response to 
SDG 11). Urban spatial deprivation has often been simplified by map-
ping socio-economic data aggregated to administrative units, as poverty 
has predominantly been characterised as household-level deprivation 
based on census data (Schirmer, van Eggermond, & Axhausen, 2014). 
Meanwhile, the area-level characterisation in DUAs is mostly ignored 
(Abascal et al., 2021; Baud, Kuffer, Pfeffer, Sliuzas, & Karuppannan, 
2010; Kuffer et al., 2014; Taubenböck et al., 2018; Thomson et al., 
2020). Spatial characteristics of deprivation are still unknown and there 
is even less global agreement to formulate deprivation through 
morphological variables. 

Few studies have acknowledged the diversity within DUAs (e.g., 
Graesser et al., 2012; Krishna, Sriram, & Prakash, 2014, Kuffer, Pfeffer, 
Sliuzas, Baud, & van Maarseveen, 2017; Wurm & Taubenböck, 2018), 
and the categorization has mostly been based on statistical methodolo-
gies (e.g., PCA). Nonetheless, local expertise (i.e., link with local urban 
policies) and ground knowledge (i.e., DUA inhabitant’s insights) have 
been important in interpreting and categorising deprivation (Joshi, Sen, 
& Hobson, 2002). The physical characterisation in quantifying 

deprivation have been conducted mostly based on household-level 
characteristics, such as building conditions which are defined by 
building size or building material, and primarily extracted from census 
or survey data (Anurogo, Lubis, Pamungkas, Hartono, & Ibrahim, 2017). 
Deprivation conceptualisation through urban physical characteristics is 
still largely under-researched, without an agreement on the indicators 
conceptualisation nor the methods of measurement. On the other hand, 
the physical conditions of the area that are analysed by RS-based 
methods (Kohli, Sliuzas, Kerle and Stein, 2012; Taubenböck et al., 
2018) are mainly focused on isolated features such as buildings and open 
spaces within a settlement. Both the relative location of the area within 
the larger urban spatial configuration as well as the subtler aspects of the 
building orientation are found missing from the literature. Therefore, 
there is a need for an integrated approach that situates these isolated 
features within a larger spatial configuration and considers the orien-
tation within the settlement pattern. 

This paper aims to investigate the following research question: Can 
deep learning be used to characterise degrees of deprivation based on 
the morphology of DUAs in LMICs? To this end, the following specific 
objectives are pursued:  

1. To generate a reference dataset of building footprints in DUAs in 
LMICs through participative community-based crowdsourcing  

2. To employ deep learning for the automatic generation of building 
footprints 

Fig. 1. WorldView-3 imagery (resolution: 0.3 m). A dense urban slum in Nairobi. Variable building sizes and compact urban form. Right: Ground photo taken by the 
author. The roofs overlap at different levels and the street below cannot be detected from the satellite image. 

Fig. 2. Top row: RS imagery (Google Earth) of Nairobi city. Bottom row: 3 images from ground level; an example of a deprived area image taken by the author (left: 
red frame), a low-cost housing area (centre: blue frame) and a middle-class housing area (right: yellow frame), the latter two from Google Street View. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 4.1
WorldView-3 imagery (resolution: 0.3 m). A 
dense urban slum in Nairobi. Variable buil-
ding sizes and compact urban form. Right: 
Ground photo taken by authors. The roofs 
overlap at different levels and the street below 
cannot be detected from the satellite image.

CHAPTER 4

The variability of heat exposurevariability of heat exposure and the number of exposed vulnerable peoplenumber of exposed vulnerable people are absent from existing data, models 
and local dwellers’ knowledge. 

Example: Thermal inequalities in SSA cities are invisible.Thermal inequalities in SSA cities are invisible.
- Increase in LST over the last decade (recent study)
- No distinction between formal and informal areas

- Housing materials,- Housing materials,
  such as roofing iron sheet  such as roofing iron sheet
- Overcrowding- Overcrowding

- Urban morphological patterns- Urban morphological patterns
  * High built-up densities  * High built-up densities
  * Irregular patterns that   * Irregular patterns that 
    prevent ventilation    prevent ventilation

DATA GAPSPROBLEM

~1km to 9km
 spatial resolution
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RESEARCH QUESTION

 AIM Quantify the number and susceptibility of slum dwellers exposed to extreme heat

CITIZEN SCIENCECITIZEN SCIENCE

REMOTE SENSING-BASED METODSREMOTE SENSING-BASED METODS
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~70 m spatial resolution

REMOTE SENSING- ANALYSIS LST
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LOWER SPECIFIC 
HEAT CAPACITY
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RADIATION SENSORRADIATION SENSOR

WIND SENSORWIND SENSOR

Resolution  ±0.1 ºC
Accuracy  ±0.5 ºC
Settings  10 sec log

TEMP, HUMIDITY TEMP, HUMIDITY 
SENSORSENSOR

METHODS FIELD COLLECTION- METEOROLOGICAL STATIONS - FIXED SENSORS
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METHODS FIELD COLLECTION- MOBILE SENSORS
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METHODS

RADIATION SENSORRADIATION SENSOR

TEMP, HUMIDITY TEMP, HUMIDITY 
SENSORSENSOR

GPSGPS

Resolution  ±0.01 ºC
Accuracy  ±0.9 ºC
Settings  10 sec log
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METHODS

CALIBRATED CAMERA RADIATION LEVELSCALIBRATED CAMERA RADIATION LEVELS



Model Decline:
Optimizer for best fit 

3A. CSD Data Preprocessing
Temporal Decline modelling 

Best polynomial coefficient 
Temperature correction
Applied to 15.10 

Process repeated for all settlements

Model Decline:
Optimizer for best fit 

3A. CSD Data Preprocessing
Temporal Decline modelling 

Best polynomial coefficient 
Temperature correction
Applied to 15.10 

Process repeated for all settlements

RESULTS AIR TEMPERATURE PREPROCESSING
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3A. CSD Data Preprocessing
Corrected Temperature

Spatial Aggregation 
50x50m grid
Mean 

3A. CSD Data Preprocessing
Corrected Temperature

Spatial Aggregation 
50x50m grid
Mean 

RESULTS AIR TEMPERATURE PREPROCESSING
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4. Exploratory Spatial Data Analysis

MGWR assumes;
spatially varying relationships at multiple scales
nonstationarity ; separate regression models for different locations and scales

Covariates; Morphometrics and NDVI 
Run stepwise; Statistically significant features for final model 

MGWR

Results
R-squared (R²): 0.76
Feature Importance 

Building Volume Range
NDVI
Mean Building Area
Tesselation Measures

RESULTS AIR TEMPERATURE MODELLING - Multiscale Geographically Weighted Regression (MGWR)

R-squared  0.76
Feature importance
 - Building volume
 - NDVI
 - Distance between   
   buildings
   

+ 3 ºC + 3 ºC 
DIFFERENCES DIFFERENCES 
WITHIN WITHIN 
INFORMAL INFORMAL 
SETTLEMENTSSETTLEMENTS
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FIXED RADIATION SENSOR

DIRECT RADIATION DIRECT RADIATION
INDIRECT RADIATION INDIRECT RADIATION

REFLECTED RADIATION MOBILE RADIATION SENSOR

High reflection - Emissivity of building materials

Low direct and indirect reflection - Shadows, narrow streets
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REFLECTED RADIATION

High reflection - 
Emissivity of building materials
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HOUSEHOLD PROFILE

ADAPTATIVE CAPACITYHOUSING TYPE

ACCESS TO 
SERVICES

EXPER-
IENCE

RESULTS VULNERABILITY TO HEAT

VULNERABILITY TO HEAT INDEX
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“Climate change further worsens urban inequity […], due to the increase in extreme weather events such as heat waves” 
- Intergovernmental Panel on Climate Change (IPCC)

THE URBAN POOR SHOULD BE AT 
THE CENTRE OF ADAPTATION PROCESSES

NOT BE BUT MOSTLY AFFECTED, DIRECTLY AND INDIRECTLY
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