The SDG 6.6.1 reporting workflow Stuart Crane (UNEP)

SDG Target 6.6 protect and restore freshwater ecosystems

Recent Global Freshwater Trends

- > 1 in 5 river basins are currently experiencing rapid changes in available surface water
- > 80% of wetlands are estimated to be lost
- > 1 in 4 large lakes surveyed in 2019 had extreme turbidity conditions

Progress on Freshwater Ecosystems

TRACKING SDG 6 SERIES: GLOBAL INDICATOR 6.6.1 UPDATES AND ACCELERATION NEEDS

2021

UN 🏵

environment programme

UN WATER

1972-2022

UN G

UNEP-DHI CENTRE

United Nations

Limited-to-no change
High increase
High decrease
High increase and decrease

P-

Turbidity

to prevent this.

The SDG data flow

3 sub-indicators, all suited to map and monitor with satellite data

3-sub indicators – different data

Ecosystem type	Satellite data source	Website
Permanent, seasonal, reservoir	NASA Landsat (1984–present)	United States Geological Survey (USGS) Earth Explorer (<u>https://earthexplorer.</u> <u>usgs.gov/</u>)
Inland vegetated wetlands	European Sentinel-1 (2014–present) European Sentinel-2 (2016–present)	Copernicus.eu (<u>https://www.</u> copernicus.eu/en/access-data)
Water quality	European Sentinel-3 (2017–present) European Envisat Medium Resolution Imaging Spectrometer (MERIS) (2002–2012)	Copernicus.eu (<u>https://www.</u> copernicus.eu/en/access-data)
Mangroves	Japanese L-Band SAR satellites: JERS-1 SAR (1992–1998) Advanced Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) (2006–2011) ALOS-2 PALSAR-2 (2014–present)	Jaxa.jp (<u>https://www.eorc.jaxa.jp/ALOS/</u> en/dataset/dataset_index.htm)

Example: Sentinel 2 Observation Scenario

 Landsat (every 2-weeks) otherwise similar; several terabytes of data collected each day

nicus

SDG reporting on indicator 6.6.1

Example: Expert system for global surface water mapping

• Each 30x30 m pixel in 1,823 terabytes of Landsat data was anlaysed

* Pekel, J.F., Cottam, A., Gorelick, N. and Belward, A.S., 2016. High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633), pp.418-422.

Surface water

- Sub-indicator definition
 - Permanent Permanent waterbody
 - Seasonal water Seasonal waterbody

- Reservoirs (by overlay with GRanD*)

Land

* Global Reservoir and Dam (grand) database

Surface water changes

- The data show the total change in extent of permanent and seasonal surface water area, measured against a historical baseline
- This methodology uses 2000-2004 as the 5year baseline period and to be compared against any subsequent 5-year target period
- Reporting units:
 - Administrative boundaries (Currently using FAO Global Administrative Unit Layers [Admin Level 0,1,2] but will be updated with UN approved data
 - Hydrological basins (WWF HydroBASINS level 6)

Similar approach for other sub-indicators

- 1. Status mapping for reporting (year/period)
- 2. Access and report change relative to baseline

Water quality (turbidity and trophic state)

- Reporting year: 2019
- Baseline: 2006-2010

Mangroves

- Reporting year: 2016
- Baseline (1996 -> 2000)

Wetlands

- Reporting year: 2017
- Currenly no baseline available

Country report (example)

¥

¥

EO integration into SDG implementation

Towards efficient "big data" exploitation platforms

The power of the Cloud

"Bringing the users to

the data"

Big Data challenge:

The massive size of EO data generated by today's sensors, in the order of daily Terabytes, means that cost-effective procurement of the computing infrastructure for archiving and processing is needed

Thank you

Stuart.Crane@un.org

