Group of Experts on
 Geographical Names

Eleventh Session
Geneva, 15-23 October 1984

WORKING PAPER

No. 42
-Item No. $6(\alpha)$ or the agenda

THE COMPUTYR PROCESSING OF ABEREVIATIONS, SPECIAL CHARACTERS,
AND THE SORTING OF GEOGRAPHICAL NAMES
(submitted by the United Kingdom) ${ }^{1 /}$

1/ Copyright (C) Controller HMSO, London, 1984

Introduction

At the Fourth United Nations Conference on the Standardization of Geographical Names (Geneva 1982) it was apparent that the computer processing of geographical names was becoming increasingly important in many countries, and would oontinue to do so. The United Kingdom described how it had developed and introduced an automated production system for gazetteers, based on the use of micro-computers and printers, and other countries described similar systems. In the lasttwo years we have considerably developed this automated system, and have become inoreasingly aware of the many benefits resulting from this. We have also been made aware of the many problems assooiated with automation that were not apparent at the outset.

The Benefits Resulting From The Automation of Geographical Names Data

The detailed administrative and looational information associated with geographical names result in large amounts of textual information which is often required in a variety of standard formats. Gazetteers are the best examples of such formats, but atlas or map indexes, and lists of names sorted by administrative and/or geographical area are also commonly required. The application of computer processing to suoh data has greatly enhanced the ease with which such large amounts of detailed information can be manipulated. The following benefits resulting from automation are quiokly achieved:

1. Base of Amendment/Update:- Once data has been input to a names database it can be quickly and easily recalled for correction and amendment. New or additional information can similarly be added to the database. As this does not involve changes to printing processes it simplifies output procedures.
2. Reduced Likelihocd of Typographical Error:- In a fully automated names processing system, once data has been input to the names database and verified, there is no requirement for it to be typed or input again. Simple transcription or typing errors should thus be eliminated.
3. Variety of Output From a Single Database:- An automated names database allows selection from the database of names that meet given oriteria. Thus names can be seleoted by geographical area, by administrative area or by feature code. Once selection has been made the data can be sorted to meet user requirements. Thus names can be sorted by map sheet number, by ascending latitude and longitude, or in the lexical order of the country concerned. The use of computer type setting and changeable printer-heads allows a variety of type faces to be used without having to change the database.
4. Output on Demand:- Through the continuous update of a names database, output can genuinely reflect the latest state of information. This can be true of "hard copy" printed output as much as ef computer display output. The flexibility of printed output and ease of update facilitate regular output to meet user demands.
5. Exchange of Information:- The increasing use of automated databases in cartography, and the rising demand for data in digital form can both be met from computer processing of geographical names. This would further ensure consistency in the treatment of geographical names between users exchanging information, and by users in successive editions of their products.

Problems Associated With The Computer Processing of Geographical Names Data

The major problems we have found when processing geographioal names by computer have fallen into three broad categories: The treatment of diacritical marks and special characters, the treatment of abbreviations, and the automated sorting of geographical names to the required lexical order. None of these problems is insoluble; they are to some extent inter-related, but they are important factors that should be considered in system design and hardware procurement.

1. The Treatment of Special Characters/Diacritical Marks;- Most computers offer the user a range of speoial characters over and above the looal linguistic requirements of the region they are designed to be used in. Many of thase additional characters oan be input directly from the keyboard as normal letters, but often input is cumbersome, and sometimes impossible. It is not uncommon to find computer printers which can print characters that compatible keyboards cannot input, and visa versa, When cherscters can be input the resolution of the VDU soreen and/or printhead is often such that similar characters become blurred or indistinguishable.
2. The Treatment of Abbreviations:- The majnr problem caused by abbreviations is not how to portray them, but how to ensure they are sorted into the oorrect lexical order on output. It is common practice to show the term Saint/Sainte as St./Ste. such that in the United Kingdom we always refer to St Albans and never to Saint Albans. It is also the agreed norm to position the abbreviated term in a gazetteer as if it had been spelt in full. Thus St. Albans will be found just before St. Andrews and before Sandwich, but not just before Stalham. This is not easily achieved using a computer generated sorting routine, and requires careful system design.

The abbreviation Mac (also spelt Mc, Mok and McC) poses no problem however. It is the convention here to alphabetise as the term is spelt, so that Macarthur comes before McArthur and both before Mokinney. This is easily done by computer.
3. The Automated Sorting of Geographical Names:- The simplest of computer generated alphabetical sort routines take the unique numerical code allocated to each character the computer recognises, and compares each character of a name with the equivalent position character of the next name. The smaller the code, the higher the priority given to the character in the lexical order. Unfortunately the need for a unique code for each character results in upper case letters being distinguished from lower case letters. The commonly used ASCII code gives all upper case letters priority over all lower case letters, and some punctuation marks priority over the capital letters. (This includes the space character). Thus in Annex A, Cha Yue Pai has been given priority over Chai Kek, while Annex B shows the correct lexical order.
In many languages certain letter and diacritic combinations have a very different lexical order from the base letter. Thus in Scandinavian languages the lexical order is $A, B, C, O \cdots Y, Z, A E A, A$ etc. While in English we would not distinguish between A and A / A, the local requirement would be to nake this distinction. Neither of these needs is met by ASCII codes which give the special characters a priority below lower case letters. Similar examples can be found in other languages.

To achieve a suitable sorted output from an automated names database suitable for gazetteer production requires the user to be able to define his own lexical order that does not give priority to punctuation marks, thet does not distinguish between upper and lower case variants of the same letter, and that allows diacritical marks and special characters to be allocated their correct local order.

Annex B_{0} Gazetteex Sorting Routine. NAME
Boulder Point see: Pak Kok
Soulder Point Gau Wan Tsui
see: Kau Lau
Boundary Street
Bowring Camp
Brick Hill

Butterfly Estate
Butterfly Valley
see: Wu Tip Ku
Dafeteria Beach
Calf's Head see: Fu Yung Pit
Cameron, Mount
Camp Cove see: Pak Sha Tau Wan
Cape Collinson Training Centre
Cape D'Aquilar Road
Care Villages
Caroline Hill
Casem Beach
Cassino Lines
Castle Peak see: Tsing Shan
Castle Peak Bay see: Tsing Shan Wan

Castle Peak Beach
Castle Peak Firing Range
Gastle Peak Road
Gastle Rock
see: Lo Chau Pak Pai
suseway Bay Lung Lo Wan
Causeway Bay Typhoon Shelter
Cemetery Gap see: . Po Leng Au
Central District
see: Chung Wan
Gentre lsland see: A Chau
Cha Hang
Chai Kek
Chai Wan
Chai Man
Chai Wan Estate
Chai Wan Kok
Chai Man Road
Cha Kwo Chau
Che Kwo Leng see: Cha Kwo Ling
Cha Kwo Ling
Che Liu Au
Cham Keng Chau
Cham Pai
Cham Shan
Gham Shan
Cham Tau Chau
Cham Tin Shan
Channel Rock see: Cham Pai

DESG	LATITUDE	LONGITUDE	GRID	D 60	OORDS	SHEET
PT	22.14*N	114*06*E	KV	026	625	15
PT	$22^{.27}{ }^{\prime} \mathrm{N}$	$114^{*} 21^{\prime} \mathrm{E}$	KV	281	864	8
RD	$22^{*} 19^{\circ} \mathrm{N}$	$114.10^{\prime \prime} \mathrm{E}$	KV	088	719	11
PPL	$22^{.24}$ ' N	$113 * 58^{\prime} \mathrm{E}$	HQ	069	815	5
HLL	22*14*N	114*10'E	KV 0	083	625	15
PND	$22^{\circ} 30^{\circ} \mathrm{N}$	$114^{*} 14^{\prime} \mathrm{E}$	KV	166	913	3
RD	22*29*N	$114{ }^{*} 14^{\prime} \mathrm{E}$	KV	160	892	3
HLL	22.14*N	114*13'E	KV	129	619	15
ISLS	$22 \cdot 20$ N	$113^{\circ} 58^{\prime \prime} \mathrm{E}$	HQ	061	728	10
PT	$22 \cdot 21 / \mathrm{N}$	114*01 ${ }^{\text {E }}$	JV	927	756	6
HLL	22*22*N	114*13'E	KV	149	771	7
PASS	22.22.N	$114 * 14^{\prime} \mathrm{E}$	KV	152	769	7
CMPM	$22^{*} 30^{\prime N}$	$114^{*} 09^{\prime} \mathrm{E}$	KV	073	915	3
HLL	22.16. N	$114^{*} 12^{\prime} \mathrm{E}$	KV	123	653	11
BAY	$22^{*} 22^{\prime}$	113*57'E	HQ	043	772	5
PPL	$22^{*} 22^{\prime} \mathrm{N}$	$113 * 57^{\prime \prime} \mathrm{E}$	HQ	050	775	5
VAL	$22^{\circ} 20^{\prime N}$	$114.08^{\prime \prime} \mathrm{E}$	KV	055	737	11
RSV	22*21'N	114.08*	KV	053	746	11
BCH	$22^{22} \times \mathrm{N}$	$113 * 59^{*} \mathrm{E}$	HQ	073	774 .	6
HLL	22.22*N	$114^{*} 14^{*} \mathrm{E}$	KV	154	769	7
HLL	22*15*N	114*10 ${ }^{\prime \prime}$	KV	086	648	11
BAY	22.32*N	$114.17{ }^{\prime \prime} \mathrm{E}$	KV	218	946	4
BLDG	$22^{*} 15^{\prime} \mathrm{N}$	114*15'E	KV	165	633	11
RD	22.13'N	$114.14{ }^{\prime} \mathrm{E}$	KV	157	591	15
PPLS	22*12*N	114**1*E	KV	923	583	14
LGTY	$22 \cdot 16^{\prime N}$	$114.11^{\prime \prime} \mathrm{E}$	KV	099	663	11
BGH	22.22'N	$114^{\circ} 04^{\prime \prime} \mathrm{E}$	JV	984	766	6
CMPM	22.29'N	$114^{\circ} 04^{\prime} \mathrm{E}$	JV	993	898	2
HLL	22*23*N	113*57'E	He	038	789	5
BAY	22*22*N	113*58*E	HQ	060	708	6
BCH	22.22'N	113*58*E	He	086	780	6
GMPM	22*24*N	113*56'E	HQ	030	810	5
RD	$22^{*} 25^{\prime N}$	113*59*E	He	075	833	6
RKW	$22 \cdot 10^{\prime N}$	$114.14{ }^{\prime} \mathrm{E}$	KV	148	550	15
LGTY	$22^{*} 16^{\prime} \mathrm{N}$	$1.14{ }^{*} 10^{\prime} \mathrm{E}$	KV	096	667	11
HBR	$22^{\cdot 17}{ }^{\prime}$	114*11*E	KV	098	673	11
LCTY	22*29*N	114*07'E	KV	039	900	3
LCTY	22.17'N	114*09*E	KV	070	570	11
ISL	22.26'N	114*13*E	KV	138	843	7
PPL	$22^{*} 28^{*} \mathrm{~N}$	$114^{*} 08^{\prime} \mathrm{E}$	KV	054	877	3
PPL	$22.26 . N$	114.07*E	KV	042	847	7
LGTY	$22 \cdot 16 . \mathrm{N}$	114***'E	KV	149	650	11
BAY	22.16. ${ }^{\text {N }}$	114.14*E	KV	155	655	11
PPLX	$22^{15}{ }^{\prime N}$	114*14*E	KV	153	648	11
PPL	$22^{*} 22^{\prime \prime} \mathrm{N}$	114*06*E	KV	018	775	6
RD	$22 \cdot 16^{\prime} \mathrm{N}$	114*13'E	KV	146	652	11
ISL	22.12'N	113*56*E	HQ	034	597	13
PPL	22.18*N	114*13*E	KV	142	689	11
PPL	$22^{*} 18^{\prime} \mathrm{N}$	114*13'E	KV	142	689	11
PASS	$22^{*} 20^{\prime} \mathrm{N}$	114*13'E	KV	140	726	11
ISL	22.33*N	114*25*E	KV	349	960	4
RF	22.23* ${ }^{\text {N }}$	114*21*E	KV	286	896	4
HLL	22*23*N	114*09'E	KV	073	786	7
HLL	22.31*N	114*07 ${ }^{\text {E }}$	KV	048	934	3.
ISL	22*22*N	114*17'E	KV	205	775	8
HLL	$22 \cdot 21 * N$	114.13*E	KV	142	744	11
RF	22*29*N	114*21*E	KV	286	896	4

