Big Data Quality Framework

Ronald Jansen
Assistant Director
Chief of Data Innovation and Capacity Branch
United Nations Statistics Division
Overview

Big Data Quality Framework
- Input
- Throughput
- Output

Examples

Change Management

Big Data Quality Framework
- CES
- UNECE Task Force
- 1994
Approach

Business process

input
acquisition

throughput
transformation

output
reporting

Framework
Structured view of quality for each phase
Input

• **Discovery stage**
 – Dataset not required
 – Hyperdimension: Source and Metadata

• **Acquisition**
 – Dataset required
 – Hyperdimension: Data

Approach

Factors to consider

Sample of quality indicators
<table>
<thead>
<tr>
<th>Hyperdimension</th>
<th>Quality Dimension</th>
<th>Factors to consider</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SOURCE

Institutional environment
- Sustainability of the data provider
- Reliability of data provider
- Transparency of data provider

Privacy and Security
- Legislation
- Data Keeper vs. Data Provider
- Restrictions
- Perception
<table>
<thead>
<tr>
<th>Metadata</th>
<th>Complexity</th>
<th>Technical constraints, Structured or Unstructured Readability, Presence of hierarchies and nesting</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completeness</td>
<td>Metadata is available, interpretable and complete</td>
<td></td>
</tr>
<tr>
<td>Usability</td>
<td>Resources required to import and analyse</td>
<td>Risk analysis</td>
</tr>
<tr>
<td>Time-related</td>
<td>Timeliness, Periodicity, Changes through time</td>
<td></td>
</tr>
<tr>
<td>Linkability</td>
<td>Presence and quality of linking variables</td>
<td></td>
</tr>
<tr>
<td>Coherence</td>
<td>Use of standards</td>
<td></td>
</tr>
<tr>
<td>Validity</td>
<td>Transparency of methods and processes</td>
<td>Soundness of methods and processes</td>
</tr>
<tr>
<td>Data</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Accuracy and selectivity</td>
<td>Total survey error approach</td>
<td>Reference datasets</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Selectivity</td>
</tr>
<tr>
<td>Linkability</td>
<td>Quality of linking variables</td>
<td></td>
</tr>
<tr>
<td>Coherence - consistency</td>
<td>Coherence between metadata description and observed data values</td>
<td></td>
</tr>
<tr>
<td>Validity</td>
<td>Coherence between processes and methods and observed data values</td>
<td></td>
</tr>
</tbody>
</table>
Throughput

• **System Independence**: The result of processing the data should be independent of the hardware and software systems used to process it;

• **Steady states**: that the data be processed through a series of stable versions that can be referenced by future processes and by multiple parts of the organisation;

• **Application of Quality Gates**: that the NSO employ quality gates as a quality control business process.
1) Small data sample to understanding data fields and attributes (Positium, Eurostat, ITU, JRC, All)

6) Derived products:
 - Migration/tourism statistics (Geostat, SCM, All)
 - Grid maps (data challenge, JRC, All)

3) “Data cleaning” algorithms development (Positium, Eurostat, ITU, All)

5) Data processing development & quality assurance (Positium, Eurostat, JRC, Geostat, All)

2) Hashed training dataset

4) Pre-processed Data (algorithms run on full dataset)
Output

• Output quality framework should
 – Meet reporting criteria of the NSO
 – Provide required information to allow users to make informed decision regarding the use of the statistical output
 – Follow transparency principle
 – Follow the general approach with quality dimensions, indicators and factors to consider
UNITED NATIONS
NATIONAL QUALITY ASSURANCE FRAMEWORKS
MANUAL FOR OFFICIAL STATISTICS
(UN NQAF MANUAL)
Including recommendations, the framework and implementation guidance

Chapter 3. The United Nations National Quality Assurance Framework: principles and requirements

- Introduction ... 17
- Level A. Managing the statistical system .. 20
- Level B. Managing the institutional environment ... 22
- Level C. Managing statistical processes .. 25
- Level D. Managing statistical outputs ... 27
Quality framework in practice: Selectivity

GPS data (Pratesi et. al., 2015): inhabitants' mobility using data of private vehicles tracked with a GPS device. The GPS device is automatically turned on when the car is started, and the global trajectory of a vehicle is formed by the sequence of GPS points. Vehicle traces were then mapped on the road network.

Mobility collected on a self-selected sample of car journeys

Methodological Framework:
- reconcile data from the two independent sources (Big Data and sample surveys);
- if no common variables are available, known correlated data could be used;
- use Big Data directly as a covariate under a model-based approach.
Quality framework in practice: Missing data

Remote sensing for Agricultural Statistics (Tam and Clarke, 2015b): investigate the use of satellite sensor data for the production of agricultural statistics such as land use, crop type and crop yield. The coverage of satellite data is the same as the coverage of land parcels.

Missing data due to persistent cloud cover.

Methodological Framework:
• Set up a model where ignorability conditions hold: Calibration or imputation techniques;
• Model with Ignorability conditions not found for certain areas (Weather may affect the type of crops being grown, or yields, missing data related to the target variable).

Use traditional data collections for these areas
Change Management
Making changes – Maintaining quality

Example
Statistics Canada
Improving Agricultural crop statistics
Use of Surveys
Use of Satellite data
Just Month September
Reduce response burden
Maintain quality

Example
Australia Bureau of Statistics
Calculating CPI
Use of Price Surveys
Use of Scanner data
Replace 25% of Basket
Reduce cost
Gain more detail
Maintain quality
Change Management
Making changes – Maintaining quality

Tourism Statistics

Border Surveys
- Positives
 - Controlled sample
 - Targeted questions
- Negatives
 - Non-response
 - Long processing time
 - Aggregated data

Mobile Phone Data
- Positives
 - Detail
- Short processing time
- Negatives
 - Selectivity
 - No info on purpose
Thank you