

# Estimation and Evaluation of ecosystem carbon accounts for the EU countries

Emil Ivanov

London group session of Experimental Ecosystem Accounting

16 Oct 2014, New Delhi



# 1. Outline

Development, evaluation and consolidation of European carbon accounts. Work done at EEA and UNOTT

- Working definition, scope and parameters
- Data foundation, methodology and estimation carbon accounts
- Accounting framework, inputs and outputs and their evaluation
- Possibilities for assessing assets and services derived from carbon accounting data
- Lessons, challenges and further work



# 2. Working definition and scope

 A quantitative, annual and spatially explicit estimate of carbon stored in main pools and transfers between them and within them



Biomass, forest assets, regulatory and provisioning services



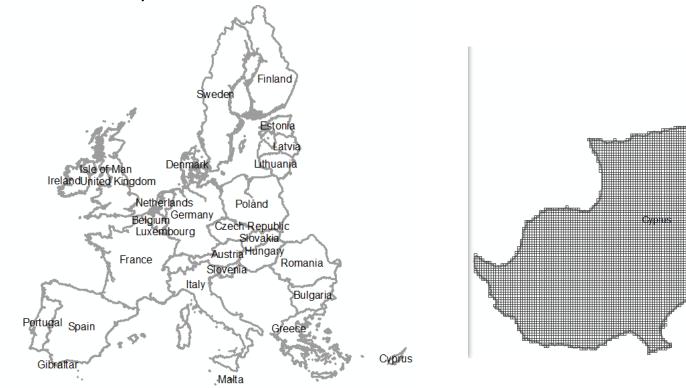
# 3. Data foundation and methodology

Properties of the carbon data foundation compatible and comparable with assets and services from other ecosystem accounting components

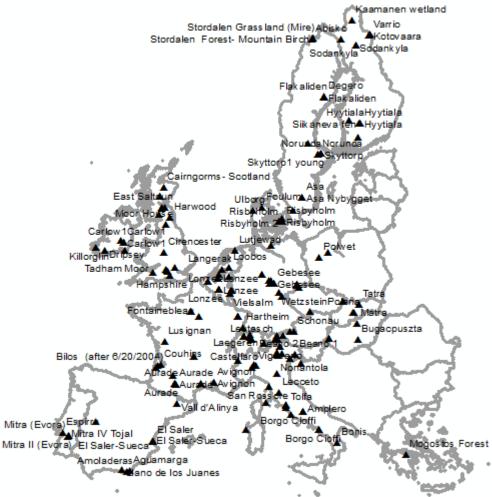
- Use of common European land cover (CORINE), administrative (NUTS2-3) and other spatial information (DLT, river catchments)
- Harmonizing inputs at 1km x 1km grid by downscaling (regional/national statistics) and up-scaling (scientific estimates)
- Common ecosystem reporting units

# 4.1 Working approach and framework

- Overall structure
- Relations between the carbon accounting components
- Estimation of NECB


|          |                                                                        | LCEU 1                   | LGEU 2, 3, 4     | LCEU 5                 | ICEN 6                 | LCEU 7, 8, 9, 10, 11, 12 | LCEU 12          | LCEU 13, 14                | io tai inland & coastal eco-systems | coans            |            |       | motstee             |
|----------|------------------------------------------------------------------------|--------------------------|------------------|------------------------|------------------------|--------------------------|------------------|----------------------------|-------------------------------------|------------------|------------|-------|---------------------|
|          | IPCC land use classification                                           | SL =<br>Settle-<br>ments | CL -<br>Cropland | GL =<br>Grass-<br>land | FL =<br>Forest<br>Land | OL -<br>Other<br>Land    | WL -<br>Wetlands | Water<br>bodies,<br>rivers | lotal intenc                        | Open sea, oceans | Atmosphere | TOTAL | Supply & use system |
| I. Ecosy | stem Carbon Basic Balance                                              |                          |                  |                        | 1                      |                          |                  |                            | -                                   |                  | -          |       |                     |
| C1       | Opening Stocks                                                         |                          | 1                |                        |                        |                          |                  |                            |                                     |                  |            |       |                     |
| C2.3     | NPP (Net Primary Production)                                           |                          |                  |                        |                        |                          |                  |                            |                                     |                  |            |       |                     |
| C2.4     | Secondary ecosystem repiration<br>(heterotrophic)                      |                          |                  |                        |                        |                          |                  |                            |                                     |                  |            |       |                     |
| C2.a     | NEP (Net Ecosystem Production) -<br>C2.3-C2.4                          |                          |                  |                        |                        |                          |                  |                            |                                     |                  |            |       |                     |
| C2.b     | s/Total secondary biocarbon resource                                   |                          | C 0              |                        | C.                     |                          | 23 X             |                            |                                     |                  | -          |       |                     |
| C2       | Total inflow of biocarbon (gains)<br>= C2.a+C2.b                       |                          |                  |                        |                        |                          |                  |                            |                                     |                  |            |       |                     |
| C3.a     | Harvest of agriculture crops, wood & other vegetation                  |                          |                  |                        |                        |                          |                  |                            |                                     |                  |            |       |                     |
| C3.b     | Withdrawals of secondary blocarbon                                     |                          | -                |                        | -                      |                          | -                | -                          |                                     |                  |            |       |                     |
| C3       | Total withdrawals of biocarbon -<br>C3.a+C3.b                          |                          |                  |                        |                        |                          |                  |                            |                                     |                  |            |       |                     |
| C4       | Net indirect anthropogenic losses of<br>blocarbon & blofuel combustion |                          |                  |                        |                        |                          |                  |                            |                                     |                  |            |       |                     |
| C5       | Total use of ecosystem blocarbon -<br>C3+C4                            |                          |                  |                        |                        |                          |                  |                            |                                     |                  |            |       |                     |
| C6       | Natural processes and disturbances                                     |                          |                  |                        |                        |                          |                  |                            |                                     |                  |            |       |                     |
| C7       | Total outflow of biocarbon<br>(losses)                                 |                          |                  |                        |                        |                          |                  |                            |                                     |                  |            |       |                     |
| C8.1     | NECB 1 [Flows] = Inflows -<br>Outflows = C2-C7                         |                          |                  |                        |                        |                          |                  |                            |                                     |                  |            |       |                     |
| C8.2     | Adjustment and reappraisals                                            |                          | C                |                        | 6                      | -                        |                  | 2                          | -                                   |                  |            |       |                     |
| C8.3     | NECB 2 [Stocks] = Change of<br>biocarbon stocks                        |                          |                  |                        |                        |                          |                  |                            |                                     |                  |            |       |                     |
| C9       | Closing Stocks = C1+C8.1+C8.2<br>or = C1+C8.3                          |                          |                  |                        |                        |                          |                  |                            |                                     |                  |            |       |                     |

Source: CBD Technical Series No. 77, p. 105




# 4.2 Criteria for selecting accounting data inputs

27 EU countries, data inputs at 1km x 1km grid (for opening stocks) and decade time-series (for annual carbon fluxes and transfers)



### 4.3 Criteria for validation data



Compilation of independent measurements **representative for spatial and temporal variability** across Europe

FLUXNET with data on GPP, TER and NEP (2000 – 2006)

Published studies on carbon balances of forests, croplands and grasslands in Europe (2000 – 2011)



# 5.1 Accounting parameters

| Carbon Acco          | unting items                                                       | Ecosystem components/ functions                              |
|----------------------|--------------------------------------------------------------------|--------------------------------------------------------------|
| Opening<br>Stocks    | 1. Soil organic carbon (SOC)                                       | Labile and stable fractions, dead material and litter        |
|                      | 2. Biomass (TCB)                                                   | In woody and herbal vegetation                               |
| Fluxes and transfers | 3. Primary production (GPP)                                        | Carbon fixing through photosynthesis                         |
|                      | 4. Carbon release (TER)                                            | Heterotrophic and autotrophic respiration                    |
|                      | 5. Human use of primary production (TPPU)                          | Harvests of crops, timber, fibre etc.                        |
|                      | 6. Carbon imports (TCR)                                            | Manure and sludge deposition                                 |
| Balances             | 7. Net ecosystem production (NEP), Ecosystem carbon balance (NECB) | Source or sink function, amount of accumulation or depletion |



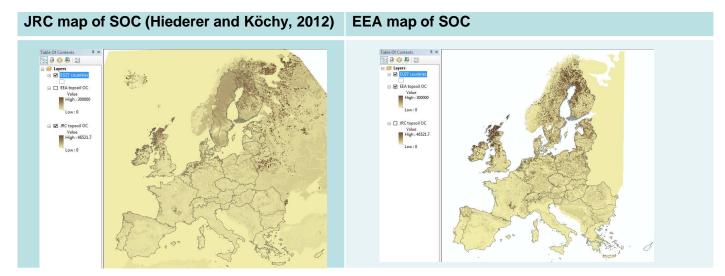
# 5.2 Accounting parameters and data sources

| Carbon Aco                 | counting items                            | Data sources                                                                                                                                                                    |
|----------------------------|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Opening<br>Stocks          | 1. Soil organic carbon (SOC)              | JRC map of SOC (Hiederer and Köchy, 2012), global at 1km, 30 cm and 1m depth; EEA estimate of SOC, 30cm                                                                         |
|                            | 2. Biomass (TCB)                          | Downscaled forest biomass by EEA<br>Upscaled biomass for non-forest biomass by EEA                                                                                              |
| Fluxes<br>and<br>transfers | 3. Primary production (GPP)               | <b>Downscaled NASA-CASA NPP</b> (from 8km to 1km),<br>converted to GPP by adding autotrophic respiration from<br>MODIS (Running et al.)                                         |
|                            | 4. Carbon release / respiration (TER)     | <b>Downscaled NASA-CASA Soil respiration</b> (from 8km to 1km), converted to TER by adding autotrophic respiration from MODIS (Running et al.)                                  |
|                            | 5. Human use of primary production (TPPU) | <b>Downscaled regional statistics on crops</b> (EUROSTAT),<br><b>timber</b> (EFISCEN, National FI and EFIMED) and grazing<br>livestock, using land-cover and vegetation indices |
|                            | 6. Carbon imports (TCR)                   | <b>Downscaled deposition</b> of dry sludge and manure (from livestock distribution)                                                                                             |
| Balances                   | 7. NEP, Ecosystem carbon balance (NECB)   | <b>NEP</b> estimated from GPP and TER, <b>NECB</b> estimated by aggregating all flows                                                                                           |

# 5.3 Accounting parameters and evaluation data

| Carbon Accou            | nting items                                                                                                                                                                  | Data sources                                                                             |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| Opening<br>Stocks       | <ol> <li>Soil organic carbon</li> <li>(SOC)</li> <li>Biomass (TCB)</li> </ol>                                                                                                | Published data; EIONET soil org. carbon data (Panagos<br>et al., 2013)<br>Published data |
| Fluxes and<br>transfers | <ul> <li>3. Primary production<br/>(GPP)</li> <li>4. Carbon release (TER)</li> <li>5. Human use of primary<br/>production (TPPU)</li> <li>6. Carbon imports (TCR)</li> </ul> |                                                                                          |
| Balances                | 7. Net ecosystem<br>production (NEP),<br>Ecosystem carbon<br>balance (NECB)                                                                                                  | FLUXNET and published data (NEP); published data on ECB                                  |




# 6. Working process

- Review of input data
- Evaluation (step 1) of the inputs, if alternatives exist
- Estimation of harmonized and consistent accounts
- Evaluation (step 2) of the outputs

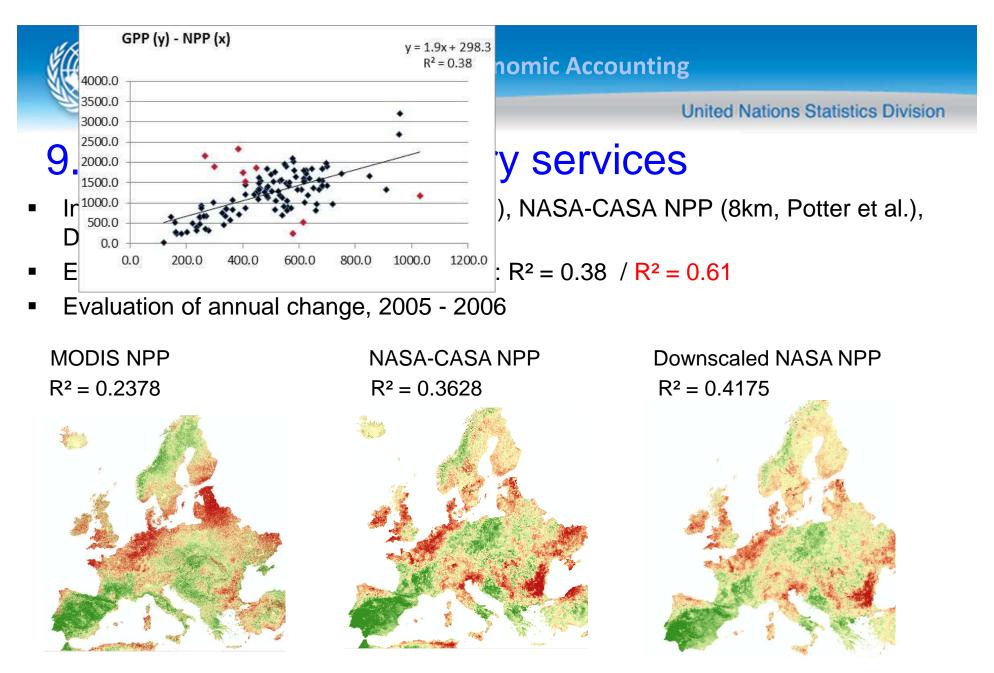


# 7. Carbon stocks in soil

Inputs



### Evaluation and selection

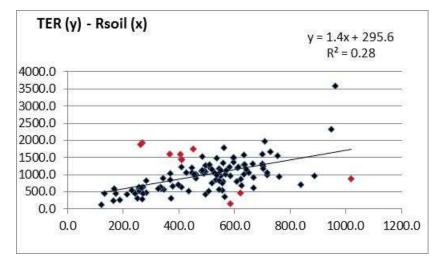

| Country     | Average SOC (t C /km2)<br>Reference from Panagos et al. | EEA SOC(t C /km2),<br>R <sup>2</sup> = 0.5 | JRC SOC(t C /km2),<br>R² = 0.69 |
|-------------|---------------------------------------------------------|--------------------------------------------|---------------------------------|
| Bulgaria    | 2800                                                    | 7342                                       | 4744                            |
| Denmark     | 8640                                                    | 10136                                      | 6173                            |
| Italy       | 5630                                                    | 3182                                       | 4003                            |
| Netherlands | 10010                                                   | 21696                                      | 8938                            |
| Poland      | 7960                                                    | 18695                                      | 7027                            |
| Slovakia    | 4530                                                    | 10429                                      | 5062                            |

# 8. Carbon stocks in biomass

| Ν | Unique name                | Mapping approach                                                              |
|---|----------------------------|-------------------------------------------------------------------------------|
| 1 | Forest biomass             | Downscaling for forest statistics using land-<br>cover and vegetation indices |
| 2 | Agroforestry biomass       | Upscaling of 'known values' using land cover                                  |
| 3 | Arable crops biomass       | Upscaling of 'known values' using land cover                                  |
| 4 | Complex crops biomass      | Upscaling of 'known values' using land cover                                  |
| 5 | Pastures stocks biomass    | Upscaling of 'known values' using land cover                                  |
| 6 | Permanent crops biomass    | Upscaling of 'known values' using land cover                                  |
| 7 | Natural vegetation biomass | Upscaling of 'known values' using land cover                                  |

### Input data quality:

Forest biomass is expected to have higher accuracy compared to the non-forest due to the ensured consistency with regional statistics.



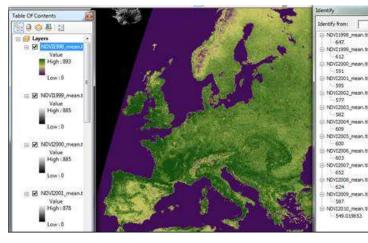

- Selection: Downscaled NPP
- Converted to GPP by adding Autotrophic respiration from MODIS (by Running et al.)



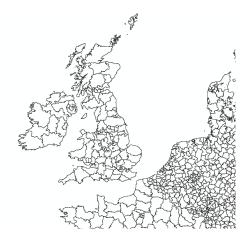
# 10. Soil respiration, TER

- Inputs: NASA-CASA soil respiration (the only available)
- Converted to TER by adding up 50% of the autotrophic respiration (by Running et al.), following an assumption that the below-ground plant respiration may be already included in the in the Soil respiration estimate
- Evaluation of mean values of time-series: R<sup>2</sup> = 0.28 / R<sup>2</sup> = 0.48






# 11.1 Carbon use and returns


# Inputs: Statistical data

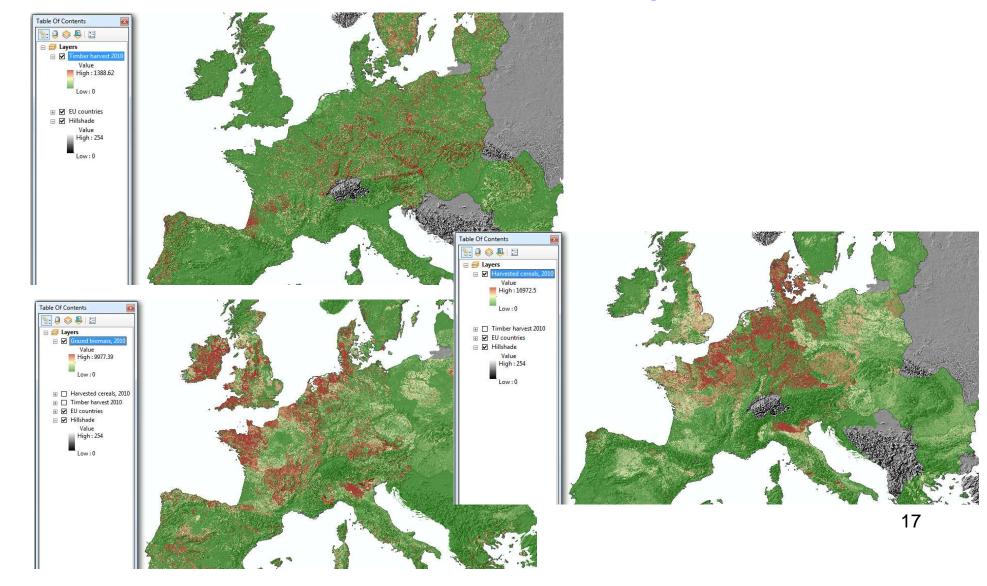
| FD31-1 | Harvested crops - cereals          |
|--------|------------------------------------|
| FD32-1 | Harvested crops - citrus           |
| FD33-1 | Harvested crops - fruits           |
| FD34-1 | Harvested crops - industrial crops |
| FD35-1 | Harvested crops - oilseeds         |
| FD36-1 | Harvested crops - olives           |
| FD37-1 | Harvested crops - rice             |
| FD38-1 | Harvested crops - roots            |
| FD39-1 | Harvested crops - vineyards        |
|        |                                    |

#### Spatial disaggregation data



#### Administrative data

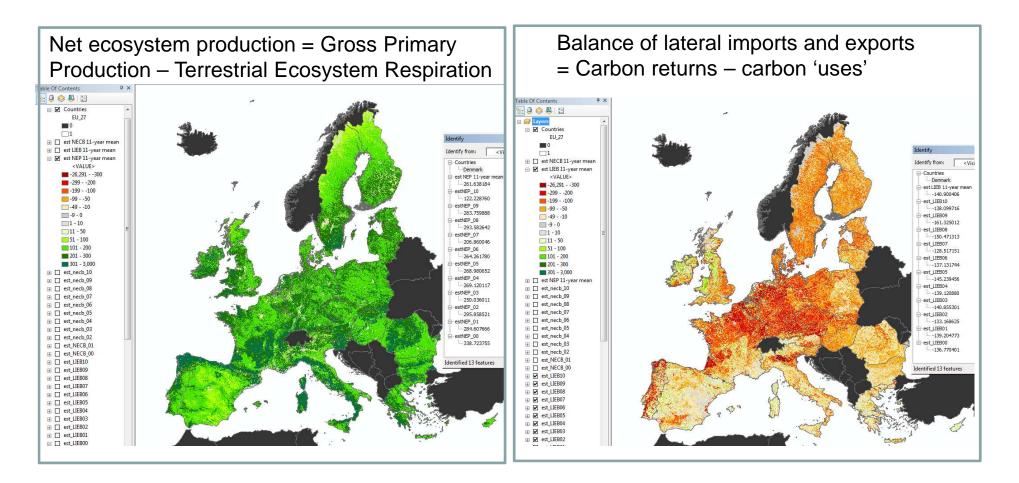



#### Processing

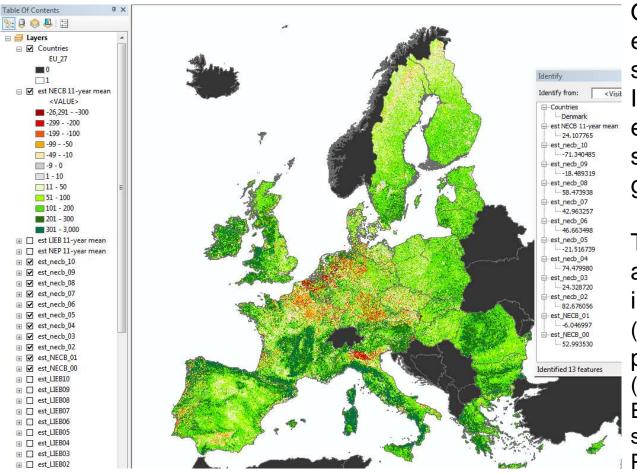
Downscaling techniques for crops, timber and livestock

Outputs (next)




### 11.2 Carbon 'uses' / provisioning services






# 12. Balancing estimates

The two basic balancing items are designed to summarize 'vertical' and 'horizontal' carbon transfers



# 13. Estimation of NECB



On country level the ecosystem carbon accounts should be consistent with IPCC's in assessing whether ecosystems acted as net source or sink of CO2 for a given period of time.

The maps shows a decade average, with areas in green indicating prevailing sink (most of Europe) and in red – prevailing source functions (e.g. parts of North West Europe, Po valley in Italy, and spots of forest-burned areas of Portugal).



# 14.1 Evaluation of estimated outputs

- The validation datasets contains records for:
  - European forests: 217 records on GPP, 216 on TER (ecosystem respiration), 25 on carbon exports (timber harvest), 216 on NEP and 60 on Ecosystem carbon balance.
  - European croplands: 80 records on GPP; 79 on TER; 81 on carbon imports (manure, seeds); 104 on carbon exports (harvested crops); 116 on NEP and 99 on Ecosystem Carbon balance.
  - European grasslands: 58 on GPP; 56 on TER; 6 on carbon imports (manure); 15 on carbon exports (fodder); 65 on NEP and 15 on carbon balance (ecoregions are not well represented)
  - European wetlands (very few): GPP 12; TER 11; NEP 11. Most of the studies are from Boreal sites.
- Mean values disaggregated per accounting category, ecosystem type and ecoregion



# 14.2 Evaluation of estimated outputs

Three tests were applied:

- 1. Assess whether the accounting estimates are of the same order of magnitude as the validation data;
- 2. Assess whether the means of the accounts fall within the statistical variation range of the control
- 3. Assess whether the equality of means is also statistically significant at either 90 or 95% confidence level.



### 14.3 Evaluation of estimated outputs

|            |      |               | Contr  | ol (sc. + | fluxnet) |      |        | Account | s 1km - s | ECA               |        |  |
|------------|------|---------------|--------|-----------|----------|------|--------|---------|-----------|-------------------|--------|--|
|            |      |               | N (sit | e-years)  | Mean     |      | St. D. | Mean    | Test 1    | Test 2            | Test 3 |  |
|            |      |               |        | low       |          | high |        |         |           |                   |        |  |
| Forest     | GPP  | all           | 217    | 1029      | 1466     | 1904 | 438    | 1001    | 1.5       | no                | no     |  |
| Croplands  | GPP  | all           | 80     | 1004      | 1293     | 1583 | 290    | 909     | 1.4       | no                | no     |  |
| Grasslands | GPP  | all           | 58     | 876       | 1395     | 1914 | 519    | 977     | 1.4       | yes               | no     |  |
| Forest     | TER  | all           | 216    | -1395     | -1054    | -714 | 340    | -751    | 1.4       | yes               | no     |  |
| Croplands  | TER  | all           | 79     | -1260     | -981     | -702 | 279    | -726    | 1.4       | yes               | no     |  |
| Grasslands | TER  | all           | 56     | -1698     | -1240    | -782 | 458    | -753    | 1.6       | no                | no     |  |
| Forest     | TPPU | all           | 25     | -253      | -194     | -135 | 59     | -175    | 1.1       | yes               | yes    |  |
| Croplands  | TPPU | all           | 104    | -723      | -475     | -227 | 248    | -160    | 3.0       | no                | no     |  |
| Grasslands | TPPU | all           | 15     | -379      | -280     | -181 | 99     | -70     | 4.0       | no                | no     |  |
| Croplands  | TCR  | all           | 81     | -27       | 50       | 127  | 77     | 38      | 1.3       | yes               | yes    |  |
| Grasslands | TCR  | all           | 6      | 55        | 100      | 145  | 45     | 35      | 2.9       | no                | yes    |  |
| Forest     | NEP  | all           | 216    | 139       | 417      | 696  | 278    | 249     | 1.7       | yes               | no     |  |
| Croplands  | NEP  | all           | 116    | 98        | 319      | 540  | 221    | 183     | 1.7       | yes               | no     |  |
| Grasslands | NEP  | all           | 65     | -24       | 191      | 406  | 215    | 224     | 0.9       | yes               | yes    |  |
| Forest     | NECB | all           | 60     | 54        | 322      | 590  | 268    | 105     | 3.1       | yes               | no     |  |
| Croplands  | NECB | all           | 99     | -323      | -105     | 112  | 217    | 61      | -1.7      | yes               | no     |  |
| Grasslands | NECB | all           | 15     | -125      | 73       | 203  | 207    | 188     | 0.4       | yes               | yes    |  |
| Forest     | NECB | Atlantic      | 7      | '         | -135     |      | C      | 66      | -2.0      | no                | no     |  |
| Forest     | NECB | Continental   | 44     | 170       | 407      | 644  | 237    | 48      | 8.5       | no                | no     |  |
| Forest     | NECB | Mediterranean | 9      |           | 260      |      |        | 270     | 1.0       | ) yes             | yes    |  |
| Croplands  | NECB | Atlantic      | 45     | -304      | -110     | 83   | 193    | 43      | -2.6      | yes               | no     |  |
| Croplands  | NECB | Continental   | 31     | -273      | -115     | 42   | 158    | 3 74    | -1.6      | o <mark>no</mark> | no     |  |
| Croplands  | NECB | Mediterranean | 23     | -400      | -82      | 236  | 318    | 86      | -1.0      | ) yes             | yes    |  |
| Grasslands | NECB | Continental   | 15     | -125      | 39       | 203  | 164    | 195     | 0.2       | yes               | yes    |  |



# Overall conclusions on accounting data quality

- All estimates (totally 56, considering each carbon flow, ecosystem and ecoregion) have the same order of magnitude
- Many (31 from 56) also fall within the variation range of the control
- Fewer (25 from 56) show also statistically significant equality of means.
- some validation parameters (harvest of carbon in forests and grasslands) need additional data to be fully representative and reliable for assessing carbon variation in the EU
- Scale-effects may be contributing to the 'disagreement' between crops harvest from field studies and downscaled statistics

#### System of Environmental-Economic Accounting

# 14.4 Evaluation of estimated outputs

- GPP and TER are around 25% underestimated
- Crops' harvest appear much underestimated
- The balances show better agreement between 'control' and accounts

|                      | _           |                    | _      |       |               |       |         | 1       |            |                                       |     |
|----------------------|-------------|--------------------|--------|-------|---------------|-------|---------|---------|------------|---------------------------------------|-----|
|                      |             |                    |        |       | fluxnet)      |       |         | Account |            |                                       |     |
|                      |             |                    | N (sit |       | Mean          |       | St. D.  | Mean    | Test 3     |                                       |     |
|                      |             |                    |        | low   |               | high  |         |         |            |                                       |     |
| Forest               | GPP         | Boreal             | 31     | 465   | 794           | 1123  | 329     | 684     | 1.2        | yes                                   | yes |
| Forest               | GPP         | Atlantic           | 21     | 907   | 1520          | 2132  | 612     | 1141    | 1.3        | yes                                   | no  |
| Forest               | GPP         | Continental        | 99     | 1424  | 1672          | 1920  | 248     | 1072    | 1.6        | no                                    | no  |
| Forest               | GPP         | Mediterranean      | 51     | 1196  | 1489          | 1782  | 293     | 1165    | 1.3        | no                                    | no  |
| Forest               | GPP         | Alpine             | 15     | 978   | 1360          | 1743  | 382     | 875     | 1.6        | no                                    | no  |
| Croplands            | GPP         | Atlantic           | 32     | 816   | 1171          | 1526  | 355     | 930     | 1.3        | yes                                   | no  |
| Croplands            | GPP         | Continental        | 30     | 1161  | 1344          | 1527  | 183     | 919     | 1.5        | no                                    | no  |
| Croplands            | GPP         | Mediterranean      | 18     | 1200  | 1426          | 1652  | 226     | 835     | 1.7        | no                                    | no  |
| Grasslands           | GPP         | Pannonian          | 7      | 707   | 941           | 1175  | 234     | 1069    | 0.9        | yes                                   | yes |
| Grasslands           | GPP         | Atlantic           | 7      | 1100  | 1461          | 1821  | 360     | 1142    | 1.3        | yes                                   | yes |
| Grasslands           | GPP         | Continental        | 24     | 1293  | 1674          | 2055  | 381     | 1010    |            | no                                    | no  |
| Grasslands           | GPP         | Mediterranean      | 12     | 679   | 928           | 1177  | 249     | 962     | 1.0        | yes                                   | yes |
| Grasslands           | GPP         | Alpine             | 8      | 963   | 1370          | 1777  | 407     | 820     | 1.7        |                                       | no  |
| Forest               | TER         | Boreal             | 30     | -989  | -736          | -484  | 252     | -485    | 1.5        |                                       | no  |
| Forest               | TER         | Atlantic           | 21     | -1605 | -1165         | -725  | 440     | -880    |            | yes                                   | no  |
| Forest               | TER         | Continental        | 99     | -1459 | -1199         | -939  | 260     | -820    | 1.5        |                                       | no  |
| Forest               | TER         | Mediterranean      | 51     | -1290 | -1071         | -852  | 219     | -828    | 1.3        |                                       | no  |
| Forest               | TER         | Alpine             | 15     | -708  | -520          | -332  | 188     | -671    |            | ves                                   | ves |
| Croplands            | TER         | Atlantic           | 31     | -1157 | -857          | -558  | 300     | -762    |            | yes                                   | ves |
| Croplands            | TER         | Continental        | 30     | -1278 | -1090         | -902  | 188     | -723    | 1.5        |                                       | no  |
| Croplands            | TER         | Mediterranean      | 18     | -1308 | -1011         | -715  | 297     | -632    | 1.6        |                                       | no  |
| Grasslands           | TER         | Pannonian          | 7      | -970  | -838          | -706  | 132     | -842    | 1.0        |                                       | ves |
| Grasslands           | TER         | Atlantic           | 7      | -1599 | -1294         | -989  | 305     | -909    | 1.0        | ·                                     | ves |
| Grasslands           | TER         | Continental        | 24     | -1335 | -1254         | -1105 | 349     | -778    | 1.4        |                                       | no  |
|                      | TER         |                    | 10     | -1802 | -1454         | -1105 | 253     | -745    |            |                                       |     |
| Grasslands           |             | Mediterranean      | 8      | -1147 | -695<br>-1179 | -557  | 622     | -745    | 1.2        | yes<br>yes                            | yes |
| Grasslands<br>Forest | TER<br>TPPU | Alpine<br>Atlantic | 8      | -1801 | -11/9<br>-229 | -557  | 1       | -607    |            | 1                                     | yes |
| Forest               | TPPU        |                    | 18     | -245  | -229          | -115  | 0<br>65 | -230    | 1.0<br>0.7 | ·                                     | yes |
|                      | _           | Continental        |        |       |               |       |         |         |            | · ·                                   | no  |
| Croplands            | TPPU        | Atlantic           | 50     | -789  | -499          | -209  | 290     | -177    | 2.8        |                                       | no  |
| Croplands            | TPPU        | Continental        | 31     | -566  | -428          | -290  | 138     | -157    | 2.7        |                                       | no  |
| Croplands            | TPPU        | Mediterranean      | 23     | -746  | -485          | -225  | 261     | -125    | 3.9        |                                       | no  |
| Grasslands           | TPPU        | Continental        | 15     | -383  | -288          | -194  | 94      | -70     | 4.1        |                                       | no  |
| Croplands            | TCR         | Atlantic           | 34     | -19   | 54            | 127   | 73      | 52      | 1.0        | '                                     | yes |
| Croplands            | TCR         | Continental        | 32     | -37   | 57            | 151   | 94      | 35      | 1.6        | · · · · · · · · · · · · · · · · · · · | yes |
| Croplands            | TCR         | Mediterranean      | 15     | -9    | 28            | 64    | 37      | 9       | 3.1        | /                                     | yes |
| Grasslands           | TCR         | Continental        | 6      | 55    | 100           | 145   | 45      | 34      | 2.9        | _                                     | yes |
| Forest               | NEP         | Boreal             | 30     | -83   | 67            | 216   | 149     | 198     |            | yes                                   | no  |
| Forest               | NEP         | Atlantic           | 21     | 86    | 354           | 622   | 268     | 260     | 1.4        | ·                                     | yes |
| Forest               | NEP         | Continental        | 99     | 284   | 473           | 662   | 189     | 251     | 1.9        |                                       | no  |
| Forest               | NEP         | Mediterranean      | 51     | 196   | 418           | 641   | 223     | 337     | 1.2        | ·                                     | yes |
| Forest               | NEP         | Alpine             | 15     | 477   | 840           | 1202  | 363     | 203     | 4.1        |                                       | no  |
| Croplands            | NEP         | Atlantic           | 51     | 125   | 351           | 576   | 226     | 167     | 2.1        | yes                                   | no  |
| Croplands            | NEP         | Continental        | 38     | 52    | 215           | 379   | 164     | 196     | 1.1        | yes                                   | yes |
| Croplands            | NEP         | Mediterranean      | 27     | 169   | 404           | 639   | 235     | 203     | 2.0        | yes                                   | no  |
| Grasslands           | NEP         | Pannonian          | 7      | -9    | 103           | 215   | 112     | 226     | 0.5        | no                                    | yes |
| Grasslands           | NEP         | Atlantic           | 7      | -93   | 166           | 426   | 260     | 232     | 0.7        | yes                                   | yes |
| Grasslands           | NEP         | Continental        | 24     | 74    | 254           | 434   | 180     | 231     | 1.1        | yes                                   | yes |
| Grasslands           | NEP         | Mediterranean      | 11     | -122  | 33            | 188   | 155     | 216     | 0.2        | no                                    | no  |
| Grasslands           | NEP         | Alpine             | 8      | -88   | 191           | 471   | 279     | 212     | 0.9        | yes                                   | yes |
| Forest               | NECB        | Atlantic           | 7      |       | -135          |       | 0       | 66      | -2.0       | no                                    | no  |
| Forest               | NECB        | Continental        | 44     | 170   | 407           | 644   | 237     | 48      | 8.5        |                                       | no  |
| Forest               | NECB        | Mediterranean      | 9      |       | 260           |       |         | 270     |            | yes                                   | yes |
| Croplands            | NECB        | Atlantic           | 45     | -304  | -110          | 83    | 193     | 43      |            | yes                                   | no  |
| Croplands            | NECB        | Continental        | 31     | -273  | -115          | 42    | 158     | 74      | -1.6       |                                       | no  |
| Croplands            | NECB        | Mediterranean      | 23     | -400  | -115          | 236   | 318     | 86      | -1.0       |                                       | yes |
| Siepianas            |             | carterranean       | 15     | -125  | -82           | 203   | 164     | 195     |            | ves                                   | ves |



# 15. Conclusions

- Improvement and consolidation of wide-area ecosystem carbon accounting data is now possible
- Current data is not for local decision-support (not enough spatially explicit/accurate)
- Uncertainties inherent in both input and validation data need to be addressed and studied further
- Consistency with IPCC and other ecosystem accounting components
- Need to address 'minor' transfers and further issues too



# Thank You!

### Emil Ivanov ivanove@un.org