

## Notes on the structure and contents of the revised FDES

Expert Group Meeting on the Framework for the Development of Environment Statistics (New York, 4-6 May 2011)

**United Nations Statistics Division** 



# Outline

- 1. Concepts: framework, structure
- 2. Structural considerations
- 3. Possible structure based on matrixes
- 4. Possible non-matrix structure



### **Objectives**

- Review elements for the discussions at this EGM
- Present different options for rows, columns and matrixes, as well as some illustrations of a non-matrix structure for the FDES
- Discuss their potential advantages and disadvantages

Notes are preliminary and they do not intend to propose a particular type of structure for the FDES.

Some key questions are proposed to provoke ideas and steer the discussion



## Concepts of framework and structure





## What is a framework?

- "Essential supporting structure of a building, vehicle, or object", also a "basic structure underlying a system, concept, or text" (Oxford Dictionary).
- "Basic conceptional structure (as of ideas, for example, the *framework* of the United States Constitution)" and a "skeletal, openwork, or structural frame" (*Merriam Webster Dictionary*).
- A <u>statistical framework</u> depicts a set of dimensions, components and topics, held together by structure. Organizes elements that constitute the statistical domain in a coherent way.
- Statistical frameworks relate to a specific concept of the object to be framed.
- More specifically, a <u>framework for the development of environment statistics</u> can be understood as a structure and an organizing tool that presents a logical arrangement of environment statistics topics and variables, as well as analytical categories, facilitating the work of practitioners in the production, dissemination and development of environment statistical series and products.

# What is a structure?

- The organizational backbone holding the parts together in the right order and allowing the needed interactions among its components.
- Is a means (not and end), but is so critical that without an adequate structure, everything will fall apart.





# Recap: Key challenges in developing the revised FDES structure

- Comprehensive framework, be useful for most environmental concerns, topics, dimensions, issues and themes that are globally relevant
- Be adaptable to most countries' needs. Flexible enough to accommodate country- and region-specific dimensions, topics and segments of variables, as needed.
- Satisfies the revised FDES' purpose and criteria
- Statistically feasible (applicable), based on the characteristics of a majority of statistical systems at the national level
- Possibly multi-layered framework, in order to accommodate different levels of aggregation of the topics and information, from the most synthetic to more disaggregated levels



# 2. Structural considerations





## The structure of FDES

Main challenge of environment statisticians: producing statistics to describe the state and the most important dynamics, changes and trends in the state of the environment

How to structure and organize statistics on the environment that is dynamic, interrelated, a system containing subsystems and components in permanent interaction, including interactions with the human subsystem.





# Structural complexity

- The 1984 FDES structure has proven difficult to improve without associated costs
- There are considerable losses and trade-offs when moving from one option of rows to another, and additional questions arise when considering their combination with different columns options.

• E.g. when disaggregating the rows aiming to increase resolution, we lose being mutually exclusive and hierarchically leveled



# Structure, components and interactions of the environment

How to structure the revised FDES?

- The whole and the parts environment and environmental components
- The known and the measurable environment disaggregating and prioritizing
- Adaptation and flexibility usefulness
- Conceptual soundness and statistical feasil
- Structure and spatial considerations
- Structuring criteria





# Structuring criteria

- A) Components of the environment. Deconstructing the environment to its main building blocks
- Media components (flora, fauna, water, air, land/soil, etc.)
- Environmental resources (natural resources, ecosystem services)
- Ecosystems categories (components and interactions)
- Themes and sub-themes
- **B)** Analytical (assessment) categories. Information sets that reflect the aspects/attributes of the environment and enable analysis as information categories
- Pressures, Driving Forces, State, Impact and Responses
- Extent, Characteristics or Quality (Biological, Chemical and Physical) and Productivity.
- State and changes of the environment and the activities and events that contribute and/or respond to these changes
- Stocks and Flows
- Quality and Quantity (and its further dissagregation).



## Link to policy

### Where should we place the emerging environmental concerns and cross-cutting policy issues within the revised structure? E.g. Climate change, biodiversity change, natural resources managment, production and consumption patterns and green economy, etc.

Maybe these issues should be addressed as possible applications of the FW (at a different level)



Q1: Other structuring criteria or a different set of structuring criteria altogether?



# Visualization of the structure: matrix or non-matrix?







| impact<br>category           | Wind<br>electricity | Natural gas<br>power | Photovoltaic<br>electricity | Nuclear<br>electricity |
|------------------------------|---------------------|----------------------|-----------------------------|------------------------|
| Acidification                | 0.0000103           | 0.000384             | 0.000056                    | 0.0000139              |
| Ecotoxicity                  | 0.0277              | 0.0179               | 0.178                       | 0.0345                 |
| Fossil fuel depletion        | 0.0000288           | 0.00126              | 0.000193                    | 0.0000222              |
| Global warming               | 0.000234            | 0.00439              | 0.0012                      | 0.000221               |
| Human carcinogen             | 0.0493              | 0.0695               | 0.212                       | 0.0456                 |
| Human respiratory            | 0.0000285           | 0.000502             | 0.0000955                   | 0.0000254              |
| Human toxicity               | 0.0163              | 0.0457               | 00.0744                     | 0.000136               |
| Ozone layer<br>depletion     | 0.00000004          | 0.0000001            | 0.000008                    | 0.000004               |
| Photochemical smog           | 0.0000067           | 0.0000368            | 0.0000349                   | 0.0000093              |
| Water eutrophication         | 0.0000305           | 0.0000525            | 0.000165                    | 0.0000227              |
| Total<br>millipoints / kw-hr | 0.0936              | 0.1397               | 0.466                       | 0.217                  |







## Matrix ..... Non-matrix

- Widely used in statistics and assessment
- Allows 2-dimensional analysis: intersection of rows and columns
- Simple representation
- Difficult to capture relations among components
- Requires overall fit in contents of rows and columns (analytical categories apply and relevant to all environmental components)

| impact<br>category            | Wind<br>electricity | Returni ges<br>power | Photovollaic<br>electricity | Histinar<br>electricity |
|-------------------------------|---------------------|----------------------|-----------------------------|-------------------------|
| Acidification                 | £.00001E3           | 0.000304             | 0.000056                    | 0.0000138               |
| Ecologicity                   | 8.0277              | 0.0179               | 6.178                       | 0.0345                  |
| Foeal fuel depleton           | 8.00002388          | 0.00126              | 0.000183                    | 0 0000222               |
| Global warming                | 0.000224            | 0.00439              | 0.0012                      | 0.000221                |
| Human carshopen               | 8.0493              | 0.0695               | 6212                        | 0 0456                  |
| Human respectory              | 0.0000285           | 0.000502             | 8 0000955                   | 8.0000254               |
| Human toxicity                | 8.0163              | 0.0457               | 00.0744                     | 0.000136                |
| Ozone layer<br>depleton       | 00000004            | 0.0000001            | 0.0000000                   | 8.000004                |
| Photochemical arrog           | 8.0000067           | 0.0000368            | 0.0000349                   | 8 0000093               |
| Water extrophication          | 0.0000305           | 0.0000525            | 0.000165                    | 8.0000227               |
| Total<br>millipoenta / kwo.hr |                     |                      |                             |                         |

- Allows different dissagregation within each theme (no columns needed)
- Representation from simple lists to three-dimensional
- Does not require overall fit among rows and columns contents

| <br>                                                     | 1.190011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AD<br>AD<br>AD<br>AD<br>AD<br>AD<br>AD<br>AD<br>AD<br>AD | - The second sec | <ul> <li>1 Me</li> <li>Messaria</li> <li>Messaria</li></ul> |



# Matrixes are common in statistics and assessment

|                                             |                     | Habitat<br>change                               | Climate<br>change               | Invasive<br>species e                                           | Over-<br>exploitation ph                            | Pollution<br>(nitrogen,<br>losphorus)                                                       |                                  | cate                 | egory                                                                                                             | electricity  | power      | electricity | electricity |
|---------------------------------------------|---------------------|-------------------------------------------------|---------------------------------|-----------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------|----------------------|-------------------------------------------------------------------------------------------------------------------|--------------|------------|-------------|-------------|
|                                             | Boreal              | 1                                               | 1                               | 1                                                               | -                                                   | 1                                                                                           |                                  | Acid                 | lification                                                                                                        | 0.0000103    | 0.000384   | 0.000056    | 0.0000139   |
| Forest                                      | Temperate           | × .                                             | 1                               | 1                                                               | -                                                   | 1                                                                                           |                                  | Ecot                 | toxicity                                                                                                          | 0.0277       | 0.0179     | 0.178       | 0.0345      |
|                                             | Tropical            | 1                                               | 1                               | 1                                                               | 1                                                   | 1                                                                                           |                                  | Fos                  | sil fuel depletion                                                                                                | 0.0000288    | 0.00126    | 0.000193    | 0.0000222   |
|                                             | Temperate grassland | 1                                               | Table 4.1 Linkages In           | dwaven state changes in I                                       | te weber environment en                             | er environment and environmental and human ingoath                                          |                                  | Glob                 | oal warming                                                                                                       | 0.000234     | 0.00439    | 0.0012      | 0.000221    |
| Douland                                     | Mediterranean       | 1                                               |                                 | Mediating<br>amir cramethal/                                    | HUMAN WILL-BEING S                                  | MPACIS                                                                                      | Physical a                       | Hum                  | an carcinogen                                                                                                     | 0.0493       | 0.0695     | 0.212       | 0.0456      |
| Dryland                                     | Tropical grassland  | 1                                               | STATE CHANGES                   | ecosystem impacts                                               | Hanan haolfh                                        | Food security                                                                               | and safet                        | nun                  | ian carcinogen                                                                                                    | 0.0495       | 0.0035     | 0.212       | 0.0430      |
|                                             | Desert              | -                                               | e Ses suface                    | co Tristic analyse<br>and hard web                              | 4 Food safety!                                      | - ci Fillwy geole<br>diretu suri                                                            | 1                                | Hum                  | an respiratory                                                                                                    | 0.0000285    | 0.000502   | 0.0000955   | 0.0000254   |
|                                             |                     |                                                 |                                 |                                                                 |                                                     | 4 Aquative production?                                                                      |                                  | Hum                  | nan toxicity                                                                                                      | 0.0163       | 0.0457     | 00.0744     | 0.000136    |
| Coastal                                     |                     | /                                               |                                 | to Seclevel the                                                 |                                                     | in Anizia rolei                                                                             | + Coand<br>Rodry                 | Ozo<br>deni          | ne layer<br>letion                                                                                                | 0.00000004   | 0.0000001  | 0.000008    | 0.000004    |
| Marine                                      |                     | 1                                               |                                 | 2 Topical itom<br>and humcane<br>heaving and<br>interaty        | the Danastion of utility<br>services?               | † Cicp danogel<br>† Aquiquiture danogel                                                     | t Diowra<br>fload d<br>a Colar s | Phot                 | tochemical smog                                                                                                   | 0.0000067    | 0.0000368  | 0.0000349   | 0.0000093   |
| Island                                      |                     | -                                               | a il Peoplation                 | e Rood domoge                                                   | e Waterstand                                        | the Crop destruction!                                                                       | t Diowna                         | Wat                  | er eutrophication                                                                                                 | 0.0000305    | 0.0000525  | 0.000165    | 0.0000227   |
| Mountain                                    |                     | →                                               |                                 | e Drucht                                                        | e Maisantas:                                        | + Cep reductor(                                                                             |                                  | Tot                  | al                                                                                                                |              |            |             |             |
| Polar                                       |                     | 1                                               | to Land- and sea Yoe<br>waiting | es Ocean circulates<br>change                                   |                                                     | co Traditional hand sourcest<br>& Available trigation                                       | T Cound<br>and the               | mill                 | ipoints / kw-hr                                                                                                   | 0.0936       | 0.1397     | 0.466       | 0.217       |
| Driver's impact on biodi<br>over the last c |                     | s impact on biodiversit<br>over the last centur |                                 | volna<br>volna<br>o Seolevel                                    |                                                     | wow.                                                                                        |                                  |                      |                                                                                                                   |              |            |             |             |
|                                             |                     | Low                                             | 2 Femalos haw                   | e Juda ecosytes<br>danges                                       |                                                     | <ul> <li>Agroukual development<br/>possibilites?</li> </ul>                                 | 4 Graved                         | i publity!           | & Lord hangonation!<br>+ Euridings and<br>Inhometive damage?                                                      |              |            |             |             |
|                                             |                     | High<br>Very high                               | * Over addition                 | 4 Brocalchying<br>organisms<br>including read<br>consi          |                                                     | # Costol futerer!                                                                           | # Coond<br>protect               | l<br>Igel            | & Real toutes)<br>& Follows as Inelhoods!                                                                         |              |            |             |             |
|                                             |                     |                                                 | Human water use relat           | ed insues - disturbance to                                      | the hydrological regime a                           | et besin and coastal scale                                                                  | 101 ····                         |                      |                                                                                                                   | $02 \cdot 0$ | Can you th | ink of othe | r ways to   |
|                                             |                     |                                                 | a Stean You<br>nodification     |                                                                 | Downsham dinking<br>wther'     Vasebone<br>discust' | Intgetted agriculture!     Inland faih stadio!     Sativization!     Fitodolam cultivation! | e Roed o<br>e Coniny<br>displace | ond)<br>oly<br>starf | 4 Freiheoter foheren<br>5 Tenportoron by woren<br>1 Hydropower<br>1 Ingoted ogrouhurer<br>2 Allocation conflicts' | portr        | ay the new | w FDES that | is not a    |
|                                             |                     |                                                 |                                 | © Ecception<br>Acgmentation,<br>welland shifting<br>and dramage |                                                     | <ul> <li>Coastal welland load<br/>recordes?</li> <li>Prover failery!</li> </ul>             |                                  |                      |                                                                                                                   | matri        | x-type str | ucture ??   | 16          |
|                                             |                     |                                                 |                                 | 6 Sedment transport<br>to counts                                |                                                     | å laducas foodplote<br>sedment                                                              | e Comid                          | d erpoints*          | & Reservoir Mecycle*                                                                                              |              |            |             | 10          |

#### Structure of the 1984 FDES



#### (synthesis matrix)

|                                                                        |                                                         | Information                                          | categories                               |                                                        |
|------------------------------------------------------------------------|---------------------------------------------------------|------------------------------------------------------|------------------------------------------|--------------------------------------------------------|
| Components of<br>the<br>environment                                    | Social and<br>economic<br>activities, natural<br>events | Environmental<br>impacts of<br>activities/<br>events | Responses to<br>environmental<br>impacts | Inventories,<br>stocks and<br>background<br>conditions |
| 1. Flora                                                               | Topic                                                   | Topic                                                | Topic                                    | Topic                                                  |
| 2. Fauna                                                               | Topic                                                   | Topic                                                | Topic                                    | Topic                                                  |
| 3. Atmosphere                                                          | Topic                                                   | Topic                                                | Topic                                    | Topic                                                  |
| <ul><li>4. Water</li><li>freshwater</li><li>marine<br/>water</li></ul> | Торіс                                                   | Topic                                                | Торіс                                    | Торіс                                                  |
| 5. Land/soil<br>• Surface<br>• Sub-surface                             | Topic                                                   | Topic                                                | Торіс                                    | Торіс                                                  |
| 6. Human<br>settlements                                                | Topic                                                   | Topic                                                | Topic                                    | Topic                                                  |



Columns



### **About the structure of the 1984 FDES**

(synthesis matrix)

#### Overall

Application of 1984 FDES (rows, columns, topics) to different cros cutting issues is not straight forward. The link to policy is not evident This needs to be improved in the revised FDES since environment statistics routinely needs to deal with these types of themes or crossthemes.

#### Rows

- Highly aggregated
- They are mutually exclusive, but inter-relationships among components are not facilitated by 1984 structure
- Human Settlements is problematic (partially overlapping)

More dissagregation is needed, enable the explicit interrelations among environmental components



# About the structure of the 1984 FDES (2) (synthesis matrix)

#### Columns

- Require careful consideration of alternative ways of restructuring columns or analytical categories (consider developments and user needs for analysis, reporting, policy making and information to the public).
- PSR and derivate sequences (DPSIR, etc.) implicitly suggest causality (or have been interpreted as such).
- The **PSR** (and derivate sequences) might work better when used for analytical purposes of specific topics and dimensions of the environment (not so much for organizing environment statistics as a whole). Allocation in specific context easier than ES as a whole.

Columns should be significantly improved in revised FDES, so that analytical categories can be more integral and straight forward



## 3. Possible FDES structure based on matrixes

| mpact<br>ategory            | Wind<br>electricity | Natural gas<br>power | Photovoltaic<br>electricity | Nuclear<br>electricity |
|-----------------------------|---------------------|----------------------|-----------------------------|------------------------|
| cidification                | 0.0000103           | 0.000384             | 0.000056                    | 0.0000139              |
| cotoxicity                  | 0.0277              | 0.0179               | 0.178                       | 0.0345                 |
| ossil fuel depletion        | 0.0000288           | 0.00126              | 0.000193                    | 0.0000222              |
| lobal warming               | 0.000234            | 0.00439              | 0.0012                      | 0.000221               |
| uman carcinogen             | 0.0493              | 0.0695               | 0.212                       | 0.0456                 |
| uman respiratory            | 0.0000285           | 0.000502             | 0.0000955                   | 0.0000254              |
| uman toxicity               | 0.0163              | 0.0457               | 00.0744                     | 0.000136               |
| zone layer<br>epletion      | 0.00000004          | 0.0000001            | 0.000008                    | 0.000004               |
| hotochemical smog           | 0.0000067           | 0.0000368            | 0.0000349                   | 0.0000093              |
| vater eutrophication        | 0.0000305           | 0.0000525            | 0.000165                    | 0.0000227              |
| otal<br>nillipoints / kw-hr | 0.0936              | 0.1397               | 0.466                       | 0.217                  |







### Multi-layer, matrix type structure



- Each user (country, agency) can decide components to prioritize and which other contents to incorporate: flexibility characteristic
- For each issue or high profile environmental concern, there is a subset of components of the environment that are relevant and can be presented as a subset of cells and rows
- Cons:
- Matrix requires the same rows and columns at all levels, but some contents of the columns do not work well or do not apply to all of the rows in such a wide theme as the environment.



## Matrix structure: pros and cons of different options for **rows**



|                                              | evel |
|----------------------------------------------|------|
| Componentsoftheenvironment (1984 FDES)       |      |
| 1. Flora                                     |      |
| 2. Fauna                                     | •    |
| 3. Atmosphere                                |      |
| 4. Water<br>(a)freshwater<br>(b)marine water |      |
| 5. Land/soil<br>(a)Surface<br>(b)Sub-surface |      |
| 6. Human settlements                         |      |

Rows that are mutually exclusive and at a similar

#### **Revised FDES**

- What other components are needed?
- Break down to 2-digits?
- What would be in the rows?



#### Q 4: What would be new components of the environment (more disaggregated ) ?

|    | Environmental Component            | Sub-Component (examples from different categorizations)                                                                                                                                                                           |
|----|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                    |                                                                                                                                                                                                                                   |
| 1  | Biota                              | 1.3 Threatened Species     1.4 Biodiversity                                                                                                                                                                                       |
| 2  | Coast and Oceans                   | <ul> <li>2.1 Coasts and marine extension (territorial)</li> <li>2.2 Coastal pollution</li> <li>2.3 Surface temperature</li> <li>2.4 Sea level</li> <li>2.5 Marine ecosystems health (coastal, tidal, coral reef, etc).</li> </ul> |
| 3  | Inland Water                       | Rivers<br>Underground<br>3.2 Quality<br>3.3 Management                                                                                                                                                                            |
| 4  | Forests                            | 4.1 Extent     4.4 Quality or same as in 3 (stocks – flows)                                                                                                                                                                       |
| 5  | Land, Soil and Subsoil             | <ul><li>5.1 Territory</li><li>5.2 Land Use and Land Cover</li><li>5.3 Subsoil Further disaggregated in stocks and flows)</li></ul>                                                                                                |
| 6  | Energy                             | <ul><li>6.1 E Production, Consumption</li><li>6.2 E Renewability</li><li>6.3 Energy Intensity (carbon and in relation to GDP)</li></ul>                                                                                           |
| 7  | Atmosphere, Air and Climate        | 7.3 Precipitation<br>7.4 UV Radiation                                                                                                                                                                                             |
| 8  | Extreme events - natural disasters | 8.1 Geological<br>8.2 Meteorological<br>8.3 Hidrological                                                                                                                                                                          |
| 9  | Human settlements                  | 10.1 Total, urban and rural population<br>10.2 Safe Water<br>10.3 Sanitation<br>10.4 Waste<br>10.5 Vulnerable, precarious settlements<br>10.6 Green areas                                                                         |
| 10 | Cross cutting issues               | SCP, Green Economy, environmental instruments (taxes, eco-labelling, subsidies), Environmental Management, Environmental expenditure. Environment and cultural heritage.                                                          |

Common environmental components: overlapping and not at the same level

Q5: Other way to structure the rows or break down the

components?



| STATISTICS O      | CANADA'S PROPO          | SAL 2010               |
|-------------------|-------------------------|------------------------|
| Aquatic           | Marine                  | Open ocean             |
|                   |                         | Coastal                |
|                   |                         | Estuaries              |
|                   |                         | Seagrass algae<br>beds |
|                   |                         | Coral Reef             |
|                   |                         | Shelf                  |
|                   | Wetlands                |                        |
|                   | Tidal<br>Marsh/Mangrove |                        |
|                   | Swamps                  |                        |
|                   | Lakes/Rivers            |                        |
|                   | Groundwater             |                        |
| Terrestrial       | Forest                  | Tropical               |
|                   |                         | Tempered Boreal        |
|                   | Grass/Rangelands        |                        |
|                   | Desert                  |                        |
|                   | Tundra                  |                        |
|                   | Ice Rock                |                        |
|                   | Cropland                |                        |
|                   | Settled                 |                        |
| Atmosphere        |                         |                        |
| Subsoil<br>Assets |                         |                        |

Ecosystem Components: may overlap

USA STATE OF THE NATION'S ECOSYSTEMS, 2008 Fresh Waters Coast and Oceans Forest Grasslands and Shrublands Farmland Urban and suburban landscape Core National indicators



### Matrix structure: pros and cons of choices for columns



# P-S-R derivation, such as DF-**S**-R or D-P-S-I-R columns

In this example the different PSR derivations can be considered, i.e DF-S-R with a stress on the State statistics:

| Components<br>of the<br>environment | Driving<br>Pressure | Force/ | STATE/Impact | Response |  |
|-------------------------------------|---------------------|--------|--------------|----------|--|
|                                     |                     |        |              |          |  |
| •••                                 |                     |        |              |          |  |

| PROS                                    | CONS                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Flexible<br>Widely known<br>Widely used | Difficulty to attribute specific ES dataset to general PSR-type (depends on context)<br>At more disaggregated levels (such as the second or third layers), response contents are difficult to attribute to a specific row or set of rows. (This could be solved by transforming the response column into a sub-row or a cross cutting issue ). |



#### Stocks and Flows (natural assets and their changes)

| Components of<br>the environment<br> | Stocks<br>(natural assets) | Flows<br>(changes) |
|--------------------------------------|----------------------------|--------------------|
|                                      |                            |                    |

| PROS                                   | CONS                                                                                                                                                                                                                                                                  |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Works very well with natural resources | This could be a possible partial application, for it doesn't<br>work well with the topics (rows) of climate, natural<br>disasters, and urban environment.<br>Does not work at all within the human response nor<br>with environmental management topics and variables |



# Quantity, Quality and Changes of environmental components (water, forests... etc)

| Componen<br>ts of the<br>environme<br>nt | Quantum               | Changes in<br>quantum (per<br>unit of time) | Quality                                          | Changes in quality<br>(per unit of time)                      |  |  |  |  |  |  |
|------------------------------------------|-----------------------|---------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|--|--|--|--|--|--|
| Water                                    | Water<br>availability | Change in t<br>time period                  | Potable water<br>Recreational water<br>pollution | Change in x-<br>parameter of<br>quality over t time<br>period |  |  |  |  |  |  |
| Forest                                   | Forest extend         | Change in t<br>time period                  | Forest composition                               | Change in t time<br>period                                    |  |  |  |  |  |  |

| PROS                                                                    | CONS                                                    |
|-------------------------------------------------------------------------|---------------------------------------------------------|
| It could be more easily<br>applied to bio physical sets<br>of variables | It might not work well with human responses and actions |

Expert Group Meeting on the Framework for the Development of Environment Statistics



Extent/pattern – Characteristics (physical and chemical) – Biological Components (biodiversity) – Productivity (goods and services).

[Used by USA State of Ecosystem and proposed by CANADA]

| Components of<br>the<br>environment<br>(Ecosystems) | Exte<br>patt | ent/<br>tern                     | Characteristics<br>(physical and<br>chemical) |                                                                                                                       | Biological<br>Components<br>(biodiversity) | Productivity<br>(goods and<br>services) |  |  |  |  |  |
|-----------------------------------------------------|--------------|----------------------------------|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------------|--|--|--|--|--|
|                                                     |              |                                  |                                               |                                                                                                                       |                                            |                                         |  |  |  |  |  |
|                                                     |              |                                  |                                               |                                                                                                                       |                                            |                                         |  |  |  |  |  |
|                                                     |              |                                  |                                               |                                                                                                                       |                                            |                                         |  |  |  |  |  |
|                                                     |              | PROS                             |                                               |                                                                                                                       | CONS                                       |                                         |  |  |  |  |  |
|                                                     |              | Works best<br>specific<br>biomes | t when rows are<br>ecosystems or              | Doesn't work very well with components<br>or topics (rows) such as climate, natural<br>events or disasters or energy. |                                            |                                         |  |  |  |  |  |



### Keep in mind

| impact<br>category           | Wind<br>electricity | Natural gas<br>power | Photovoltaic<br>electricity | Nuclear<br>electricity |
|------------------------------|---------------------|----------------------|-----------------------------|------------------------|
| Acidification                | 0.0000103           | 0.000384             | 0.000056                    | 0.0000139              |
| Ecotoxicity                  | 0.0277              | 0.0179               | 0.178                       | 0.0345                 |
| Fossil fuel depletion        | 0.0000288           | 0.00126              | 0.000193                    | 0.0000222              |
| Global warming               | 0.000234            | 0.00439              | 0.0012                      | 0.000221               |
| Human carcinogen             | 0.0493              | 0.0695               | 0.212                       | 0.0456                 |
| Human respiratory            | 0.0000285           | 0.000502             | 0.0000955                   | 0.0000254              |
| Human toxicity               | 0.0163              | 0.0457               | 00.0744                     | 0.000136               |
| Ozone layer<br>depletion     | 0.00000004          | 0.0000001            | 0.000008                    | 0.000004               |
| Photochemical smog           | 0.0000067           | 0.0000368            | 0.0000349                   | 0.0000093              |
| Water eutrophication         | 0.0000305           | 0.0000525            | 0.000165                    | 0.0000227              |
| Total<br>millipoints / kw-hr | 0.0936              | 0.1397               | 0.466                       | 0.217                  |

- The actual content of the rows affects the columns contents and vice versa...
- Both determine the cell content

• Aggregation level determines the resolution of the information of each layer and cell

**Q6:** Other ways to structure the columns?



### Keep in mind

Conversion of

two dimensional <-> three dimensional

- Any proposed "columns" can be easily transformed into sub-rows, and vice versa
- By converting the former columns to sub-rows, a third dimension can be added to a 2-dimensional matrix

• For structuring the same contents, the more disaggregated the rows, the less dissagregation is needed in the columns, and vice versa





## 4. Possible FDES structures not based on matrixes







## Non matrix structure

- Trees, tree-dimensional arrays, hierarchical and simple ideas have been mentioned during discussions
- A "list" of components (and subcomponents) of the environment can be used as a simple, straight forward arrangement of environment statistics:
  - Structure based on the classifications of environmental components
  - Structure consisting of an arrangement of environmental themes and sub-themes
- Any set of rows associated with matrix-type FWs could be transformed into a non-matrix by not considering any kind of columns.



## Non matrix structure

- A "list" could constitute a rows-only, non-matrix FDES
- By not having columns needing to match every single row/component a thematic classification of the subcomponents beyond the 1 digit is possible. Different

break-downs of each component are feasible. A great advantage over the matrix-type arrangements

- Finally, suitable columns could be added offering methodological guidance and references. Another advantage
- One of these possibilities hierarchical- will be presented later by our experts

| Ecosystem component | Level 2                   | Level 3                                                  | Level 4                                                                | Existing UN standards<br>and guidance | Stock | Flo<br>w | D    | Ρ   | s   | I  | R                                   | Links to other ecosystem<br>component or cross-<br>cutting issues |
|---------------------|---------------------------|----------------------------------------------------------|------------------------------------------------------------------------|---------------------------------------|-------|----------|------|-----|-----|----|-------------------------------------|-------------------------------------------------------------------|
| Fresh<br>water      | Quality                   | State                                                    | Physico-chemical parameters                                            | IRWS                                  | х     |          |      |     | x   |    |                                     |                                                                   |
|                     |                           |                                                          | Biological parameters                                                  |                                       | х     |          |      |     |     | х  |                                     | Flora and fauna                                                   |
|                     |                           | Pollution                                                | Physico-chemical parameters by<br>Industry                             | SEEA-Water Emission<br>Accounts       |       | x        |      | x   |     |    |                                     | Land and soil                                                     |
|                     |                           |                                                          | Biological parameters by<br>Industry                                   |                                       |       | x        |      | x   |     |    |                                     |                                                                   |
|                     | Quantity<br>Surface Water |                                                          | Lakes                                                                  | SEEA-Water Asset<br>Accounts; IRWS    | х     |          |      |     | x   |    |                                     |                                                                   |
|                     |                           |                                                          | Rivers                                                                 | SEEA-Water Asset<br>Accounts; IRWS    |       |          |      |     | x   |    |                                     |                                                                   |
|                     |                           |                                                          | Artificial reservoirs                                                  | SEEA-Water Asset<br>Accounts: IRWS    | х     |          |      |     | x   |    | x                                   |                                                                   |
|                     |                           | Groui Exan                                               | ple of a non-m                                                         | atrix, hiera                          | rchio | cal      | frai | mev | WOI | ·k |                                     |                                                                   |
|                     |                           |                                                          | Fossil GW                                                              | SEEA-Water Asset<br>Accounts; IRWS    | х     |          |      |     | x   |    |                                     |                                                                   |
| Natural flows       |                           | Internal flow (precipitation, evapotranspiration)        | SEEA-Water Asset<br>Accounts; IRWS                                     |                                       | x     |          |      | x   |     |    | Atmosphere, Air and<br>Climate      |                                                                   |
|                     |                           |                                                          | External inflow and outflow                                            | SEEA-Water Asset<br>Accounts; IRWS    |       | x        |      |     | x   |    |                                     | Atmosphere, Air and<br>Climate                                    |
|                     |                           |                                                          | Transfers between internal<br>ressources                               | SEEA-Water Asset<br>Accounts; IRWS    |       | x        |      |     | x   |    |                                     |                                                                   |
| Fresh<br>water      |                           |                                                          | Extreme events                                                         |                                       |       |          |      | x   | x   | x  |                                     | Atmosphere, Air and<br>Climate                                    |
|                     |                           | Abstraction and use                                      | Abstraction by industry                                                | SEEA-Water PSUT;<br>IRWS              |       | x        |      | x   |     |    |                                     |                                                                   |
|                     |                           |                                                          | Use by industry                                                        | SEEA-Water PSUT;<br>IRWS              |       | x        | x    |     |     |    |                                     |                                                                   |
|                     |                           |                                                          | Consumption and losses by industry                                     | SEEA-Water PSUT;<br>IRWS              |       | x        |      | x   |     |    |                                     |                                                                   |
|                     | Manageme<br>nt            | Waste water<br>treatment and sewage<br>sludge generation | Wastewater treated by type of treatment (primary, secondary, tertiary) | IRWS                                  |       |          |      |     |     |    | x                                   | Human Settlements                                                 |
|                     |                           | Sewage sludge generation and disposal                    | IRWS                                                                   |                                       |       |          | x    |     |     | x  | Land and Soil, Human<br>Settlements |                                                                   |



### What is next?

- Experts will share their thoughts on the re-structuring process
- General discussion in plenary
- Working groups will create a **framework structure**:
  - a) Matrix type: propose a set of rows and columns with real environmental topics (cells)
  - b) Non-matrix type: propose a thematic or list type structure with real environmental topics, themes and sub-themes





