

AFREF: Concept and Progress

United Nations Regional Cartographic Conference

for

Asia and the Pacific

Richard Wonnacott

Bangkok

2 November 2012

Overview

- Background
- Rationale for AFREF
- Objectives & Structure
- Progress
- Capacity building
- What Next?
- Challenges
- Conclusion

Background

- In the 1980's the Africa Doppler Survey (ADOS) was undertaken driven primarily by the International Association of Geodesy.
- ADOS was designed to unify geodetic frames of Africa using Doppler to provide:
 - Zero order control for mapping;
 - Control datum for unification and strengthening of a continental reference frame for Africa; and
 - Accurate geoid for Africa
- Project didn't really meet it's objectives:
 - Essential to have simultaneous observations difficult without IGS type infrastructure
 - Rationale not fully understood by participating countries
 - Project planned entirely by IAG with little input from African countries
 - No clear standards

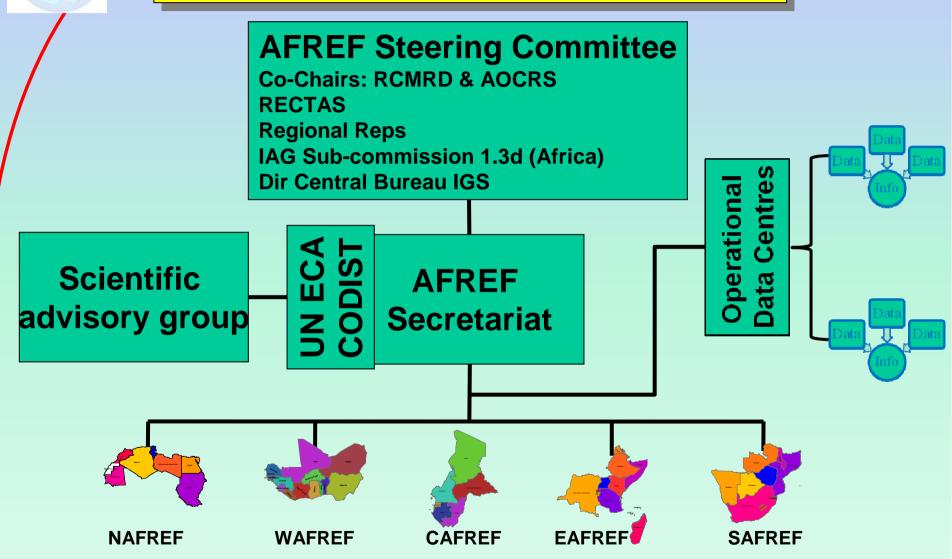
Rationale for AFREF

- Over 50 countries in Africa each with their own geodetic reference system and frame and some with 2 or more frames.
- Although there are many areas of conflict there are also areas where peace has been restored and require a lot of development.
- African Union has requested that countries resolve international boundary issues within next couple of years.
- It is known that many private commercial enterprises are setting up their own reference frames particularly in the oil and mining industries.
- AFREF is, therefore, an African initiative to unify the geodetic reference frames of Africa based on the ITRF through a network of GNSS base stations at a spacing such users will be at most within ~1000 km of a base station.

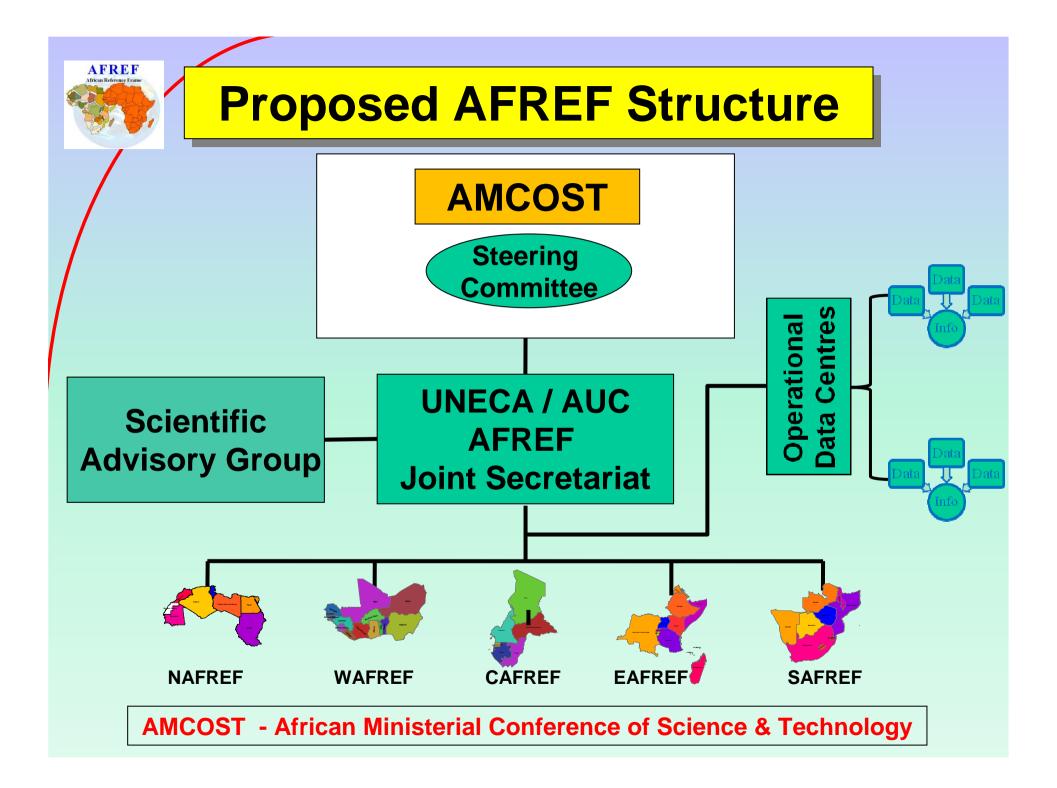
Objectives of AFREF

Formally established with Windhoek Declaration in 2002:

- To determine a continental reference frame for Africa consistent and homogeneous with the global reference frame of the ITRF as a basis for national 3-d reference networks.
- To realize a unified vertical datum and to support efforts to establish a precise African geoid.
- To establish a network of continuously operating, permanent GNSS base stations at a spacing such that the users will be within 1000km of a base station and that data is freely available to all nations.



Objectives of AFREF


- To determine the relationship between the existing national reference frames and the ITRF to preserve legacy information based on existing frames.
- To provide a sustainable development environment for technology transfer so that these activities will enhance the national networks and other applications.
- Assist in establishing in-country expertise for implementation, operation, processing and analysis of modern geodetic techniques, primarily GNSS.

Current AFREF Structure

CODIST - Committee on Development Information, Science &

International Endorsement

UN ECA CODIST

- Have adopted the Windhoek Declaration
- Created a Working Group to deal specifically with AFREF

UN OOSA

- Have recognized the importance of AFREF for variety of applications
- Supported travel for some AFREF activities

IAG

 Have created structures to co-ordinate the project and provide technical assistance and expertise

IGS

Has strong commitment to support AFREF

• FIG

Have sponsored meetings and Working Weeks

Various of activities underway in a number of countries to install permanent base stations or move towards ITRF:

Algeria Angola

Benin Botswana

Cameroon Egypt

Ethiopia Ghana

Kenya Lesotho

Malawi Morocco

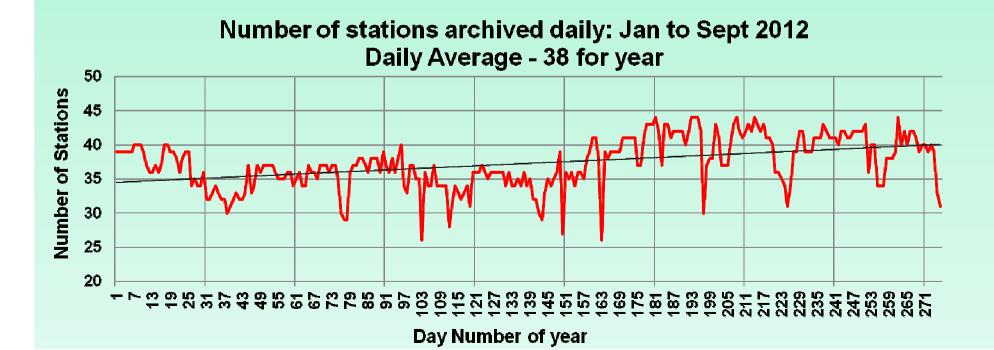
Mozambique Namibia

Nigeria Rwanda

South Africa Swaziland

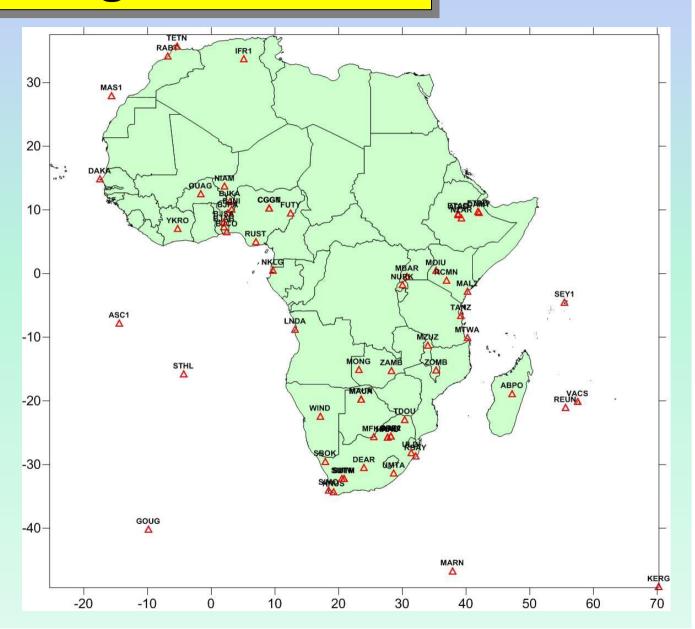
Tanzania Tunisia

Uganda Zambia



As agreed at CODIST I (April 2009), an AFREF Operational Data Centre (ODC) has been established.

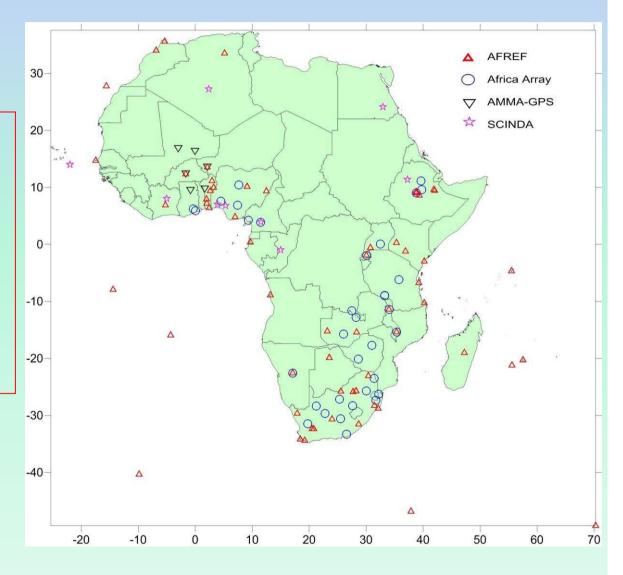
- www.afrefdata.org or ftp.afrefdata.org
- Data from continuous stations brought together from number of data centres into one place. Data centres include:
 - International GNSS Service (IGS Global Data Centres eg CDDIS)
 - Hartebeesthoek Radio Astronomy Observatory (South Africa)
 - National Geodetic Survey (USA)
 - TrigNet (South Africa)
 - UNAVCO (Africa Array)
 - Nignet
 - SEGAL
 - etc
- ODC is recognised by IGS



- The AFREF ODC is currently archiving on a daily or near daily basis data from nearly 73 permanent GNSS base stations at average of 38 stations daily (as at Sept 2012).
- Data is freely and openly available to all users.

Active stations being archived at AFREF Operational Data Centre (May 2012)

More co-ordination required: MTWA & MTVE 3km apart!!!


Inter-disciplinary Collaboration

Number of disciplines make use of GNSS signal in space:

Geodesy: AFREF

Seismology: Africa Array Meteorology: AMMA-GPS

Space weather: SCINDA

Capacity Building

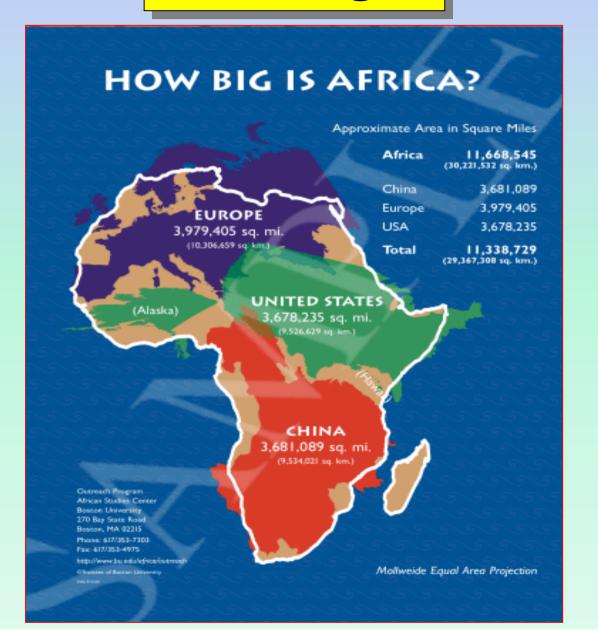
- Annual training courses at the technician level on the establishment of continuous reference stations and the processing of GNSS data are offered by RCMRD in Kenya and are well attended.
- On-going training on all aspects of satellite based mapping and positioning is conducted throughout the year at RECTAS in Nigeria.
- Meetings of the heads of NMAs are held from time to time to reinforce the importance permanent GNSS base stations and ITRF based National reference frames

What Next?

Project has reached the stage where the following can be done:

1. At the Continent level:

- Computation of network of fiducial stations based on well established stations with long term reliability and publically available data;
- An initial processing will provide set of co-ordinates for use at National level - static set of co-ordinates;
- In addition must continue with ongoing processing to maintain network, to provide a set of velocity vectors and to make allowance for the addition of new stations;
- NB: GNSS is an observing tool that has to be calibrated from time to time - CORS station coordinates to be updated to reflect plate motion - co-ordinates derived from AFREF CORS will have to be transformed to AFREF static co-ordinates.


What Next?

2. At the National level:

- Major objective of project is conversion of National geodetic networks to AFREF and hence ITRF;
- NMAs will have to occupy and survey a number of strategically placed points whose co-ordinates are well established in the National frame using GNSS relative to AFREF/ IGS CORS;
- Processing could be as series of campaigns using permanent stations to convert or transform current National reference frame to AFREF.

Challenges

Challenges

- Apparent lack of enthusiasm for project by NMA's
 - Lack of understanding?
 - Lack of resources capacity and financial?
- Political buy-in
 - Again lack of understanding of benefits?
 - Geodesy, Reference Frames etc doesn't buy votes!
 - AFREF talks a technical language
- Political instability and security
 - Not much we can do about this

Conclusion

- Progress has been slow.
- Co-operation with other disciplines has been of benefit to AFREF and the co-operating disciplines BUT;
- Greater co-ordination between countries and especially participating disciplines required.
- The proposed new structure to place AFREF within the African Union (AU) structures, AMCOST, should bring the project closer to political leaders.
- AFREF is at stage where a provisional static ITRF based reference frame for Africa can be produced to be used by NMAs

