

Compilation of environmentaleconomic accounts

BUYUNG AIRLANGGA

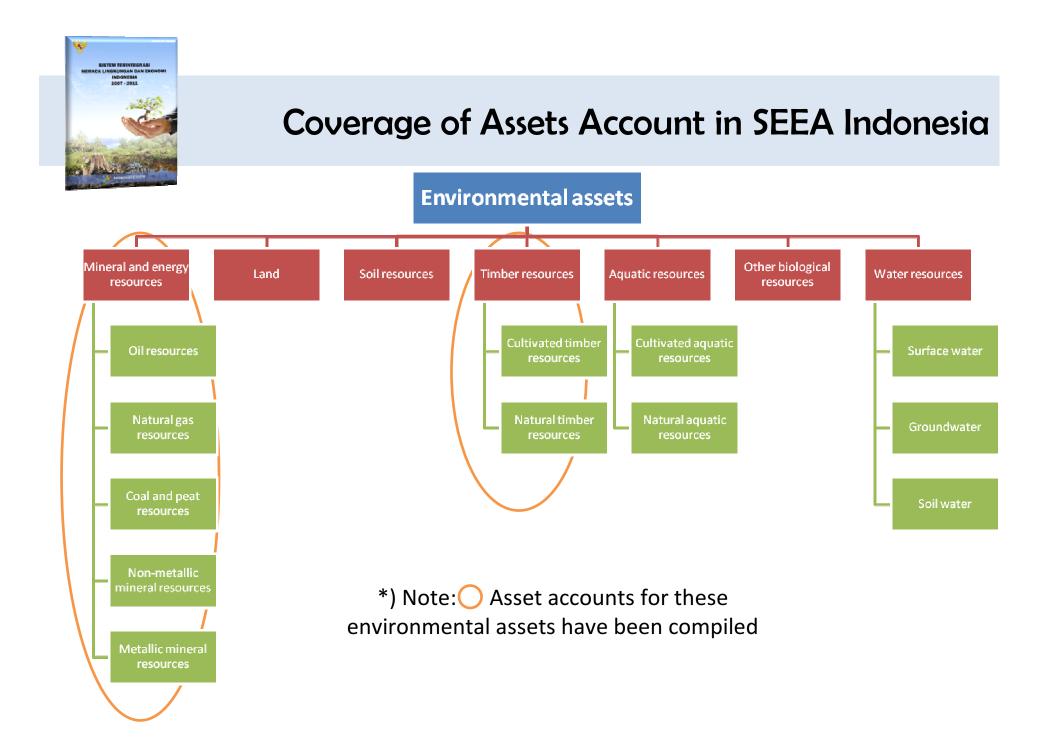
International Conference "Global Implementation Programme for the SEEA" New York, 17-19 June 2013

Outline of presentation

Current works

- Coverage of SEEA Indonesia
- Data sources
- Compilation process
- Issue/problems
- Composite Index on Env Qualt

Next agenda

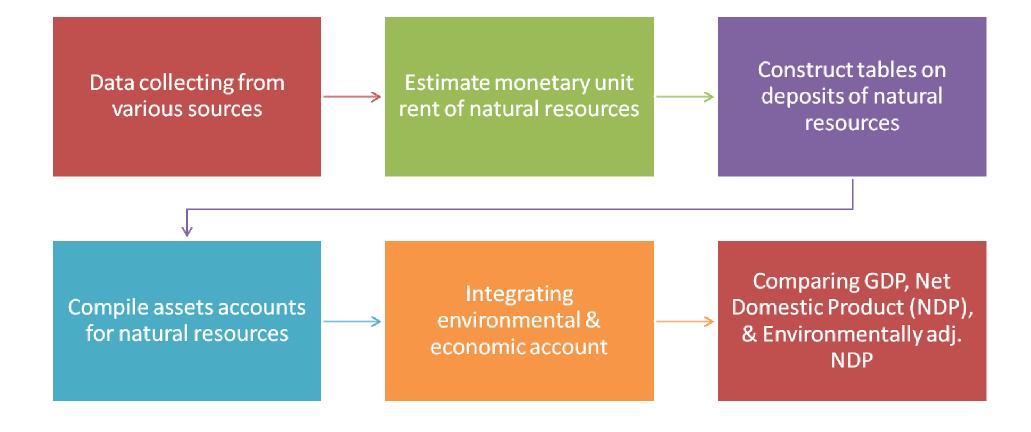

- Follow up 44th Session of the UNSC
- Propose experimental energy account
- Introduce FDES to environmental subject matter areas
- Initiate partnership & networking among government institution

arrent progress: SEEA Indonesia

Asset accounts for selected natural resources^{*)}

*) Coverage is limited to 9 significant natural resources in Indonesia: crude oil, natural gas, coal, bauxite, tin, gold, silver, nickel ores, and timber wood

- Integrating environment and economic account
- Case study on environmental degradation on CO2



Data sources

- Ministry of Forestry
 - Data on natural & cultivated forest areas
 - Data on reforestation, deforestation, other changes of forest areas
 - Ministry of Energy and Mineral Resources (crude oil; natural gas; coal; bauxite, tin, gold, silver & nickel ores)
 - Data on reserves and resources
 - Data on production
- BPS-Statistics Indonesia
 - Data on national account aggregates
- Others
 - Financial reports of some establishments engaged in natural resources exploitation/exploration

Compilation process

From table to account: crude oil

Physical & Monetary Accounts

Deposit, Production & Deposit to Production Ratio

Tahun		n Terbukti Itensial	Produksi	Rasio Cadangan terhadap Produksi
	Awal Tahun	Akhir Tahun		(3):(4)
(1)	(2)	(3)	(4)	(5)
2007	8.403,3	8.219,2	348,3	23,6
2008	8.219,2	7.998,5	357,5	22,4
2009	7.998,5	7.764,5	346,4	22,4
2010 *	7.764,5	7.732,3	344,9	22,4
2011 **	7.732,3	7.586,9	329,4	23,0

Sumber: Ditjen Migas, Kementerian ESDM

Description	2007	2008	2009	2010	2011
I. Physical balance (Million Barrels)					
1. Beginning stock	8,403	8,219	7,999	7,765	7,732
2. Addition	164	137	112	313	184
3. Depletion	348	358	346	345	329
4. Net change	-184	-221	-234	-32	-145
5. Ending stock	8,219	7,999	7,765	7,732	7,587
II. Unit Rent					
1. Price per barel (Rp)	624,365	889,276	610,231	681,766	922,490
2. Production cost per barel (Rp)	99,640	118,518	115,886	150,094	245,455
3. Corporate profit per barel (Rp)	208,529	333,141	194,048	196,173	223,074
4. Unit rent (Rp/barel)	316,195	437,616	300,297	335,500	453,961
III. Monetary balance (Billion Rp)					
1. Beginning stock	2,227,363	2,598,874	3,500,273	2,331,657	2,594,175
2. Addition	51,916	59,866	33,753	104,897	83,544
3. Depletion	110,131	156,448	104,023	115,710	149,535
4. Net change	-58,215	-96,582	-70,270	-10,813	-65,991
5. Revaluation	429,726	997,981	-1,098,346	273,331	915,974
6. Ending stock	2,598,874	3,500,273	2,331,657	2,594,175	3,444,159

Integrating environmental-economic account

		Kegiatan Ekonomi			Kapital			Kegiatan Ekonomi							
	Komponen Neraca		Perdagangan	Konsumsi		pital	Lingkungan				108		Kar	oital	Kapital Lingkungan yang Tidak diproduksi (7)
		Produksi	Luar Negeri	akhir	Buatan Manusia	Buatan Alam	yang Tidak diproduksi	Kor	nponen Neraca	Produksi	Perdagangan	Konsumsi	Buatan		
	(1)	(2)	(3)	(4)	(5)	(6)	(7)				Luar Negeri	akhir	Manusia	Buatan Alam	
1	Stok Awal a. Barang Modal				11.345.984				(1)	(2)	(3)	(4)	(5)	(6)	•
	b. Hasil Hutan c. Minyak Bumi d. Gas Alam					488.133 2.594.175		8	PDN 1	6.761.761	104.883	4.720.804	2.230.045	413.022	-706.993
	e.Batubara f. Bauksit					1.579.632 3.668.641 9.404			Revaluasi						
	g. Timah h. Emas i. Perak					47.329 1.121.633 43.754			a. Barang Modal b. Hasil Hutan				148.224	33.159	
	j. Bijih Nikel					43.754 36.622			c. Minyak Bumi d. Gas Alam					915.974 529.541	
2	Penyediaan	14.685.057	1.850.474						e.Batubara					529.541 4.289.791	
3	Penggunaan	7.257.971	1.955.357	4.720.804	2.601.399				f. Bauksit					4.207.771	
4	Penyusutan	371.354			-371.354				g. Timah					5.103	
5	PDN	7.055.732	104.883	4.720.804	2.230.045				h. Emas					404.120	
6	Deplesi a. Hasil Hutan	293.971 8.960				-293.971 -8.960			i. Perak j. Bijih Nikel					34.647 13.852	
	b. Minyak Bumi c. Gas Alam	149.535 44.811				-149.535 -44.811			j. Dijin kikor					15.052	
	d.Batubara	47.100				-47.100			Stok Akhir				10		
	e. Bauksit f. Timah	893 3.096				-893 -3.096			a. Barang Modal b. Hasil Hutan				13.724.253	488.133	
	g. Emas h. Perak	36.550 1.322				-36.550 -1.322			c. Minyak Bumi					3.444.159	
	i. Bijih Nikel	1.703				-1.703			d. Gas Alam					2.083.229	
7	Penambahan a. Hasil Hutan					706.993 8.782	-706.993 -8.782		e.Batubara					4.892.843	
	b. Minyak Bumi c. Gas Alam					83.544 18.869	-83.544 -18.869		f. Bauksit d. Timoh					14.637	
	d.Batubara					650.152	-650.152		g. Timah h. Emas					35.761 1.389.770	
	e. Bauksit f. Timah					6.086 -13.575	-6.086 13.575		i. Perak					75.293	
	g. Emas h. Perak					-99.434 -1.785	99.434 1.785		j. Bijih Nikel					103.126	
	i. Bijih Nikel					54.354	-54.354								

Comparing GDP, Net Domestic Product (PDN), & Environmentally adj. NDP (PDN1)

Perincian	2007	2008	2009	2010	2011
(1)	(2)	(3)	(4)	(5)	(6)
1. PDB	3.950.893	4.948.688	5.603.871	6.422.918	7.427.086
2. PDN	3.753.349	4.701.254	5.323.678	6.101.772	7.055.732
3. PDN1	3.563.258	4.445.758	5.096.554	5.853.609	6.761.761
4. <u>PDN</u> x 100 PDB	95,00	95,00	95,00	95,00	95,00
5. <u>PDN1</u> x 100 PDB	90,19	89,84	90,95	91,14	91,04
6. <u>PDN1</u> x 100 PDN	94,94	94,57	95,73	95,93	<mark>9</mark> 5,83

Summary of Findings

- Over exploitation of timber wood especially outside of Java
- Rate of depletion for some of mineral resources is exceeding the rate of deposit discovery, such as crude oil, natural gas, gold, and nickel ore).
- Valuation for natural resources can be difficult, especially when IRR is used to compute *Net Present Value (NPV)* of Natural Resource.
- A study was conducted in Regency of Musi Banyuasin to implement NPV method, but there was difficulty in choosing the correct IRR.
- Therefore an alternative *net price method* is used to monetary unit rent for natural resources.

Experimental Environment Quality Index 2008

Environmental Quality Index (EQI)

General measurement on environmental quality based on EQ domains (water, air, land and population)

Interval: 0 100 worst ideal

Objectives

To identify factors underlying changes in environmental quality.

To provide a simplified measurement on environmental condition. Why Capital City???

Rapid Development

> High potential damage of environment

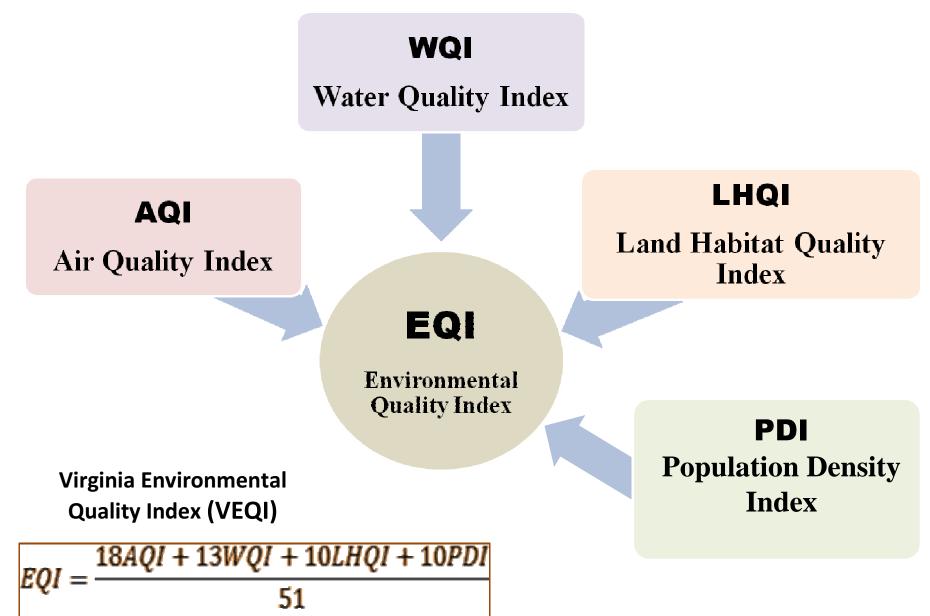

Lack of data

Table 1. EQI input Scale and Data Resources

Factors	Variable	Data Sources	Weight for EQI Calculation
Air Quality	/		18
	CO(Carbon Monoxide)	•BPS -Statistics Indonesia:	11
	NOx(Nitrogen Oxide)	Susenas Modul konsumsi •Indonesian Meteorological Climatological and Geophysical Agency	16
Water Qua	ality		13
	BOD	-The Ministry of Environment	1
	COD		1
	DO		1
	NO ₃		1
	NH ₃		1
	рН		1
	TDS		1
	TSS		1
	SO ₄		1
Land Habi	tat Quality		10
	-Proportion of waste volume not transported per km2	Departement of City Sanitation	1
	Persentage of household landf ills as septictank	BPS -Statistics Indonesia:	1
Populatio	n Density		10
	Population Density per Ha	BPS -Statistics Indonesia:	1

Air Quality Index

Emission power formula:

Q = Cx EF

- Q = Emission power
- C = Fuel Consumption
- EF = Emission factor

$$C_{(x,y,z)} = \frac{Q}{\pi.\,\mu.\,\sigma_y.\sigma_z} \exp\left[-\frac{1}{2} \left(\frac{H}{\sigma_z}\right)^2\right]$$

С	= Polutant concentrate (gr/m ³)
Q	= Emission power (gr/second)
Н	= Height of emission resource
x, y, z	= receptor coordinate
σ	= standard of deviation
U	= average velocity of wind
(m/second)	

$$AQI = \frac{11AQI_{co} + 16AQI_{NOx}}{27}$$

Classification C and sub-AQI of NOx

Classifi cation	Value C of NOx	a _i	Xi	Value sub- AQI of NOx
1	$0 \le C \le 400$	0,025	$x_1 = C - 0$	100 - 90
2	$400 \le C \le 800$	0,05	x ₁ = 400, x ₂ = C-400	89,99 - 70
3	$800 \le C \le 1200$	0,075	$x_1 = 400, x_2 = 400, x_3 = C-800$	69,99 - 40
4	C > 1200	0,01	x ₁ = 400, x ₂ = 400, x ₃ = 400, x ₄ = C-1.200	< 40

Water Quality Index

Water quality formula:

$$WQI = 100 - \sum_{i=1}^{4} a_i \times x_i$$

- *a_i* = 10, 15, 20
- **a**_i = weight for class-i
- x_i = range of Contaminent Index in class-i
 - i = classification of Contaminent Index

WQI

 $=\frac{WQI_{BOD} + WQI_{COD} + WQI_{DO} + WQI_{NO_{S}} + WQI_{NH_{S}} + WQI_{pH} + WQI_{TDS} + WQI_{TSS} + WQI_{Sulfat}}{9}$

Classification of Cl and WQI

Classification	Contaminent Index	a_i	x _i	Value of WQI
1	$0 \le CI \le 1$	10	$x_1 = CI - 0$	100 - 90
2	1 <i>≤Cl</i> ≤5	15	$x_1 = 1, x_2 = Cl - 1$	89,99 – 30
3	> 5	20	$x_1 = 1, x_2 = 4, x_3 = CI - 5$	<30

Land Habitat Quality Index

$$QI_{waste} = 100 \quad \sum_{i=1}^{4} a_i \times x_i$$

- a_i = weight for class-i
- Y = volume of waste per day (m³) which is not transported per km²

 $0 \leq Y \leq \ 1: good \ condition$

 $1 \leq Y \leq 5$: moderate

> 5 : bad condition

 x_i = range of Y in class-i

i = classification of Y

$$LHQI = \frac{QI_{waste} + QI_{septic tank}}{2}$$

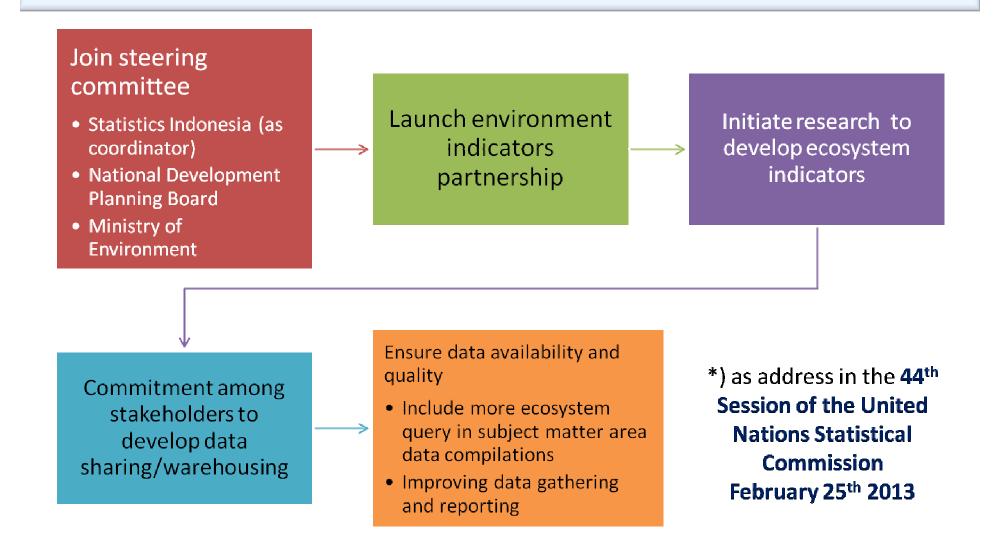
Classification of Y and QI_{waste}

Klasifikasi	Y	ai	xi	Nilai IKA
1	$0 \le Y \le 1$	10	x ₁ = Y-0	100 - 90
2	1≤Y≤5	15	$x_1 = 1, x_2 = Y - 1$	89,9 - 30
3	>5	20	$x_1 = 1, x_2 = 4, x_3 = Y-5$	<30

Population Density Index

PDI = 100 - (P - 96)

P = Population density over 96 people per hectare

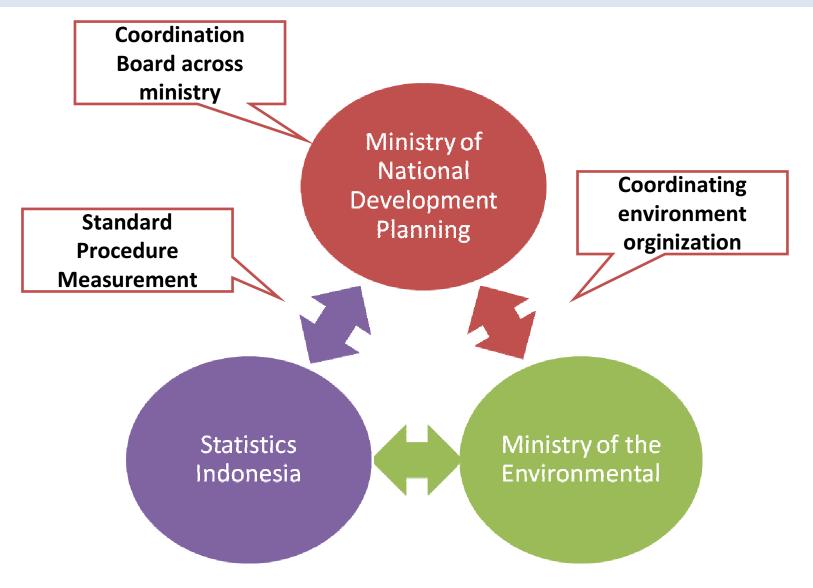


Tabel 2. Environmental Quality Index of 31 Capital Cities in Indonesia, 2008

(1) 1	(2)			I		-	
1		(3)	(4)	(5)	(6)	(7)	
	Ternate	94,16	86,70	94,71	100,00	93,51	
2	Gorontalo	96,10	90,59	80,63	100,00	92,43	
3	Ambon	95,86	63,41	90,08	100,00	87,27	
4	Pangkal Pinang	88,03	69,35	90,12	100,00	86,03	
5	Kendari	86,30	72,84	86,30	100,00	85,56	
6	Tanjung Pinang	86,70	72,88	81,18	100,00	84,70	
7	Manado	77,32	78,60	84,75	100,00	83,55	
8	Palangkaraya	77,02	71,66	91,60	100,00	83,02	Ternate is non
9	Banda Aceh	63,72	71,35	97,72	100,00	79,44	
10	Kupang	74,33	76,30	69,38	100,00	78,89	manufacture and less
11	Palu	62,39	65,84	92,10	100,00	76,47	density city .
12	Jayapura	79,92	42,52	90,38	100,00	76,38	
13	Mataram	69,24	80,50	56,10	100,00	75,57	EQI= 93.5
14	Bengkulu	75,25	56,73	74,50	100,00	75,24	Jakarta and Bandung is
15	Pontianak	28,87	81,86	93,63	100,00	69,02	
16	Jambi	30,12	88,42	71,79	100,00	66,85	Manufacturing and quit
17	Samarinda	22,51	82,82	87,91	100,00	65,90	density Cities
18	Padang	26,10	63,74	85,40	100,00	61,81	EQI= 39.6 and EQ= 24.
19	Bandar Lampung	20,13	59,75	91,14	100,00	59,81	EQI- 39.0 aliu EQ- 24.
20	Serang	27,09	75,65	54,58	99,22	59,00	
21	Palembang	12,51	75,06	70,54	100,00	56,99	
22	Denpasar	17,31	58,89	70,24	100,00	54,50	
23	Banjarmasin	30,83	60,95	36,85	100,00	53,25	
24	Makasar	11,96	52,57	75,10	100,00	51,96	
25	Pekanbaru	0,00	60,36	79,46	100,00	50,57	
26	Semarang	0,00	86,40	44,42	100,00	50,34	
27	Yogyakarta	29,72	75,32	46,62	55,41	49,70	
28	Medan	0,00	69,65	47,16	100,00	46,61	
29	Surabaya	0,00	52,17	47,62	100,00	42,24	
30	Jakarta	0,00	51,45	76,90	58,26	39,62	
31	Bandung	0,00	40,66	19,31	52,52	24,45	

Source : BPS- Statistics Indonesia

Next agenda: follow up Indonesia Plan*)


Moving forward

September 2013: Initiate partnership & networking among government institutions Introduce Framework for Development of Environmental Statistic (FDES) to subject matter areas

Expanding coverage of SEEA Indonesia to include (Experimental) energy account

2014

Initiate partnership & networking

Introduce FDES to subject matter

areas

DEPARTMENT OF ECONOMIC AND SOCIAL AFFAIRS STATISTICS DIVISION UNITED NATIONS

Framework for the Development of Environment Statistics (FDES) 2013

Prepared by the United Nations Statistics Division

- The FDES 2013 is expected to improved monitoring and measurement of the environmental dimension of sustainable development agenda.
- The use of the FDES 2013 in national statistical systems will enhance developments in this field of statistics, as it is both a multi-purpose and flexible tool that can be tailored to specific environmental policy concerns and priorities of the countries, as well as accommodate their different levels of statistical development.

2014: (Experimental) energy account

- After the completion of Indonesia SUT in 2014, we are planning to construct experimental energy account.
- Energy account compilation process begin with identifying the source of energy:
 - Non-renewable energy: fossil & non-fossil energy (28 commodities)
 - Renewable energy: such as, wind, water current,
 Solar, and geothermal heat, etc.

