Chapter 1 – Data Preparation

Please follow:
https://rb.gy/n6yaja
Chapter 2 – Regression

Please follow:
https://rb.gy/ub4nxu
Chapter 3 – Classification

Please follow:
https://rb.gy/whnkbh
Deeper dive into Decision Trees

- Tree structured Classifier, used for Classification problems & Regression
- Branches, Decision Nodes and Leaf Nodes

Measure used to split a node:
To reduce Classification error
Gini:
- measure of impurity in a node
- Information gain
Entropy:
- Measure of Disorder

Regression
Residual squared error

- Editing of Income data
- Binary Classification – No_Change/Change
- Orange – No_Change, Blue - Change

when AnticPay_0.0<=0.5 and Nins>1.5 and NetPay<=4724.66992188 and IncTax<=0.5 and DVUsHr<=35.5 and Totus1<=22.25

Dubai EXPO 2020
initialize the model
net_pay_Tree = tree.DecisionTreeClassifier(min_samples_leaf = 20)

train the model
net_pay_Tree = net_pay_Tree.fit(df_pre_edit_train.drop(['Change'],axis=1),df_pre_edit_train['Change'])

run the prediction on the test data and place the result into a new data frame df_net_pay_pred_test_proba
this will hold the probability values of the prediction that a test case needs changing
df_net_pay_pred_test_proba = net_pay_Tree.predict_proba(df_pre_edit_test.drop(['Change'],axis=1))[:,1]

create a binary data frame where a '1' indicates a probability of > 0.5, Threshold = 0.5
df_net_pay_pred_test_binary = df_net_pay_pred_test_proba > 0.5
Random Forest

- Single trees are weak classifiers:
 - Slight change of data \rightarrow very different tree
 - Different tree \rightarrow different prediction

- Ensemble of many trees \rightarrow Random Forest
 - Random selection of features for each tree \rightarrow every feature can show its decision making power
 - Bagging (Bootstrap Aggregation) – Random Sample with Replacement of Training Data
 \rightarrow each sample can have zero, one or more copies of the training records
 \rightarrow each tree is trained with different data sets, but all have same size
 - Reduces dependency on training data \rightarrow more accurate prediction
 - More accurate Feature Importance
 - Each tree ‘votes’ on the prediction \rightarrow prediction score
Bootstrap Aggregation or Bagging – Random samples with replacement

Random Feature Selection
Managing Complexity of Tree based Models

Over-fitting
- Boundary not well defined, complex rules
- Very good Training data predictions

Under-fitting
- Well defined Boundaries, simple rules
- Not so good predictions
Hyperparameters in Random Forest

net_pay_Tree_orig = RandomForestClassifier

 (bootstrap = True, # bagging
criterion = 'gini', # gini measure to split nodes
max_depth = 40, # depth of tree
max_features = 'sqrt', # number of features for each split
max_leaf_nodes = 400, # grow trees with this number of leaf nodes
min_samples_leaf = 5, # minimum of records in each leaf
n_estimators = 1000, # number of trees
n_jobs = -1 # number of processors used, all if -1)
Hyperparameters tuning with GridSearch

```python
parameter_grid = [
    {
        "bootstrap" : [True],
        "criterion" : ["gini"],
        "max_depth" : [40,45,50],
        "max_features" : ["sqrt"],
        "max_leaf_nodes" : [180,240,280],
        "min_samples_leaf" : [2,4,8,12,18],
        "n_estimators" : [165,175,200],
        "n_jobs" : [-1]
    }
]

net_pay_Tree = model_selection.GridSearchCV(ensemble.RandomForestClassifier(),
                                             parameter_grid,
                                             scoring = "f1",
                                             cv = 5)

# 135 RandomForest will be trained
net_pay_Tree.best_params  # prints parameters for best RandomForest based on parameter_grid and scoring metric
```
Chapter 4 – Dimension Reduction

Please follow:

Chapter 5 – Clustering

Please follow: